Logo ROOT   6.18/05
Reference Guide
rs_numbercountingutils.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roostats
3/// \notebook -nodraw
4/// 'Number Counting Utils' RooStats tutorial
5///
6/// This tutorial shows an example of the RooStats standalone
7/// utilities that calculate the p-value or Z value (eg. significance in
8/// 1-sided Gaussian standard deviations) for a number counting experiment.
9/// This is a hypothesis test between background only and signal-plus-background.
10/// The background estimate has uncertainty derived from an auxiliary or sideband
11/// measurement.
12///
13/// Documentation for these utilities can be found here:
14/// http://root.cern.ch/root/html/RooStats__NumberCountingUtils.html
15///
16///
17/// This problem is often called a proto-type problem for high energy physics.
18/// In some references it is referred to as the on/off problem.
19///
20/// The problem is treated in a fully frequentist fashion by
21/// interpreting the relative background uncertainty as
22/// being due to an auxiliary or sideband observation
23/// that is also Poisson distributed with only background.
24/// Finally, one considers the test as a ratio of Poisson means
25/// where an interval is well known based on the conditioning on the total
26/// number of events and the binomial distribution.
27/// For more on this, see
28/// - http://arxiv.org/abs/0905.3831
29/// - http://arxiv.org/abs/physics/physics/0702156
30/// - http://arxiv.org/abs/physics/0511028
31///
32///
33/// \macro_image
34/// \macro_output
35/// \macro_code
36///
37/// \author Kyle Cranmer
38
40#include <iostream>
41
42using namespace RooFit;
43using namespace RooStats; // the utilities are in the RooStats namespace
44using namespace std;
45
46void rs_numbercountingutils()
47{
48
49 // From the root prompt, you can see the full list of functions by using tab-completion
50 // ~~~{.bash}
51 // root [0] RooStats::NumberCountingUtils:: <tab>
52 // BinomialExpZ
53 // BinomialWithTauExpZ
54 // BinomialObsZ
55 // BinomialWithTauObsZ
56 // BinomialExpP
57 // BinomialWithTauExpP
58 // BinomialObsP
59 // BinomialWithTauObsP
60 // ~~~
61
62 // For each of the utilities you can inspect the arguments by tab completion
63 // ~~~{.bash}
64 // root [1] NumberCountingUtils::BinomialExpZ( <tab>
65 // Double_t BinomialExpZ(Double_t sExp, Double_t bExp, Double_t fractionalBUncertainty)
66 // ~~~
67
68 // -------------------------------------------------
69 // Here we see common usages where the experimenter
70 // has a relative background uncertainty, without
71 // explicit reference to the auxiliary or sideband
72 // measurement
73
74 // -------------------------------------------------------------
75 // Expected p-values and significance with background uncertainty
76 double sExpected = 50;
77 double bExpected = 100;
78 double relativeBkgUncert = 0.1;
79
80 double pExp = NumberCountingUtils::BinomialExpP(sExpected, bExpected, relativeBkgUncert);
81 double zExp = NumberCountingUtils::BinomialExpZ(sExpected, bExpected, relativeBkgUncert);
82 cout << "expected p-value =" << pExp << " Z value (Gaussian sigma) = " << zExp << endl;
83
84 // -------------------------------------------------
85 // Expected p-values and significance with background uncertainty
86 double observed = 150;
87 double pObs = NumberCountingUtils::BinomialObsP(observed, bExpected, relativeBkgUncert);
88 double zObs = NumberCountingUtils::BinomialObsZ(observed, bExpected, relativeBkgUncert);
89 cout << "observed p-value =" << pObs << " Z value (Gaussian sigma) = " << zObs << endl;
90
91 // ---------------------------------------------------------
92 // Here we see usages where the experimenter has knowledge
93 // about the properties of the auxiliary or sideband
94 // measurement. In particular, the ratio tau of background
95 // in the auxiliary measurement to the main measurement.
96 // Large values of tau mean small background uncertainty
97 // because the sideband is very constraining.
98
99 // Usage:
100 // ~~~{.bash}
101 // root [0] RooStats::NumberCountingUtils::BinomialWithTauExpP(
102 // Double_t BinomialWithTauExpP(Double_t sExp, Double_t bExp, Double_t tau)
103 // ~~~
104
105 // --------------------------------------------------------------
106 // Expected p-values and significance with background uncertainty
107 double tau = 1;
108
109 double pExpWithTau = NumberCountingUtils::BinomialWithTauExpP(sExpected, bExpected, tau);
110 double zExpWithTau = NumberCountingUtils::BinomialWithTauExpZ(sExpected, bExpected, tau);
111 cout << "expected p-value =" << pExpWithTau << " Z value (Gaussian sigma) = " << zExpWithTau << endl;
112
113 // ---------------------------------------------------------------
114 // Expected p-values and significance with background uncertainty
115 double pObsWithTau = NumberCountingUtils::BinomialWithTauObsP(observed, bExpected, tau);
116 double zObsWithTau = NumberCountingUtils::BinomialWithTauObsZ(observed, bExpected, tau);
117 cout << "observed p-value =" << pObsWithTau << " Z value (Gaussian sigma) = " << zObsWithTau << endl;
118}
Template specialisation used in RooAbsArg:
Double_t BinomialWithTauExpZ(Double_t sExp, Double_t bExp, Double_t tau)
Double_t BinomialObsZ(Double_t nObs, Double_t bExp, Double_t fractionalBUncertainty)
Double_t BinomialWithTauObsZ(Double_t nObs, Double_t bExp, Double_t tau)
Double_t BinomialWithTauObsP(Double_t nObs, Double_t bExp, Double_t tau)
Double_t BinomialObsP(Double_t nObs, Double_t, Double_t fractionalBUncertainty)
Double_t BinomialWithTauExpP(Double_t sExp, Double_t bExp, Double_t tau)
Double_t BinomialExpZ(Double_t sExp, Double_t bExp, Double_t fractionalBUncertainty)
Double_t BinomialExpP(Double_t sExp, Double_t bExp, Double_t fractionalBUncertainty)
Namespace for the RooStats classes.
Definition: Asimov.h:20