Logo ROOT  
Reference Guide
df016_vecOps.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_dataframe
3/// \notebook -draw
4/// This tutorial shows the potential of the VecOps approach for treating collections
5/// stored in datasets, a situation very common in HEP data analysis.
6///
7/// \macro_code
8/// \macro_image
9///
10/// \date February 2018
11/// \author Danilo Piparo
12
14using namespace ROOT::VecOps;
15
16int df016_vecOps()
17{
18 // We re-create a set of points in a square.
19 // This is a technical detail, just to create a dataset to play with!
20 auto unifGen = [](double) { return gRandom->Uniform(-1.0, 1.0); };
21 auto vGen = [&](int len) {
22 RVec<double> v(len);
23 std::transform(v.begin(), v.end(), v.begin(), unifGen);
24 return v;
25 };
26 RDataFrame d(1024);
27 auto d0 = d.Define("len", []() { return (int)gRandom->Uniform(0, 16); })
28 .Define("x", vGen, {"len"})
29 .Define("y", vGen, {"len"});
30
31 // Now we have in hands d, a RDataFrame with two columns, x and y, which
32 // hold collections of coordinates. The size of these collections vary.
33 // Let's now define radii out of x and y. We'll do it treating the collections
34 // stored in the columns without looping on the individual elements.
35 auto d1 = d0.Define("r", "sqrt(x*x + y*y)");
36
37 // Now we want to plot 2 quarters of a ring with radii .5 and 1
38 // Note how the cuts are performed on RVecs, comparing them with integers and
39 // among themselves
40 auto ring_h = d1.Define("rInFig", "r > .4 && r < .8 && x*y < 0")
41 .Define("yFig", "y[rInFig]")
42 .Define("xFig", "x[rInFig]")
43 .Histo2D({"fig", "Two quarters of a ring", 64, -1, 1, 64, -1, 1}, "xFig", "yFig");
44
45 auto cring = new TCanvas();
46 ring_h->DrawCopy("Colz");
47
48 return 0;
49}
#define d(i)
Definition: RSha256.hxx:102
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
ROOT's RDataFrame offers a high level interface for analyses of data stored in TTrees,...
Definition: RDataFrame.hxx:42
The Canvas class.
Definition: TCanvas.h:31
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
Definition: TRandom.cxx:635