Logo ROOT   6.18/05
Reference Guide
rf204a_extrangefit_RooAddPdf.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// 'ADDITION AND CONVOLUTION' RooFit tutorial macro #204a
5///
6/// Extended maximum likelihood fit in multiple ranges.
7/// When an extended pdf and multiple ranges are used, the
8/// RooExtendPdf cannot correctly interpret the coefficients
9/// used for extension.
10/// This can be solved by using a RooAddPdf for extending the model.
11///
12/// \macro_output
13/// \macro_code
14/// \author 12/2018 - Stephan Hageboeck
15
16
17#include "RooRealVar.h"
18#include "RooDataSet.h"
19#include "RooGaussian.h"
20#include "RooChebychev.h"
21#include "RooAddPdf.h"
22#include "RooExtendPdf.h"
23#include "RooFitResult.h"
24#include "TCanvas.h"
25#include "TAxis.h"
26#include "RooPlot.h"
27using namespace RooFit ;
28
29
30void rf204a_extrangefit_RooAddPdf()
31{
32
33
34 // S e t u p c o m p o n e n t p d f s
35 // ---------------------------------------
36
37 // Declare observable x
38 RooRealVar x("x","x",0,11) ;
39
40 // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
41 RooRealVar mean("mean","mean of gaussians",5) ;
42 RooRealVar sigma1("sigma1","width of gaussians",0.5) ;
43 RooRealVar sigma2("sigma2","width of gaussians",1) ;
44
45 RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
46 RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
47
48 // Build Chebychev polynomial p.d.f.
49 RooRealVar a0("a0","a0",0.5,0.,1.) ;
50 RooRealVar a1("a1","a1",0.2,0.,1.) ;
51 RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
52
53 // Sum the signal components into a composite signal p.d.f.
54 RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
55 RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
56
57
58 // E x t e n d t h e p d f s
59 // -----------------------------
60
61
62 // Define signal range in which events counts are to be defined
63 x.setRange("signalRange",4,6) ;
64
65 // Associated nsig/nbkg as expected number of events with sig/bkg _in_the_range_ "signalRange"
66 RooRealVar nsig("nsig","number of signal events in signalRange",500,0.,10000) ;
67 RooRealVar nbkg("nbkg","number of background events in signalRange",500,0,10000) ;
68
69 // Use AddPdf to extend the model. Giving as many coefficients as pdfs switches
70 // on extension.
71 RooAddPdf model("model","(g1+g2)+a", RooArgList(bkg,sig), RooArgList(nbkg,nsig)) ;
72
73
74 // S a m p l e d a t a , f i t m o d e l
75 // -------------------------------------------
76
77 // Generate 1000 events from model so that nsig,nbkg come out to numbers <<500 in fit
78 RooDataSet *data = model.generate(x,1000) ;
79
80
81
82 auto canv = new TCanvas("Canvas", "Canvas", 1500, 600);
83 canv->Divide(3,1);
84
85 // Fit full range
86 // -------------------------------------------
87
88 canv->cd(1);
89
90 // Perform unbinned ML fit to data, full range
91
92 // IMPORTANT:
93 // The model needs to be copied when fitting with different ranges because
94 // the interpretation of the coefficients is tied to the fit range
95 // that's used in the first fit
96 RooAddPdf model1(model);
97 RooFitResult* r = model1.fitTo(*data,Save()) ;
98 r->Print() ;
99
100 RooPlot * frame = x.frame(Title("Full range fitted"));
101 data->plotOn(frame);
102 model1.plotOn(frame, VisualizeError(*r));
103 model1.plotOn(frame);
104 model1.paramOn(frame);
105 frame->Draw();
106
107
108 // Fit in two regions
109 // -------------------------------------------
110
111 canv->cd(2);
112 x.setRange("left", 0., 4.);
113 x.setRange("right", 6., 10.);
114
115 RooAddPdf model2(model);
116 RooFitResult* r2 = model2.fitTo(*data,
117 Range("left,right"),
118 Save()) ;
119 r2->Print();
120
121
122 RooPlot * frame2 = x.frame(Title("Fit in left/right sideband"));
123 data->plotOn(frame2);
124 model2.plotOn(frame2, VisualizeError(*r2));
125 model2.plotOn(frame2);
126 model2.paramOn(frame2);
127 frame2->Draw();
128
129
130 // Fit in one region
131 // -------------------------------------------
132 // Note how restricting the region to only the left tail increases
133 // the fit uncertainty
134
135 canv->cd(3);
136 x.setRange("leftToMiddle", 0., 5.);
137
138 RooAddPdf model3(model);
139 RooFitResult* r3 = model3.fitTo(*data,
140 Range("leftToMiddle"),
141 Save()) ;
142 r3->Print();
143
144
145 RooPlot * frame3 = x.frame(Title("Fit from left to middle"));
146 data->plotOn(frame3);
147 model3.plotOn(frame3, VisualizeError(*r3));
148 model3.plotOn(frame3);
149 model3.paramOn(frame3);
150 frame3->Draw();
151
152 canv->Draw();
153}
ROOT::R::TRInterface & r
Definition: Object.C:4
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Calls RooPlot* plotOn(RooPlot* frame, const RooLinkedList& cmdList) const ;.
Definition: RooAbsData.cxx:552
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgList.h:21
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Chebychev polynomial p.d.f.
Definition: RooChebychev.h:25
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
Definition: RooFitResult.h:40
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooFitResult.h:66
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
The Canvas class.
Definition: TCanvas.h:31
virtual void Print(Option_t *option="") const
This method must be overridden when a class wants to print itself.
Definition: TObject.cxx:550
Double_t x[n]
Definition: legend1.C:17
Template specialisation used in RooAbsArg:
RooCmdArg VisualizeError(const RooDataSet &paramData, Double_t Z=1)
RooCmdArg Save(Bool_t flag=kTRUE)
const char * Title
Definition: TXMLSetup.cxx:67
Ta Range(0, 0, 1, 1)