AddBasicRNNLayer(size_t stateSize, size_t inputSize, size_t timeSteps, bool rememberState=false) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
AddBasicRNNLayer(TBasicRNNLayer< Architecture_t > *basicRNNLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
AddConvLayer(size_t depth, size_t filterHeight, size_t filterWidth, size_t strideRows, size_t strideCols, size_t paddingHeight, size_t paddingWidth, EActivationFunction f, Scalar_t dropoutProbability=1.0) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
AddConvLayer(TConvLayer< Architecture_t > *convLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
AddDenseLayer(size_t width, EActivationFunction f, Scalar_t dropoutProbability=1.0) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
AddDenseLayer(TDenseLayer< Architecture_t > *denseLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
AddMaxPoolLayer(size_t frameHeight, size_t frameWidth, size_t strideRows, size_t strideCols, Scalar_t dropoutProbability=1.0) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
AddMaxPoolLayer(CNN::TMaxPoolLayer< Architecture_t > *maxPoolLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
AddReshapeLayer(size_t depth, size_t height, size_t width, bool flattening) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
AddReshapeLayer(TReshapeLayer< Architecture_t > *reshapeLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
Backward(std::vector< Matrix_t > &input, const Matrix_t &groundTruth, const Matrix_t &weights) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
calculateDimension(int imgDim, int fltDim, int padding, int stride) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
Clear() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
fBatchDepth | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fBatchHeight | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fBatchSize | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fBatchWidth | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fI | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fInputDepth | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fInputHeight | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fInputWidth | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fIsTraining | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fJ | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fLayers | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
Forward(std::vector< Matrix_t > &input, bool applyDropout=false) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
fR | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
fWeightDecay | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private |
GetBatchDepth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetBatchHeight() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetBatchSize() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetBatchWidth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetDepth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetInitialization() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetInputDepth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetInputHeight() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetInputWidth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetLayerAt(size_t i) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetLayerAt(size_t i) const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetLayers() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetLayers() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetLossFunction() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetOutputWidth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetRegularization() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
GetWeightDecay() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
Initialize() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
isInteger(Scalar_t x) const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inlineprivate |
IsTraining() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
Loss(const Matrix_t &groundTruth, const Matrix_t &weights, bool includeRegularization=true) const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
Loss(std::vector< Matrix_t > &input, const Matrix_t &groundTruth, const Matrix_t &weights, bool applyDropout=false, bool includeRegularization=true) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
Matrix_t typedef | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
ParallelBackward(std::vector< TDeepNet< Architecture_t, Layer_t > > &nets, std::vector< TTensorBatch< Architecture_t > > &batches, Scalar_t learningRate) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
ParallelBackwardMomentum(std::vector< TDeepNet< Architecture_t, Layer_t > > &nets, std::vector< TTensorBatch< Architecture_t > > &batches, Scalar_t learningRate, Scalar_t momentum) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
ParallelBackwardNestorov(std::vector< TDeepNet< Architecture_t, Layer_t > > &nets, std::vector< TTensorBatch< Architecture_t > > &batches, Scalar_t learningRate, Scalar_t momentum) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
ParallelForward(std::vector< TDeepNet< Architecture_t, Layer_t > > &nets, std::vector< TTensorBatch< Architecture_t > > &batches, bool applyDropout=false) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
Prediction(Matrix_t &predictions, EOutputFunction f) const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
Prediction(Matrix_t &predictions, std::vector< Matrix_t > input, EOutputFunction f) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
Print() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
RegularizationTerm() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
Scalar_t typedef | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
SetBatchDepth(size_t batchDepth) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetBatchHeight(size_t batchHeight) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetBatchSize(size_t batchSize) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetBatchWidth(size_t batchWidth) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetDropoutProbabilities(const std::vector< Double_t > &probabilities) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
SetInitialization(EInitialization I) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetInputDepth(size_t inputDepth) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetInputHeight(size_t inputHeight) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetInputWidth(size_t inputWidth) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetLossFunction(ELossFunction J) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetRegularization(ERegularization R) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
SetWeightDecay(Scalar_t weightDecay) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline |
TDeepNet() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
TDeepNet(size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t BatchDepth, size_t BatchHeight, size_t BatchWidth, ELossFunction fJ, EInitialization fI=EInitialization::kZero, ERegularization fR=ERegularization::kNone, Scalar_t fWeightDecay=0.0, bool isTraining=false) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
TDeepNet(const TDeepNet &) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
Update(Scalar_t learningRate) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |
~TDeepNet() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | |