Logo ROOT  
Reference Guide
rf610_visualerror.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// Likelihood and minimization: visualization of errors from a covariance matrix
5///
6/// \macro_image
7/// \macro_output
8/// \macro_code
9/// \author 04/2009 - Wouter Verkerke
10
11#include "RooRealVar.h"
12#include "RooDataHist.h"
13#include "RooGaussian.h"
14#include "RooConstVar.h"
15#include "RooAddPdf.h"
16#include "RooPlot.h"
17#include "TCanvas.h"
18#include "TAxis.h"
19#include "TAxis.h"
20using namespace RooFit;
21
23{
24 // S e t u p e x a m p l e f i t
25 // ---------------------------------------
26
27 // Create sum of two Gaussians p.d.f. with factory
28 RooRealVar x("x", "x", -10, 10);
29
30 RooRealVar m("m", "m", 0, -10, 10);
31 RooRealVar s("s", "s", 2, 1, 50);
32 RooGaussian sig("sig", "sig", x, m, s);
33
34 RooRealVar m2("m2", "m2", -1, -10, 10);
35 RooRealVar s2("s2", "s2", 6, 1, 50);
36 RooGaussian bkg("bkg", "bkg", x, m2, s2);
37
38 RooRealVar fsig("fsig", "fsig", 0.33, 0, 1);
39 RooAddPdf model("model", "model", RooArgList(sig, bkg), fsig);
40
41 // Create binned dataset
42 x.setBins(25);
43 RooAbsData *d = model.generateBinned(x, 1000);
44
45 // Perform fit and save fit result
46 RooFitResult *r = model.fitTo(*d, Save());
47
48 // V i s u a l i z e f i t e r r o r
49 // -------------------------------------
50
51 // Make plot frame
52 RooPlot *frame = x.frame(Bins(40), Title("P.d.f with visualized 1-sigma error band"));
53 d->plotOn(frame);
54
55 // Visualize 1-sigma error encoded in fit result 'r' as orange band using linear error propagation
56 // This results in an error band that is by construction symmetric
57 //
58 // The linear error is calculated as
59 // error(x) = Z* F_a(x) * Corr(a,a') F_a'(x)
60 //
61 // where F_a(x) = [ f(x,a+da) - f(x,a-da) ] / 2,
62 //
63 // with f(x) = the plotted curve
64 // 'da' = error taken from the fit result
65 // Corr(a,a') = the correlation matrix from the fit result
66 // Z = requested significance 'Z sigma band'
67 //
68 // The linear method is fast (required 2*N evaluations of the curve, where N is the number of parameters),
69 // but may not be accurate in the presence of strong correlations (~>0.9) and at Z>2 due to linear and
70 // Gaussian approximations made
71 //
72 model.plotOn(frame, VisualizeError(*r, 1), FillColor(kOrange));
73
74 // Calculate error using sampling method and visualize as dashed red line.
75 //
76 // In this method a number of curves is calculated with variations of the parameter values, as sampled
77 // from a multi-variate Gaussian p.d.f. that is constructed from the fit results covariance matrix.
78 // The error(x) is determined by calculating a central interval that capture N% of the variations
79 // for each value of x, where N% is controlled by Z (i.e. Z=1 gives N=68%). The number of sampling curves
80 // is chosen to be such that at least 100 curves are expected to be outside the N% interval, and is minimally
81 // 100 (e.g. Z=1->Ncurve=356, Z=2->Ncurve=2156)) Intervals from the sampling method can be asymmetric,
82 // and may perform better in the presence of strong correlations, but may take (much) longer to calculate
83 model.plotOn(frame, VisualizeError(*r, 1, kFALSE), DrawOption("L"), LineWidth(2), LineColor(kRed));
84
85 // Perform the same type of error visualization on the background component only.
86 // The VisualizeError() option can generally applied to _any_ kind of plot (components, asymmetries, efficiencies
87 // etc..)
88 model.plotOn(frame, VisualizeError(*r, 1), FillColor(kOrange), Components("bkg"));
89 model.plotOn(frame, VisualizeError(*r, 1, kFALSE), DrawOption("L"), LineWidth(2), LineColor(kRed), Components("bkg"),
91
92 // Overlay central value
93 model.plotOn(frame);
94 model.plotOn(frame, Components("bkg"), LineStyle(kDashed));
95 d->plotOn(frame);
96 frame->SetMinimum(0);
97
98 // V i s u a l i z e p a r t i a l f i t e r r o r
99 // ------------------------------------------------------
100
101 // Make plot frame
102 RooPlot *frame2 = x.frame(Bins(40), Title("Visualization of 2-sigma partial error from (m,m2)"));
103
104 // Visualize partial error. For partial error visualization the covariance matrix is first reduced as follows
105 // ___ -1
106 // Vred = V22 = V11 - V12 * V22 * V21
107 //
108 // Where V11,V12,V21,V22 represent a block decomposition of the covariance matrix into observables that
109 // are propagated (labeled by index '1') and that are not propagated (labeled by index '2'), and V22bar
110 // is the Shur complement of V22, calculated as shown above
111 //
112 // (Note that Vred is _not_ a simple sub-matrix of V)
113
114 // Propagate partial error due to shape parameters (m,m2) using linear and sampling method
115 model.plotOn(frame2, VisualizeError(*r, RooArgSet(m, m2), 2), FillColor(kCyan));
116 model.plotOn(frame2, Components("bkg"), VisualizeError(*r, RooArgSet(m, m2), 2), FillColor(kCyan));
117
118 model.plotOn(frame2);
119 model.plotOn(frame2, Components("bkg"), LineStyle(kDashed));
120 frame2->SetMinimum(0);
121
122 // Make plot frame
123 RooPlot *frame3 = x.frame(Bins(40), Title("Visualization of 2-sigma partial error from (s,s2)"));
124
125 // Propagate partial error due to yield parameter using linear and sampling method
126 model.plotOn(frame3, VisualizeError(*r, RooArgSet(s, s2), 2), FillColor(kGreen));
127 model.plotOn(frame3, Components("bkg"), VisualizeError(*r, RooArgSet(s, s2), 2), FillColor(kGreen));
128
129 model.plotOn(frame3);
130 model.plotOn(frame3, Components("bkg"), LineStyle(kDashed));
131 frame3->SetMinimum(0);
132
133 // Make plot frame
134 RooPlot *frame4 = x.frame(Bins(40), Title("Visualization of 2-sigma partial error from fsig"));
135
136 // Propagate partial error due to yield parameter using linear and sampling method
137 model.plotOn(frame4, VisualizeError(*r, RooArgSet(fsig), 2), FillColor(kMagenta));
138 model.plotOn(frame4, Components("bkg"), VisualizeError(*r, RooArgSet(fsig), 2), FillColor(kMagenta));
139
140 model.plotOn(frame4);
141 model.plotOn(frame4, Components("bkg"), LineStyle(kDashed));
142 frame4->SetMinimum(0);
143
144 TCanvas *c = new TCanvas("rf610_visualerror", "rf610_visualerror", 800, 800);
145 c->Divide(2, 2);
146 c->cd(1);
147 gPad->SetLeftMargin(0.15);
148 frame->GetYaxis()->SetTitleOffset(1.4);
149 frame->Draw();
150 c->cd(2);
151 gPad->SetLeftMargin(0.15);
152 frame2->GetYaxis()->SetTitleOffset(1.6);
153 frame2->Draw();
154 c->cd(3);
155 gPad->SetLeftMargin(0.15);
156 frame3->GetYaxis()->SetTitleOffset(1.6);
157 frame3->Draw();
158 c->cd(4);
159 gPad->SetLeftMargin(0.15);
160 frame4->GetYaxis()->SetTitleOffset(1.6);
161 frame4->Draw();
162}
ROOT::R::TRInterface & r
Definition: Object.C:4
#define d(i)
Definition: RSha256.hxx:102
#define c(i)
Definition: RSha256.hxx:101
const Bool_t kFALSE
Definition: RtypesCore.h:88
@ kRed
Definition: Rtypes.h:64
@ kOrange
Definition: Rtypes.h:65
@ kGreen
Definition: Rtypes.h:64
@ kMagenta
Definition: Rtypes.h:64
@ kCyan
Definition: Rtypes.h:64
@ kDashed
Definition: TAttLine.h:48
#define gPad
Definition: TVirtualPad.h:286
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:39
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgList.h:21
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
Definition: RooFitResult.h:40
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:44
virtual void SetMinimum(Double_t minimum=-1111)
Set minimum value of Y axis.
Definition: RooPlot.cxx:1112
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1277
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:712
RooRealVar represents a variable that can be changed from the outside.
Definition: RooRealVar.h:35
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
Double_t x[n]
Definition: legend1.C:17
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
RooCmdArg VisualizeError(const RooDataSet &paramData, Double_t Z=1)
RooCmdArg DrawOption(const char *opt)
RooCmdArg FillColor(Color_t color)
RooCmdArg LineWidth(Width_t width)
RooCmdArg Components(const RooArgSet &compSet)
RooCmdArg Save(Bool_t flag=kTRUE)
RooCmdArg LineColor(Color_t color)
RooCmdArg Bins(Int_t nbin)
RooCmdArg LineStyle(Style_t style)
static constexpr double s
static constexpr double m2
const char * Title
Definition: TXMLSetup.cxx:67
auto * m
Definition: textangle.C:8