Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rf313_paramranges.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// Multidimensional models: working with parametrized ranges to define non-rectangular
5/// regions for fitting and integration
6///
7/// \macro_image
8/// \macro_output
9/// \macro_code
10///
11/// \date July 2008
12/// \author Wouter Verkerke
13
14#include "RooRealVar.h"
15#include "RooDataSet.h"
16#include "RooGaussian.h"
17#include "RooConstVar.h"
18#include "RooPolynomial.h"
19#include "RooProdPdf.h"
20#include "TCanvas.h"
21#include "TAxis.h"
22#include "RooPlot.h"
23using namespace RooFit;
24
26{
27
28 // C r e a t e 3 D p d f
29 // -------------------------
30
31 // Define observable (x,y,z)
32 RooRealVar x("x", "x", 0, 10);
33 RooRealVar y("y", "y", 0, 10);
34 RooRealVar z("z", "z", 0, 10);
35
36 // Define 3 dimensional pdf
37 RooRealVar z0("z0", "z0", -0.1, 1);
38 RooPolynomial px("px", "px", x, RooConst(0));
39 RooPolynomial py("py", "py", y, RooConst(0));
40 RooPolynomial pz("pz", "pz", z, z0);
41 RooProdPdf pxyz("pxyz", "pxyz", RooArgSet(px, py, pz));
42
43 // D e f i n e d n o n - r e c t a n g u l a r r e g i o n R i n ( x , y , z )
44 // -------------------------------------------------------------------------------------
45
46 //
47 // R = Z[0 - 0.1*Y^2] * Y[0.1*X - 0.9*X] * X[0 - 10]
48 //
49
50 // Construct range parametrized in "R" in y [ 0.1*x, 0.9*x ]
51 RooFormulaVar ylo("ylo", "0.1*x", x);
52 RooFormulaVar yhi("yhi", "0.9*x", x);
53 y.setRange("R", ylo, yhi);
54
55 // Construct parametrized ranged "R" in z [ 0, 0.1*y^2 ]
56 RooFormulaVar zlo("zlo", "0.0*y", y);
57 RooFormulaVar zhi("zhi", "0.1*y*y", y);
58 z.setRange("R", zlo, zhi);
59
60 // C a l c u l a t e i n t e g r a l o f n o r m a l i z e d p d f i n R
61 // ----------------------------------------------------------------------------------
62
63 // Create integral over normalized pdf model over x,y,z in "R" region
64 RooAbsReal *intPdf = pxyz.createIntegral(RooArgSet(x, y, z), RooArgSet(x, y, z), "R");
65
66 // Plot value of integral as function of pdf parameter z0
67 RooPlot *frame = z0.frame(Title("Integral of pxyz over x,y,z in region R"));
68 intPdf->plotOn(frame);
69
70 new TCanvas("rf313_paramranges", "rf313_paramranges", 600, 600);
71 gPad->SetLeftMargin(0.15);
72 frame->GetYaxis()->SetTitleOffset(1.6);
73 frame->Draw();
74
75 return;
76}
#define gPad
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition RooAbsReal.h:64
RooAbsReal * createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Create an object that represents the integral of the function over one or more observables listed in ...
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg(), const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg(), const RooCmdArg &arg9=RooCmdArg(), const RooCmdArg &arg10=RooCmdArg()) const
Plot (project) PDF on specified frame.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:35
A RooFormulaVar is a generic implementation of a real-valued object, which takes a RooArgList of serv...
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:44
TAxis * GetYaxis() const
Definition RooPlot.cxx:1278
static RooPlot * frame(const RooAbsRealLValue &var, Double_t xmin, Double_t xmax, Int_t nBins)
Create a new frame for a given variable in x.
Definition RooPlot.cxx:249
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition RooPlot.cxx:661
RooPolynomial implements a polynomial p.d.f of the form.
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition RooProdPdf.h:33
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:39
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition TAttAxis.cxx:302
The Canvas class.
Definition TCanvas.h:23
RooConstVar & RooConst(Double_t val)
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition Common.h:18
const char * Title
Definition TXMLSetup.cxx:68