Logo ROOT   6.18/05
Reference Guide
rf803_mcstudy_addons2.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// Validation and MC studies: RooMCStudy - Using the randomizer and profile likelihood add-on models
5///
6/// \macro_image
7/// \macro_output
8/// \macro_code
9/// \author 07/2008 - Wouter Verkerke
10
11#include "RooRealVar.h"
12#include "RooDataSet.h"
13#include "RooGaussian.h"
14#include "RooConstVar.h"
15#include "RooChebychev.h"
16#include "RooAddPdf.h"
17#include "RooMCStudy.h"
20#include "RooPlot.h"
21#include "TCanvas.h"
22#include "TAxis.h"
23#include "TH1.h"
24#include "TDirectory.h"
25
26using namespace RooFit;
27
28void rf803_mcstudy_addons2()
29{
30 // C r e a t e m o d e l
31 // -----------------------
32
33 // Simulation of signal and background of top quark decaying into
34 // 3 jets with background
35
36 // Observable
37 RooRealVar mjjj("mjjj", "m(3jet) (GeV)", 100, 85., 350.);
38
39 // Signal component (Gaussian)
40 RooRealVar mtop("mtop", "m(top)", 162);
41 RooRealVar wtop("wtop", "m(top) resolution", 15.2);
42 RooGaussian sig("sig", "top signal", mjjj, mtop, wtop);
43
44 // Background component (Chebychev)
45 RooRealVar c0("c0", "Chebychev coefficient 0", -0.846, -1., 1.);
46 RooRealVar c1("c1", "Chebychev coefficient 1", 0.112, -1., 1.);
47 RooRealVar c2("c2", "Chebychev coefficient 2", 0.076, -1., 1.);
48 RooChebychev bkg("bkg", "combinatorial background", mjjj, RooArgList(c0, c1, c2));
49
50 // Composite model
51 RooRealVar nsig("nsig", "number of signal events", 53, 0, 1e3);
52 RooRealVar nbkg("nbkg", "number of background events", 103, 0, 5e3);
53 RooAddPdf model("model", "model", RooArgList(sig, bkg), RooArgList(nsig, nbkg));
54
55 // C r e a t e m a n a g e r
56 // ---------------------------
57
58 // Configure manager to perform binned extended likelihood fits (Binned(),Extended()) on data generated
59 // with a Poisson fluctuation on Nobs (Extended())
60 RooMCStudy *mcs = new RooMCStudy(model, mjjj, Binned(), Silence(), Extended(kTRUE),
62
63 // C u s t o m i z e m a n a g e r
64 // ---------------------------------
65
66 // Add module that randomizes the summed value of nsig+nbkg
67 // sampling from a uniform distribution between 0 and 1000
68 //
69 // In general one can randomize a single parameter, or a
70 // sum of N parameters, using either a uniform or a Gaussian
71 // distribution. Multiple randomization can be executed
72 // by a single randomizer module
73
75 randModule.sampleSumUniform(RooArgSet(nsig, nbkg), 50, 500);
76 mcs->addModule(randModule);
77
78 // Add profile likelihood calculation of significance. Redo each
79 // fit while keeping parameter nsig fixed to zero. For each toy,
80 // the difference in -log(L) of both fits is stored, as well
81 // a simple significance interpretation of the delta(-logL)
82 // using Dnll = 0.5 sigma^2
83
84 RooDLLSignificanceMCSModule sigModule(nsig, 0);
85 mcs->addModule(sigModule);
86
87 // R u n m a n a g e r , m a k e p l o t s
88 // ---------------------------------------------
89
90 // Run 1000 experiments. This configuration will generate a fair number
91 // of (harmless) MINUIT warnings due to the instability of the Chebychev polynomial fit
92 // at low statistics.
93 mcs->generateAndFit(500);
94
95 // Make some plots
96 TH1 *dll_vs_ngen = mcs->fitParDataSet().createHistogram("ngen,dll_nullhypo_nsig", -40, -40);
97 TH1 *z_vs_ngen = mcs->fitParDataSet().createHistogram("ngen,significance_nullhypo_nsig", -40, -40);
98 TH1 *errnsig_vs_ngen = mcs->fitParDataSet().createHistogram("ngen,nsigerr", -40, -40);
99 TH1 *errnsig_vs_nsig = mcs->fitParDataSet().createHistogram("nsig,nsigerr", -40, -40);
100
101 // Draw plots on canvas
102 TCanvas *c = new TCanvas("rf803_mcstudy_addons2", "rf802_mcstudy_addons2", 800, 800);
103 c->Divide(2, 2);
104 c->cd(1);
105 gPad->SetLeftMargin(0.15);
106 dll_vs_ngen->GetYaxis()->SetTitleOffset(1.6);
107 dll_vs_ngen->Draw("box");
108 c->cd(2);
109 gPad->SetLeftMargin(0.15);
110 z_vs_ngen->GetYaxis()->SetTitleOffset(1.6);
111 z_vs_ngen->Draw("box");
112 c->cd(3);
113 gPad->SetLeftMargin(0.15);
114 errnsig_vs_ngen->GetYaxis()->SetTitleOffset(1.6);
115 errnsig_vs_ngen->Draw("box");
116 c->cd(4);
117 gPad->SetLeftMargin(0.15);
118 errnsig_vs_nsig->GetYaxis()->SetTitleOffset(1.6);
119 errnsig_vs_nsig->Draw("box");
120
121 // Make RooMCStudy object available on command line after
122 // macro finishes
123 gDirectory->Add(mcs);
124}
#define c(i)
Definition: RSha256.hxx:101
const Bool_t kTRUE
Definition: RtypesCore.h:87
#define gDirectory
Definition: TDirectory.h:218
#define gPad
Definition: TVirtualPad.h:286
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgList.h:21
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Chebychev polynomial p.d.f.
Definition: RooChebychev.h:25
RooDLLSignificanceMCSModule is an add-on modules to RooMCStudy that calculates the significance of a ...
TH2F * createHistogram(const RooAbsRealLValue &var1, const RooAbsRealLValue &var2, const char *cuts="", const char *name="hist") const
Create a TH2F histogram of the distribution of the specified variable using this dataset.
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
RooMCStudy is a helper class to facilitate Monte Carlo studies such as 'goodness-of-fit' studies,...
Definition: RooMCStudy.h:32
const RooDataSet & fitParDataSet()
Return a RooDataSet the resulting fit parameters of each toy cycle.
Definition: RooMCStudy.cxx:966
Bool_t generateAndFit(Int_t nSamples, Int_t nEvtPerSample=0, Bool_t keepGenData=kFALSE, const char *asciiFilePat=0)
Generate and fit 'nSamples' samples of 'nEvtPerSample' events.
Definition: RooMCStudy.cxx:646
void addModule(RooAbsMCStudyModule &module)
Insert given RooMCStudy add-on module to the processing chain of this MCStudy object.
Definition: RooMCStudy.cxx:431
RooRandomizeParamMCSModule is an add-on modules to RooMCStudy that allows you to randomize input gene...
void sampleSumUniform(const RooArgSet &paramSet, Double_t lo, Double_t hi)
Request uniform smearing of sum of parameters in paramSet uniform smearing in range [lo,...
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
The TH1 histogram class.
Definition: TH1.h:56
TAxis * GetYaxis()
Definition: TH1.h:317
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2981
return c1
Definition: legend1.C:41
return c2
Definition: legend2.C:14
Template specialisation used in RooAbsArg:
RooCmdArg Binned(Bool_t flag=kTRUE)
RooCmdArg Extended(Bool_t flag=kTRUE)
RooCmdArg PrintEvalErrors(Int_t numErrors)
RooCmdArg Silence(Bool_t flag=kTRUE)
RooCmdArg FitOptions(const char *opts)