11from __future__
import print_function
19x = ROOT.RooRealVar(
"x",
"x", 0, 10)
23mean = ROOT.RooRealVar(
"mean",
"mean of gaussians", 5, -10, 10)
24sigma1 = ROOT.RooRealVar(
"sigma1",
"width of gaussians", 0.5, 0.1, 10)
25sigma2 = ROOT.RooRealVar(
"sigma2",
"width of gaussians", 1, 0.1, 10)
27sig1 = ROOT.RooGaussian(
"sig1",
"Signal component 1", x, mean, sigma1)
28sig2 = ROOT.RooGaussian(
"sig2",
"Signal component 2", x, mean, sigma2)
31a0 = ROOT.RooRealVar(
"a0",
"a0", 0.5, 0.0, 1.0)
32a1 = ROOT.RooRealVar(
"a1",
"a1", -0.2)
33bkg = ROOT.RooChebychev(
"bkg",
"Background", x, [a0, a1])
36sig1frac = ROOT.RooRealVar(
"sig1frac",
"fraction of component 1 in signal", 0.8, 0.0, 1.0)
37sig = ROOT.RooAddPdf(
"sig",
"Signal", [sig1, sig2], [sig1frac])
40bkgfrac = ROOT.RooRealVar(
"bkgfrac",
"fraction of background", 0.5, 0.0, 1.0)
41model = ROOT.RooAddPdf(
"model",
"g1+g2+a", [bkg, sig], [bkgfrac])
44data = model.generate({x}, 1000)
50r = model.fitTo(data, Save=
True)
66ROOT.gStyle.SetOptStat(0)
67ROOT.gStyle.SetPalette(1)
68hcorr = r.correlationHist()
71frame = ROOT.RooPlot(sigma1, sig1frac, 0.45, 0.60, 0.65, 0.90)
72frame.SetTitle(
"Covariance between sigma1 and sig1frac")
73r.plotOn(frame, sigma1, sig1frac,
"ME12ABHV")
79print(
"EDM = ", r.edm())
80print(
"-log(L) minimum = ", r.minNll())
83print(
"final value of floating parameters")
84r.floatParsFinal().Print(
"s")
87print(
"correlation between sig1frac and a0 is ", r.correlation(sig1frac, a0))
88print(
"correlation between bkgfrac and mean is ", r.correlation(
"bkgfrac",
"mean"))
91cor = r.correlationMatrix()
92cov = r.covarianceMatrix()
95print(
"correlation matrix")
97print(
"covariance matrix")
104f = ROOT.TFile(
"rf607_fitresult.root",
"RECREATE")
111c = ROOT.TCanvas(
"rf607_fitresult",
"rf607_fitresult", 800, 400)
114ROOT.gPad.SetLeftMargin(0.15)
115hcorr.GetYaxis().SetTitleOffset(1.4)
118ROOT.gPad.SetLeftMargin(0.15)
119frame.GetYaxis().SetTitleOffset(1.6)
122c.SaveAs(
"rf607_fitresult.png")