AddLayer(size_t width, EActivationFunction f, Scalar_t dropoutProbability=1.0) | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
AddLayer(SharedLayer &layer) | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
AddLayer(SharedLayer_t &layer) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
Backward(const Matrix_t &X, const Matrix_t &Y, const Matrix_t &weights) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
Clear() | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
CreateClone(size_t batchSize) | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
fBatchSize | TMVA::DNN::TNet< Architecture_t, Layer_t > | private |
fDummy | TMVA::DNN::TNet< Architecture_t, Layer_t > | private |
fInputWidth | TMVA::DNN::TNet< Architecture_t, Layer_t > | private |
fJ | TMVA::DNN::TNet< Architecture_t, Layer_t > | private |
fLayers | TMVA::DNN::TNet< Architecture_t, Layer_t > | private |
Forward(Matrix_t &X, bool applyDropout=false) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
fR | TMVA::DNN::TNet< Architecture_t, Layer_t > | private |
fWeightDecay | TMVA::DNN::TNet< Architecture_t, Layer_t > | private |
GetBatchSize() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
GetDepth() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
GetInputWidth() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
GetLayer(size_t i) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
GetLayer(size_t i) const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
GetLossFunction() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
GetNFlops() | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
GetOutput() | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
GetOutputWidth() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
GetRegularization() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
GetWeightDecay() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
Initialize(EInitialization m) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
InitializeGradients() | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
LayerIterator_t typedef | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
LayersBegin() | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
LayersEnd() | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
Loss(const Matrix_t &Y, const Matrix_t &weights, bool includeRegularization=true) const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
Loss(Matrix_t &X, const Matrix_t &Y, const Matrix_t &weights, bool applyDropout=false, bool includeRegularization=true) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
Matrix_t typedef | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
Prediction(Matrix_t &Y_hat, Matrix_t &X, EOutputFunction f) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
Prediction(Matrix_t &Y_hat, EOutputFunction f) const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
Print() | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
Scalar_t typedef | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
SetBatchSize(size_t batchSize) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
SetDropoutProbabilities(const std::vector< Double_t > &probabilities) | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
SetInputWidth(size_t inputWidth) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
SetLossFunction(ELossFunction J) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
SetRegularization(ERegularization R) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
SetWeightDecay(Scalar_t weightDecay) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline |
TNet() | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
TNet(const TNet &other) | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
TNet(size_t batchSize, const TNet< OtherArchitecture_t > &) | TMVA::DNN::TNet< Architecture_t, Layer_t > | |
TNet(size_t batchSize, size_t inputWidth, ELossFunction fJ, ERegularization fR=ERegularization::kNone, Scalar_t fWeightDecay=0.0) | TMVA::DNN::TNet< Architecture_t, Layer_t > | |