Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rf701_efficiencyfit.py
Go to the documentation of this file.
1## \file
2## \ingroup tutorial_roofit
3## \notebook
4## Special pdf's: unbinned maximum likelihood fit of an efficiency eff(x) function to a
5## dataset D(x,cut), cut is a category encoding a selection, which the efficiency as function
6## of x should be described by eff(x)
7##
8## \macro_code
9##
10## \date February 2018
11## \authors Clemens Lange, Wouter Verkerke (C++ version)
12
13import ROOT
14
15
16# Construct efficiency function e(x)
17# -------------------------------------------------------------------
18
19# Declare variables x,mean, with associated name, title, value and allowed
20# range
21x = ROOT.RooRealVar("x", "x", -10, 10)
22
23# Efficiency function eff(x;a,b)
24a = ROOT.RooRealVar("a", "a", 0.4, 0, 1)
25b = ROOT.RooRealVar("b", "b", 5)
26c = ROOT.RooRealVar("c", "c", -1, -10, 10)
27effFunc = ROOT.RooFormulaVar(
28 "effFunc", "(1-a)+a*cos((x-c)/b)", ROOT.RooArgList(a, b, c, x))
29
30# Construct conditional efficiency pdf E(cut|x)
31# ------------------------------------------------------------------------------------------
32
33# Acceptance state cut (1 or 0)
34cut = ROOT.RooCategory("cut", "cutr")
35cut.defineType("accept", 1)
36cut.defineType("reject", 0)
37
38# Construct efficiency pdf eff(cut|x)
39effPdf = ROOT.RooEfficiency("effPdf", "effPdf", effFunc, cut, "accept")
40
41# Generate data (x, cut) from a toy model
42# -----------------------------------------------------------------------------
43
44# Construct global shape pdf shape(x) and product model(x,cut) = eff(cut|x)*shape(x)
45# (These are _only_ needed to generate some toy MC here to be used later)
46shapePdf = ROOT.RooPolynomial(
47 "shapePdf", "shapePdf", x, ROOT.RooArgList(ROOT.RooFit.RooConst(-0.095)))
48model = ROOT.RooProdPdf(
49 "model",
50 "model",
51 ROOT.RooArgSet(shapePdf),
52 ROOT.RooFit.Conditional(
53 ROOT.RooArgSet(effPdf),
54 ROOT.RooArgSet(cut)))
55
56# Generate some toy data from model
57data = model.generate(ROOT.RooArgSet(x, cut), 10000)
58
59# Fit conditional efficiency pdf to data
60# --------------------------------------------------------------------------
61
62# Fit conditional efficiency pdf to data
63effPdf.fitTo(data, ROOT.RooFit.ConditionalObservables(ROOT.RooArgSet(x)))
64
65# Plot fitted, data efficiency
66# --------------------------------------------------------
67
68# Plot distribution of all events and accepted fraction of events on frame
69frame1 = x.frame(ROOT.RooFit.Bins(
70 20), ROOT.RooFit.Title("Data (all, accepted)"))
71data.plotOn(frame1)
72data.plotOn(
73 frame1,
74 ROOT.RooFit.Cut("cut==cut::accept"),
75 ROOT.RooFit.MarkerColor(
76 ROOT.kRed),
77 ROOT.RooFit.LineColor(
78 ROOT.kRed))
79
80# Plot accept/reject efficiency on data overlay fitted efficiency curve
81frame2 = x.frame(ROOT.RooFit.Bins(
82 20), ROOT.RooFit.Title("Fitted efficiency"))
83data.plotOn(frame2, ROOT.RooFit.Efficiency(cut)) # needs ROOT version >= 5.21
84effFunc.plotOn(frame2, ROOT.RooFit.LineColor(ROOT.kRed))
85
86# Draw all frames on a canvas
87ca = ROOT.TCanvas("rf701_efficiency", "rf701_efficiency", 800, 400)
88ca.Divide(2)
89ca.cd(1)
90ROOT.gPad.SetLeftMargin(0.15)
91frame1.GetYaxis().SetTitleOffset(1.6)
92frame1.Draw()
93ca.cd(2)
94ROOT.gPad.SetLeftMargin(0.15)
95frame2.GetYaxis().SetTitleOffset(1.4)
96frame2.Draw()
97
98ca.SaveAs("rf701_efficiencyfit.png")