Logo ROOT  
Reference Guide
df103_NanoAODHiggsAnalysis_python.h
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_dataframe
3/// Header file with functions needed to execute the Python version
4/// of the NanoAOD Higgs tutorial. The header is declared to the
5/// ROOT C++ interpreter prior to the start of the analysis via the
6/// `ROOT.gInterpreter.Declare()` function.
7///
8/// \date July 2019
9/// \author Stefan Wunsch (KIT, CERN), Vincenzo Eduardo Padulano (UniMiB, CERN)
10
11#include "ROOT/RDataFrame.hxx"
12#include "ROOT/RVec.hxx"
13#include "TCanvas.h"
14#include "TH1D.h"
15#include "TLatex.h"
16#include "Math/Vector4D.h"
17#include "TStyle.h"
18
19using namespace ROOT::VecOps;
21using rvec_f = const RVec<float> &;
22using rvec_i = const RVec<int> &;
23const auto z_mass = 91.2;
24
25// Reconstruct two Z candidates from four leptons of the same kind
26RVec<RVec<size_t>> reco_zz_to_4l(rvec_f pt, rvec_f eta, rvec_f phi, rvec_f mass, rvec_i charge)
27{
28 RVec<RVec<size_t>> idx(2);
29 idx[0].reserve(2); idx[1].reserve(2);
30
31 // Find first lepton pair with invariant mass closest to Z mass
32 auto idx_cmb = Combinations(pt, 2);
33 auto best_mass = -1;
34 size_t best_i1 = 0; size_t best_i2 = 0;
35 for (size_t i = 0; i < idx_cmb[0].size(); i++) {
36 const auto i1 = idx_cmb[0][i];
37 const auto i2 = idx_cmb[1][i];
38 if (charge[i1] != charge[i2]) {
39 ROOT::Math::PtEtaPhiMVector p1(pt[i1], eta[i1], phi[i1], mass[i1]);
40 ROOT::Math::PtEtaPhiMVector p2(pt[i2], eta[i2], phi[i2], mass[i2]);
41 const auto this_mass = (p1 + p2).M();
42 if (std::abs(z_mass - this_mass) < std::abs(z_mass - best_mass)) {
43 best_mass = this_mass;
44 best_i1 = i1;
45 best_i2 = i2;
46 }
47 }
48 }
49 idx[0].emplace_back(best_i1);
50 idx[0].emplace_back(best_i2);
51
52 // Reconstruct second Z from remaining lepton pair
53 for (size_t i = 0; i < 4; i++) {
54 if (i != best_i1 && i != best_i2) {
55 idx[1].emplace_back(i);
56 }
57 }
58
59 // Return indices of the pairs building two Z bosons
60 return idx;
61}
62
63// Compute Z masses from four leptons of the same kind and sort ascending in distance to Z mass
64RVec<float> compute_z_masses_4l(const RVec<RVec<size_t>> &idx, rvec_f pt, rvec_f eta, rvec_f phi, rvec_f mass)
65{
66 RVec<float> z_masses(2);
67 for (size_t i = 0; i < 2; i++) {
68 const auto i1 = idx[i][0]; const auto i2 = idx[i][1];
69 ROOT::Math::PtEtaPhiMVector p1(pt[i1], eta[i1], phi[i1], mass[i1]);
70 ROOT::Math::PtEtaPhiMVector p2(pt[i2], eta[i2], phi[i2], mass[i2]);
71 z_masses[i] = (p1 + p2).M();
72 }
73 if (std::abs(z_masses[0] - z_mass) < std::abs(z_masses[1] - z_mass)) {
74 return z_masses;
75 } else {
76 return Reverse(z_masses);
77 }
78}
79
80// Compute mass of Higgs from four leptons of the same kind
81float compute_higgs_mass_4l(const RVec<RVec<size_t>> &idx, rvec_f pt, rvec_f eta, rvec_f phi, rvec_f mass)
82{
83 const auto i1 = idx[0][0]; const auto i2 = idx[0][1];
84 const auto i3 = idx[1][0]; const auto i4 = idx[1][1];
85 ROOT::Math::PtEtaPhiMVector p1(pt[i1], eta[i1], phi[i1], mass[i1]);
86 ROOT::Math::PtEtaPhiMVector p2(pt[i2], eta[i2], phi[i2], mass[i2]);
87 ROOT::Math::PtEtaPhiMVector p3(pt[i3], eta[i3], phi[i3], mass[i3]);
88 ROOT::Math::PtEtaPhiMVector p4(pt[i4], eta[i4], phi[i4], mass[i4]);
89 return (p1 + p2 + p3 + p4).M();
90}
91
92// Compute mass of two Z candidates from two electrons and two muons and sort ascending in distance to Z mass
93RVec<float> compute_z_masses_2el2mu(rvec_f el_pt, rvec_f el_eta, rvec_f el_phi, rvec_f el_mass, rvec_f mu_pt,
94 rvec_f mu_eta, rvec_f mu_phi, rvec_f mu_mass)
95{
96 ROOT::Math::PtEtaPhiMVector p1(mu_pt[0], mu_eta[0], mu_phi[0], mu_mass[0]);
97 ROOT::Math::PtEtaPhiMVector p2(mu_pt[1], mu_eta[1], mu_phi[1], mu_mass[1]);
98 ROOT::Math::PtEtaPhiMVector p3(el_pt[0], el_eta[0], el_phi[0], el_mass[0]);
99 ROOT::Math::PtEtaPhiMVector p4(el_pt[1], el_eta[1], el_phi[1], el_mass[1]);
100 auto mu_z = (p1 + p2).M();
101 auto el_z = (p3 + p4).M();
102 RVec<float> z_masses(2);
103 if (std::abs(mu_z - z_mass) < std::abs(el_z - z_mass)) {
104 z_masses[0] = mu_z;
105 z_masses[1] = el_z;
106 } else {
107 z_masses[0] = el_z;
108 z_masses[1] = mu_z;
109 }
110 return z_masses;
111}
112
113// Compute Higgs mass from two electrons and two muons
114float compute_higgs_mass_2el2mu(rvec_f el_pt, rvec_f el_eta, rvec_f el_phi, rvec_f el_mass, rvec_f mu_pt, rvec_f mu_eta,
115 rvec_f mu_phi, rvec_f mu_mass)
116{
117 ROOT::Math::PtEtaPhiMVector p1(mu_pt[0], mu_eta[0], mu_phi[0], mu_mass[0]);
118 ROOT::Math::PtEtaPhiMVector p2(mu_pt[1], mu_eta[1], mu_phi[1], mu_mass[1]);
119 ROOT::Math::PtEtaPhiMVector p3(el_pt[0], el_eta[0], el_phi[0], el_mass[0]);
120 ROOT::Math::PtEtaPhiMVector p4(el_pt[1], el_eta[1], el_phi[1], el_mass[1]);
121 return (p1 + p2 + p3 + p4).M();
122}
123
124bool filter_z_dr(const RVec<RVec<size_t>> &idx, rvec_f eta, rvec_f phi)
125{
126 for (size_t i = 0; i < 2; i++) {
127 const auto i1 = idx[i][0];
128 const auto i2 = idx[i][1];
129 const auto dr = DeltaR(eta[i1], eta[i2], phi[i1], phi[i2]);
130 if (dr < 0.02) {
131 return false;
132 }
133 }
134 return true;
135};
136
137bool pt_cuts(rvec_f mu_pt, rvec_f el_pt)
138{
139 auto mu_pt_sorted = Reverse(Sort(mu_pt));
140 if (mu_pt_sorted[0] > 20 && mu_pt_sorted[1] > 10) {
141 return true;
142 }
143 auto el_pt_sorted = Reverse(Sort(el_pt));
144 if (el_pt_sorted[0] > 20 && el_pt_sorted[1] > 10) {
145 return true;
146 }
147 return false;
148}
149
150bool dr_cuts(rvec_f mu_eta, rvec_f mu_phi, rvec_f el_eta, rvec_f el_phi)
151{
152 auto mu_dr = DeltaR(mu_eta[0], mu_eta[1], mu_phi[0], mu_phi[1]);
153 auto el_dr = DeltaR(el_eta[0], el_eta[1], el_phi[0], el_phi[1]);
154 if (mu_dr < 0.02 || el_dr < 0.02) {
155 return false;
156 }
157 return true;
158}
TPaveText * pt
Vector1::Scalar DeltaR(const Vector1 &v1, const Vector2 &v2)
Find difference in pseudorapidity (Eta) and Phi betwen two generic vectors The only requirements on t...
Definition: VectorUtil.h:95
RInterface<::ROOT::Detail::RDF::RNodeBase, void > RNode
RVec< T > Reverse(const RVec< T > &v)
Return copy of reversed vector.
Definition: RVec.hxx:1083
RVec< RVec< std::size_t > > Combinations(const std::size_t size1, const std::size_t size2)
Return the indices that represent all combinations of the elements of two RVecs.
Definition: RVec.hxx:1148
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Definition: TMathBase.h:362