Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rs102_hypotestwithshapes.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roostats
3/// \notebook -js
4/// A typical search for a new particle by studying an invariant mass distribution
5///
6/// The macro creates a simple signal model and two background models,
7/// which are added to a RooWorkspace.
8/// The macro creates a toy dataset, and then uses a RooStats
9/// ProfileLikleihoodCalculator to do a hypothesis test of the
10/// background-only and signal+background hypotheses.
11/// In this example, shape uncertainties are not taken into account, but
12/// normalization uncertainties are.
13///
14/// \macro_image
15/// \macro_output
16/// \macro_code
17///
18/// \author Kyle Cranmer
19
20#include "RooDataSet.h"
21#include "RooRealVar.h"
22#include "RooGaussian.h"
23#include "RooAddPdf.h"
24#include "RooProdPdf.h"
25#include "RooAddition.h"
26#include "RooProduct.h"
27#include "TCanvas.h"
28#include "RooChebychev.h"
29#include "RooAbsPdf.h"
30#include "RooFit.h"
31#include "RooFitResult.h"
32#include "RooPlot.h"
33#include "RooAbsArg.h"
34#include "RooWorkspace.h"
37#include <string>
38
39// use this order for safety on library loading
40using namespace RooFit;
41using namespace RooStats;
42
43// see below for implementation
44void AddModel(RooWorkspace *);
45void AddData(RooWorkspace *);
46void DoHypothesisTest(RooWorkspace *);
47void MakePlots(RooWorkspace *);
48
49//____________________________________
50void rs102_hypotestwithshapes()
51{
52
53 // The main macro.
54
55 // Create a workspace to manage the project.
56 RooWorkspace *wspace = new RooWorkspace("myWS");
57
58 // add the signal and background models to the workspace
59 AddModel(wspace);
60
61 // add some toy data to the workspace
62 AddData(wspace);
63
64 // inspect the workspace if you wish
65 // wspace->Print();
66
67 // do the hypothesis test
68 DoHypothesisTest(wspace);
69
70 // make some plots
71 MakePlots(wspace);
72
73 // cleanup
74 delete wspace;
75}
76
77//____________________________________
78void AddModel(RooWorkspace *wks)
79{
80
81 // Make models for signal (Higgs) and background (Z+jets and QCD)
82 // In real life, this part requires an intelligent modeling
83 // of signal and background -- this is only an example.
84
85 // set range of observable
86 Double_t lowRange = 60, highRange = 200;
87
88 // make a RooRealVar for the observable
89 RooRealVar invMass("invMass", "M_{inv}", lowRange, highRange, "GeV");
90
91 // --------------------------------------
92 // make a simple signal model.
93 RooRealVar mH("mH", "Higgs Mass", 130, 90, 160);
94 RooRealVar sigma1("sigma1", "Width of Gaussian", 12., 2, 100);
95 RooGaussian sigModel("sigModel", "Signal Model", invMass, mH, sigma1);
96 // we will test this specific mass point for the signal
97 mH.setConstant();
98 // and we assume we know the mass resolution
99 sigma1.setConstant();
100
101 // --------------------------------------
102 // make zjj model. Just like signal model
103 RooRealVar mZ("mZ", "Z Mass", 91.2, 0, 100);
104 RooRealVar sigma1_z("sigma1_z", "Width of Gaussian", 10., 6, 100);
105 RooGaussian zjjModel("zjjModel", "Z+jets Model", invMass, mZ, sigma1_z);
106 // we know Z mass
107 mZ.setConstant();
108 // assume we know resolution too
109 sigma1_z.setConstant();
110
111 // --------------------------------------
112 // make QCD model
113 RooRealVar a0("a0", "a0", 0.26, -1, 1);
114 RooRealVar a1("a1", "a1", -0.17596, -1, 1);
115 RooRealVar a2("a2", "a2", 0.018437, -1, 1);
116 RooRealVar a3("a3", "a3", 0.02, -1, 1);
117 RooChebychev qcdModel("qcdModel", "A Polynomial for QCD", invMass, RooArgList(a0, a1, a2));
118
119 // let's assume this shape is known, but the normalization is not
120 a0.setConstant();
121 a1.setConstant();
122 a2.setConstant();
123
124 // --------------------------------------
125 // combined model
126
127 // Setting the fraction of Zjj to be 40% for initial guess.
128 RooRealVar fzjj("fzjj", "fraction of zjj background events", .4, 0., 1);
129
130 // Set the expected fraction of signal to 20%.
131 RooRealVar fsigExpected("fsigExpected", "expected fraction of signal events", .2, 0., 1);
132 fsigExpected.setConstant(); // use mu as main parameter, so fix this.
133
134 // Introduce mu: the signal strength in units of the expectation.
135 // eg. mu = 1 is the SM, mu = 0 is no signal, mu=2 is 2x the SM
136 RooRealVar mu("mu", "signal strength in units of SM expectation", 1, 0., 2);
137
138 // Introduce ratio of signal efficiency to nominal signal efficiency.
139 // This is useful if you want to do limits on cross section.
140 RooRealVar ratioSigEff("ratioSigEff", "ratio of signal efficiency to nominal signal efficiency", 1., 0., 2);
141 ratioSigEff.setConstant(kTRUE);
142
143 // finally the signal fraction is the product of the terms above.
144 RooProduct fsig("fsig", "fraction of signal events", RooArgSet(mu, ratioSigEff, fsigExpected));
145
146 // full model
147 RooAddPdf model("model", "sig+zjj+qcd background shapes", RooArgList(sigModel, zjjModel, qcdModel),
148 RooArgList(fsig, fzjj));
149
150 // interesting for debugging and visualizing the model
151 // model.printCompactTree("","fullModel.txt");
152 // model.graphVizTree("fullModel.dot");
153
154 wks->import(model);
155}
156
157//____________________________________
158void AddData(RooWorkspace *wks)
159{
160 // Add a toy dataset
161
162 Int_t nEvents = 150;
163 RooAbsPdf *model = wks->pdf("model");
164 RooRealVar *invMass = wks->var("invMass");
165
166 RooDataSet *data = model->generate(*invMass, nEvents);
167
168 wks->import(*data, Rename("data"));
169}
170
171//____________________________________
172void DoHypothesisTest(RooWorkspace *wks)
173{
174
175 // Use a RooStats ProfileLikleihoodCalculator to do the hypothesis test.
176 ModelConfig model;
177 model.SetWorkspace(*wks);
178 model.SetPdf("model");
179
180 // plc.SetData("data");
181
183 plc.SetData(*(wks->data("data")));
184
185 // here we explicitly set the value of the parameters for the null.
186 // We want no signal contribution, eg. mu = 0
187 RooRealVar *mu = wks->var("mu");
188 // RooArgSet* nullParams = new RooArgSet("nullParams");
189 // nullParams->addClone(*mu);
190 RooArgSet poi(*mu);
191 RooArgSet *nullParams = (RooArgSet *)poi.snapshot();
192 nullParams->setRealValue("mu", 0);
193
194 // plc.SetNullParameters(*nullParams);
195 plc.SetModel(model);
196 // NOTE: using snapshot will import nullparams
197 // in the WS and merge with existing "mu"
198 // model.SetSnapshot(*nullParams);
199
200 // use instead setNuisanceParameters
201 plc.SetNullParameters(*nullParams);
202
203 // We get a HypoTestResult out of the calculator, and we can query it.
204 HypoTestResult *htr = plc.GetHypoTest();
205 cout << "-------------------------------------------------" << endl;
206 cout << "The p-value for the null is " << htr->NullPValue() << endl;
207 cout << "Corresponding to a significance of " << htr->Significance() << endl;
208 cout << "-------------------------------------------------\n\n" << endl;
209}
210
211//____________________________________
212void MakePlots(RooWorkspace *wks)
213{
214
215 // Make plots of the data and the best fit model in two cases:
216 // first the signal+background case
217 // second the background-only case.
218
219 // get some things out of workspace
220 RooAbsPdf *model = wks->pdf("model");
221 RooAbsPdf *sigModel = wks->pdf("sigModel");
222 RooAbsPdf *zjjModel = wks->pdf("zjjModel");
223 RooAbsPdf *qcdModel = wks->pdf("qcdModel");
224
225 RooRealVar *mu = wks->var("mu");
226 RooRealVar *invMass = wks->var("invMass");
227 RooAbsData *data = wks->data("data");
228
229 // --------------------------------------
230 // Make plots for the Alternate hypothesis, eg. let mu float
231
232 mu->setConstant(kFALSE);
233
234 model->fitTo(*data, Save(kTRUE), Minos(kFALSE), Hesse(kFALSE), PrintLevel(-1));
235
236 // plot sig candidates, full model, and individual components
237 new TCanvas();
238 RooPlot *frame = invMass->frame();
239 data->plotOn(frame);
240 model->plotOn(frame);
241 model->plotOn(frame, Components(*sigModel), LineStyle(kDashed), LineColor(kRed));
242 model->plotOn(frame, Components(*zjjModel), LineStyle(kDashed), LineColor(kBlack));
243 model->plotOn(frame, Components(*qcdModel), LineStyle(kDashed), LineColor(kGreen));
244
245 frame->SetTitle("An example fit to the signal + background model");
246 frame->Draw();
247 // cdata->SaveAs("alternateFit.gif");
248
249 // --------------------------------------
250 // Do Fit to the Null hypothesis. Eg. fix mu=0
251
252 mu->setVal(0); // set signal fraction to 0
253 mu->setConstant(kTRUE); // set constant
254
255 model->fitTo(*data, Save(kTRUE), Minos(kFALSE), Hesse(kFALSE), PrintLevel(-1));
256
257 // plot signal candidates with background model and components
258 new TCanvas();
259 RooPlot *xframe2 = invMass->frame();
260 data->plotOn(xframe2, DataError(RooAbsData::SumW2));
261 model->plotOn(xframe2);
262 model->plotOn(xframe2, Components(*zjjModel), LineStyle(kDashed), LineColor(kBlack));
263 model->plotOn(xframe2, Components(*qcdModel), LineStyle(kDashed), LineColor(kGreen));
264
265 xframe2->SetTitle("An example fit to the background-only model");
266 xframe2->Draw();
267 // cbkgonly->SaveAs("nullFit.gif");
268}
int Int_t
Definition RtypesCore.h:45
const Bool_t kFALSE
Definition RtypesCore.h:92
double Double_t
Definition RtypesCore.h:59
const Bool_t kTRUE
Definition RtypesCore.h:91
@ kRed
Definition Rtypes.h:66
@ kBlack
Definition Rtypes.h:65
@ kGreen
Definition Rtypes.h:66
@ kDashed
Definition TAttLine.h:48
Bool_t setRealValue(const char *name, Double_t newVal=0, Bool_t verbose=kFALSE)
Set value of a RooAbsRealLValye stored in set with given name to newVal No error messages are printed...
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition RooAbsData.h:49
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
RooDataSet * generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none())
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,...
Definition RooAbsPdf.h:58
virtual RooFitResult * fitTo(RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Fit PDF to given dataset.
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none(), const RooCmdArg &arg9=RooCmdArg::none(), const RooCmdArg &arg10=RooCmdArg::none()) const
Helper calling plotOn(RooPlot*, RooLinkedList&) const.
Definition RooAbsPdf.h:121
RooPlot * frame(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Create a new RooPlot on the heap with a drawing frame initialized for this object,...
void setConstant(Bool_t value=kTRUE)
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition RooAddPdf.h:32
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition RooArgList.h:21
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:29
RooArgSet * snapshot(bool deepCopy=true) const
Use RooAbsCollection::snapshot(), but return as RooArgSet.
Definition RooArgSet.h:118
Chebychev polynomial p.d.f.
RooDataSet is a container class to hold unbinned data.
Definition RooDataSet.h:33
Plain Gaussian p.d.f.
Definition RooGaussian.h:24
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:44
void SetTitle(const char *name)
Set the title of the RooPlot to 'title'.
Definition RooPlot.cxx:1242
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition RooPlot.cxx:691
A RooProduct represents the product of a given set of RooAbsReal objects.
Definition RooProduct.h:29
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:39
virtual void setVal(Double_t value)
Set value of variable to 'value'.
virtual void SetNullParameters(const RooArgSet &set)
set parameter values for the null if using a common PDF
virtual void SetModel(const ModelConfig &model)
set the model (in this case can set only the parameters for the null hypothesis)
virtual void SetData(RooAbsData &data)
Set the DataSet, add to the the workspace if not already there.
HypoTestResult is a base class for results from hypothesis tests.
virtual Double_t Significance() const
familiar name for the Null p-value in terms of 1-sided Gaussian significance
virtual Double_t NullPValue() const
Return p-value for null hypothesis.
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition ModelConfig.h:30
virtual void SetWorkspace(RooWorkspace &ws)
Definition ModelConfig.h:66
virtual void SetPdf(const RooAbsPdf &pdf)
Set the Pdf, add to the the workspace if not already there.
Definition ModelConfig.h:81
The ProfileLikelihoodCalculator is a concrete implementation of CombinedCalculator (the interface cla...
virtual HypoTestResult * GetHypoTest() const
Return the hypothesis test result obtained from the likelihood ratio of the maximum likelihood value ...
The RooWorkspace is a persistable container for RooFit projects.
RooAbsData * data(const char *name) const
Retrieve dataset (binned or unbinned) with given name. A null pointer is returned if not found.
RooRealVar * var(const char *name) const
Retrieve real-valued variable (RooRealVar) with given name. A null pointer is returned if not found.
Bool_t import(const RooAbsArg &arg, const RooCmdArg &arg1=RooCmdArg(), const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg(), const RooCmdArg &arg9=RooCmdArg())
Import a RooAbsArg object, e.g.
RooAbsPdf * pdf(const char *name) const
Retrieve p.d.f (RooAbsPdf) with given name. A null pointer is returned if not found.
The Canvas class.
Definition TCanvas.h:23
RooCmdArg Rename(const char *suffix)
RooCmdArg Hesse(Bool_t flag=kTRUE)
RooCmdArg Save(Bool_t flag=kTRUE)
RooCmdArg PrintLevel(Int_t code)
RooCmdArg DataError(Int_t)
RooCmdArg Minos(Bool_t flag=kTRUE)
RooCmdArg Components(const RooArgSet &compSet)
RooCmdArg LineColor(Color_t color)
RooCmdArg LineStyle(Style_t style)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Namespace for the RooStats classes.
Definition Asimov.h:19