17from array
import array
20def makeTH1(name, mean, sigma):
21 """Create ROOT TH1 filled with a Gaussian distribution."""
23 hh = ROOT.TH1D(name, name, 100, -10, 10)
25 hh.Fill(ROOT.gRandom.Gaus(mean, sigma))
31 """Create ROOT ROOT.TTree filled with a Gaussian distribution in x and a uniform distribution in y."""
33 tree = ROOT.TTree(
"tree",
"tree")
38 tree.Branch(
"x", px,
"x/D")
39 tree.Branch(
"y", py,
"y/D")
40 tree.Branch(
"z", pz,
"z/D")
41 tree.Branch(
"i", pi,
"i/I")
43 px[0] = ROOT.gRandom.Gaus(0, 3)
44 py[0] = ROOT.gRandom.Uniform() * 30 - 15
45 pz[0] = ROOT.gRandom.Gaus(0, 5)
56hh_1 = makeTH1(
"hh1", 0, 3)
57hh_2 = makeTH1(
"hh2", -3, 1)
58hh_3 = makeTH1(
"hh3", +3, 4)
61x = ROOT.RooRealVar(
"x",
"x", -10, 10)
64c = ROOT.RooCategory(
"c",
"c")
65c.defineType(
"SampleA")
66c.defineType(
"SampleB")
67c.defineType(
"SampleC")
71dh = ROOT.RooDataHist(
"dh",
"dh", [x], Index=c, Import={
"SampleA": hh_1,
"SampleB": hh_2,
"SampleC": hh_3})
74dh2 = ROOT.RooDataHist(
"dh",
"dh", [x], Index=c, Import={
"SampleA": hh_1,
"SampleB": hh_2,
"SampleC": hh_3})
83y = ROOT.RooRealVar(
"y",
"y", -10, 10)
84z = ROOT.RooRealVar(
"z",
"z", -10, 10)
87ds = ROOT.RooDataSet(
"ds",
"ds", {x, y}, Import=tree)
92ds2 = ROOT.RooDataSet(
"ds2",
"ds2", {x, y, z}, Import=tree, Cut=
"y+z<0")
99i = ROOT.RooRealVar(
"i",
"i", 0, 5)
100ds3 = ROOT.RooDataSet(
"ds3",
"ds3", {i, x}, Import=tree)
104icat = ROOT.RooCategory(
"i",
"i", {
"State0": 0,
"State1": 1})
108ds4 = ROOT.RooDataSet(
"ds4",
"ds4", {icat, x}, Import=tree)
115dsA = ds2.reduce({x, y},
"z<-5")
116dsB = ds2.reduce({x, y},
"abs(z)<5")
117dsC = ds2.reduce({x, y},
"z>5")
121dsABC = ROOT.RooDataSet(
125 ROOT.RooFit.Import(
"SampleA", dsA),
126 ROOT.RooFit.Import(
"SampleB", dsB),
128 Import=(
"SampleC", dsC),