Logo ROOT   6.18/05
Reference Guide
rf707_kernelestimation.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook
4/// Speecial p.d.f.'s: using non-parametric (multi-dimensional) kernel estimation p.d.f.s
5///
6/// \macro_image
7/// \macro_output
8/// \macro_code
9/// \author 07/2008 - Wouter Verkerke
10
11#include "RooRealVar.h"
12#include "RooDataSet.h"
13#include "RooGaussian.h"
14#include "RooConstVar.h"
15#include "RooPolynomial.h"
16#include "RooKeysPdf.h"
17#include "RooNDKeysPdf.h"
18#include "RooProdPdf.h"
19#include "TCanvas.h"
20#include "TAxis.h"
21#include "TH1.h"
22#include "RooPlot.h"
23using namespace RooFit;
24
26{
27 // C r e a t e l o w s t a t s 1 - D d a t a s e t
28 // -------------------------------------------------------
29
30 // Create a toy pdf for sampling
31 RooRealVar x("x", "x", 0, 20);
32 RooPolynomial p("p", "p", x, RooArgList(RooConst(0.01), RooConst(-0.01), RooConst(0.0004)));
33
34 // Sample 500 events from p
35 RooDataSet *data1 = p.generate(x, 200);
36
37 // C r e a t e 1 - D k e r n e l e s t i m a t i o n p d f
38 // ---------------------------------------------------------------
39
40 // Create adaptive kernel estimation pdf. In this configuration the input data
41 // is mirrored over the boundaries to minimize edge effects in distribution
42 // that do not fall to zero towards the edges
43 RooKeysPdf kest1("kest1", "kest1", x, *data1, RooKeysPdf::MirrorBoth);
44
45 // An adaptive kernel estimation pdf on the same data without mirroring option
46 // for comparison
47 RooKeysPdf kest2("kest2", "kest2", x, *data1, RooKeysPdf::NoMirror);
48
49 // Adaptive kernel estimation pdf with increased bandwidth scale factor
50 // (promotes smoothness over detail preservation)
51 RooKeysPdf kest3("kest1", "kest1", x, *data1, RooKeysPdf::MirrorBoth, 2);
52
53 // Plot kernel estimation pdfs with and without mirroring over data
54 RooPlot *frame = x.frame(Title("Adaptive kernel estimation pdf with and w/o mirroring"), Bins(20));
55 data1->plotOn(frame);
56 kest1.plotOn(frame);
57 kest2.plotOn(frame, LineStyle(kDashed), LineColor(kRed));
58
59 // Plot kernel estimation pdfs with regular and increased bandwidth
60 RooPlot *frame2 = x.frame(Title("Adaptive kernel estimation pdf with regular, increased bandwidth"));
61 kest1.plotOn(frame2);
62 kest3.plotOn(frame2, LineColor(kMagenta));
63
64 // C r e a t e l o w s t a t s 2 - D d a t a s e t
65 // -------------------------------------------------------
66
67 // Construct a 2D toy pdf for sampling
68 RooRealVar y("y", "y", 0, 20);
69 RooPolynomial py("py", "py", y, RooArgList(RooConst(0.01), RooConst(0.01), RooConst(-0.0004)));
70 RooProdPdf pxy("pxy", "pxy", RooArgSet(p, py));
71 RooDataSet *data2 = pxy.generate(RooArgSet(x, y), 1000);
72
73 // C r e a t e 2 - D k e r n e l e s t i m a t i o n p d f
74 // ---------------------------------------------------------------
75
76 // Create 2D adaptive kernel estimation pdf with mirroring
77 RooNDKeysPdf kest4("kest4", "kest4", RooArgSet(x, y), *data2, "am");
78
79 // Create 2D adaptive kernel estimation pdf with mirroring and double bandwidth
80 RooNDKeysPdf kest5("kest5", "kest5", RooArgSet(x, y), *data2, "am", 2);
81
82 // Create a histogram of the data
83 TH1 *hh_data = data2->createHistogram("hh_data", x, Binning(10), YVar(y, Binning(10)));
84
85 // Create histogram of the 2d kernel estimation pdfs
86 TH1 *hh_pdf = kest4.createHistogram("hh_pdf", x, Binning(25), YVar(y, Binning(25)));
87 TH1 *hh_pdf2 = kest5.createHistogram("hh_pdf2", x, Binning(25), YVar(y, Binning(25)));
88 hh_pdf->SetLineColor(kBlue);
89 hh_pdf2->SetLineColor(kMagenta);
90
91 TCanvas *c = new TCanvas("rf707_kernelestimation", "rf707_kernelestimation", 800, 800);
92 c->Divide(2, 2);
93 c->cd(1);
94 gPad->SetLeftMargin(0.15);
95 frame->GetYaxis()->SetTitleOffset(1.4);
96 frame->Draw();
97 c->cd(2);
98 gPad->SetLeftMargin(0.15);
99 frame2->GetYaxis()->SetTitleOffset(1.8);
100 frame2->Draw();
101 c->cd(3);
102 gPad->SetLeftMargin(0.15);
103 hh_data->GetZaxis()->SetTitleOffset(1.4);
104 hh_data->Draw("lego");
105 c->cd(4);
106 gPad->SetLeftMargin(0.20);
107 hh_pdf->GetZaxis()->SetTitleOffset(2.4);
108 hh_pdf->Draw("surf");
109 hh_pdf2->Draw("surfsame");
110}
#define c(i)
Definition: RSha256.hxx:101
@ kRed
Definition: Rtypes.h:64
@ kMagenta
Definition: Rtypes.h:64
@ kBlue
Definition: Rtypes.h:64
@ kDashed
Definition: TAttLine.h:48
#define gPad
Definition: TVirtualPad.h:286
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Calls RooPlot* plotOn(RooPlot* frame, const RooLinkedList& cmdList) const ;.
Definition: RooAbsData.cxx:552
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgList.h:21
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
TH2F * createHistogram(const RooAbsRealLValue &var1, const RooAbsRealLValue &var2, const char *cuts="", const char *name="hist") const
Create a TH2F histogram of the distribution of the specified variable using this dataset.
Class RooKeysPdf implements a one-dimensional kernel estimation p.d.f which model the distribution of...
Definition: RooKeysPdf.h:25
Generic N-dimensional implementation of a kernel estimation p.d.f.
Definition: RooNDKeysPdf.h:48
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooPolynomial implements a polynomial p.d.f of the form.
Definition: RooPolynomial.h:28
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition: RooProdPdf.h:31
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition: TAttLine.h:40
The Canvas class.
Definition: TCanvas.h:31
The TH1 histogram class.
Definition: TH1.h:56
TAxis * GetZaxis()
Definition: TH1.h:318
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2981
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
Template specialisation used in RooAbsArg:
RooCmdArg Binning(const RooAbsBinning &binning)
RooCmdArg YVar(const RooAbsRealLValue &var, const RooCmdArg &arg=RooCmdArg::none())
RooConstVar & RooConst(Double_t val)
RooCmdArg LineColor(Color_t color)
RooCmdArg Bins(Int_t nbin)
RooCmdArg LineStyle(Style_t style)
const char * Title
Definition: TXMLSetup.cxx:67