Loading [MathJax]/extensions/tex2jax.js
Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
rf405_realtocatfuncs.py
Go to the documentation of this file.
1## \file
2## \ingroup tutorial_roofit
3## \notebook
4## Data and categories: demonstration of real-discrete mapping functions
5##
6## \macro_code
7##
8## \date February 2018
9## \authors Clemens Lange, Wouter Verkerke (C++ version)
10
11import ROOT
12
13
14# Define pdf in x, sample dataset in x
15# ------------------------------------------------------------------------
16
17# Define a dummy PDF in x
18x = ROOT.RooRealVar("x", "x", 0, 10)
19a = ROOT.RooArgusBG("a", "argus(x)", x, ROOT.RooFit.RooConst(10), ROOT.RooFit.RooConst(-1))
20
21# Generate a dummy dataset
22data = a.generate({x}, 10000)
23
24# Create a threshold real -> cat function
25# --------------------------------------------------------------------------
26
27# A RooThresholdCategory is a category function that maps regions in a real-valued
28# input observable observables to state names. At construction time a 'default'
29# state name must be specified to which all values of x are mapped that are not
30# otherwise assigned
31xRegion = ROOT.RooThresholdCategory("xRegion", "region of x", x, "Background")
32
33# Specify thresholds and state assignments one-by-one.
34# Each statement specifies that all values _below_ the given value
35# (and above any lower specified threshold) are mapped to the
36# category state with the given name
37#
38# Background | SideBand | Signal | SideBand | Background
39# 4.23 5.23 8.23 9.23
40xRegion.addThreshold(4.23, "Background")
41xRegion.addThreshold(5.23, "SideBand")
42xRegion.addThreshold(8.23, "Signal")
43xRegion.addThreshold(9.23, "SideBand")
44
45# Use threshold function to plot data regions
46# ----------------------------------------------
47
48# Add values of threshold function to dataset so that it can be used as
49# observable
50data.addColumn(xRegion)
51
52# Make plot of data in x
53xframe = x.frame(Title="Demo of threshold and binning mapping functions")
54data.plotOn(xframe)
55
56# Use calculated category to select sideband data
57data.plotOn(xframe, Cut="xRegion==xRegion::SideBand", MarkerColor="r", LineColor="r")
58
59# Create a binning real -> cat function
60# ----------------------------------------------------------------------
61
62# A RooBinningCategory is a category function that maps bins of a (named) binning definition
63# in a real-valued input observable observables to state names. The state names are automatically
64# constructed from the variable name, binning name and the bin number. If no binning name
65# is specified the default binning is mapped
66
67x.setBins(10, "coarse")
68xBins = ROOT.RooBinningCategory("xBins", "coarse bins in x", x, "coarse")
69
70# Use binning function for tabulation and plotting
71# -----------------------------------------------------------------------------------------------
72
73# Print table of xBins state multiplicity. Note that xBins does not need to be an observable in data
74# it can be a function of observables in data as well
75xbtable = data.table(xBins)
76xbtable.Print("v")
77
78# Add values of xBins function to dataset so that it can be used as
79# observable
80xb = data.addColumn(xBins)
81
82# Define range "alt" as including bins 1,3,5,7,9
83xb.setRange("alt", "x_coarse_bin1,x_coarse_bin3,x_coarse_bin5,x_coarse_bin7,x_coarse_bin9")
84
85# Construct subset of data matching range "alt" but only for the first
86# 5000 events and plot it on the frame
87dataSel = data.reduce(CutRange="alt", EventRange=(0, 5000))
88dataSel.plotOn(xframe, MarkerColor="g", LineColor="g")
89
90c = ROOT.TCanvas("rf405_realtocatfuncs", "rf405_realtocatfuncs", 600, 600)
91xframe.SetMinimum(0.01)
92ROOT.gPad.SetLeftMargin(0.15)
93xframe.GetYaxis().SetTitleOffset(1.4)
94xframe.Draw()
95
96c.SaveAs("rf405_realtocatfuncs.png")