Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.16/01
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
rf801_mcstudy.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// 'VALIDATION AND MC STUDIES' RooFit tutorial macro #801
5///
6/// A Toy Monte Carlo study that perform cycles of
7///
8/// \macro_image
9/// \macro_output
10/// \macro_code
11/// \author
12
13
14#include "RooRealVar.h"
15#include "RooDataSet.h"
16#include "RooGaussian.h"
17#include "RooConstVar.h"
18#include "RooChebychev.h"
19#include "RooAddPdf.h"
20#include "RooMCStudy.h"
21#include "RooPlot.h"
22#include "TCanvas.h"
23#include "TAxis.h"
24#include "TH2.h"
25#include "RooFitResult.h"
26#include "TStyle.h"
27#include "TDirectory.h"
28
29using namespace RooFit ;
30
31
32void rf801_mcstudy()
33{
34 // C r e a t e m o d e l
35 // -----------------------
36
37 // Declare observable x
38 RooRealVar x("x","x",0,10) ;
39 x.setBins(40) ;
40
41 // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
42 RooRealVar mean("mean","mean of gaussians",5,0,10) ;
43 RooRealVar sigma1("sigma1","width of gaussians",0.5) ;
44 RooRealVar sigma2("sigma2","width of gaussians",1) ;
45
46 RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
47 RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
48
49 // Build Chebychev polynomial p.d.f.
50 RooRealVar a0("a0","a0",0.5,0.,1.) ;
51 RooRealVar a1("a1","a1",-0.2,-1,1.) ;
52 RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
53
54 // Sum the signal components into a composite signal p.d.f.
55 RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
56 RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
57
58 // Sum the composite signal and background
59 RooRealVar nbkg("nbkg","number of background events,",150,0,1000) ;
60 RooRealVar nsig("nsig","number of signal events",150,0,1000) ;
61 RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),RooArgList(nbkg,nsig)) ;
62
63
64
65 // C r e a t e m a n a g e r
66 // ---------------------------
67
68 // Instantiate RooMCStudy manager on model with x as observable and given choice of fit options
69 //
70 // The Silence() option kills all messages below the PROGRESS level, leaving only a single message
71 // per sample executed, and any error message that occur during fitting
72 //
73 // The Extended() option has two effects:
74 // 1) The extended ML term is included in the likelihood and
75 // 2) A poisson fluctuation is introduced on the number of generated events
76 //
77 // The FitOptions() given here are passed to the fitting stage of each toy experiment.
78 // If Save() is specified, the fit result of each experiment is saved by the manager
79 //
80 // A Binned() option is added in this example to bin the data between generation and fitting
81 // to speed up the study at the expense of some precision
82
85
86
87 // G e n e r a t e a n d f i t e v e n t s
88 // ---------------------------------------------
89
90 // Generate and fit 1000 samples of Poisson(nExpected) events
91 mcstudy->generateAndFit(1000) ;
92
93
94
95 // E x p l o r e r e s u l t s o f s t u d y
96 // ------------------------------------------------
97
98 // Make plots of the distributions of mean, the error on mean and the pull of mean
99 RooPlot* frame1 = mcstudy->plotParam(mean,Bins(40)) ;
100 RooPlot* frame2 = mcstudy->plotError(mean,Bins(40)) ;
101 RooPlot* frame3 = mcstudy->plotPull(mean,Bins(40),FitGauss(kTRUE)) ;
102
103 // Plot distribution of minimized likelihood
104 RooPlot* frame4 = mcstudy->plotNLL(Bins(40)) ;
105
106 // Make some histograms from the parameter dataset
107 TH1* hh_cor_a0_s1f = mcstudy->fitParDataSet().createHistogram("hh",a1,YVar(sig1frac)) ;
108 TH1* hh_cor_a0_a1 = mcstudy->fitParDataSet().createHistogram("hh",a0,YVar(a1)) ;
109
110 // Access some of the saved fit results from individual toys
111 TH2* corrHist000 = mcstudy->fitResult(0)->correlationHist("c000") ;
112 TH2* corrHist127 = mcstudy->fitResult(127)->correlationHist("c127") ;
113 TH2* corrHist953 = mcstudy->fitResult(953)->correlationHist("c953") ;
114
115
116
117 // Draw all plots on a canvas
118 gStyle->SetOptStat(0) ;
119 TCanvas* c = new TCanvas("rf801_mcstudy","rf801_mcstudy",900,900) ;
120 c->Divide(3,3) ;
121 c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.4) ; frame1->Draw() ;
122 c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.4) ; frame2->Draw() ;
123 c->cd(3) ; gPad->SetLeftMargin(0.15) ; frame3->GetYaxis()->SetTitleOffset(1.4) ; frame3->Draw() ;
124 c->cd(4) ; gPad->SetLeftMargin(0.15) ; frame4->GetYaxis()->SetTitleOffset(1.4) ; frame4->Draw() ;
125 c->cd(5) ; gPad->SetLeftMargin(0.15) ; hh_cor_a0_s1f->GetYaxis()->SetTitleOffset(1.4) ; hh_cor_a0_s1f->Draw("box") ;
126 c->cd(6) ; gPad->SetLeftMargin(0.15) ; hh_cor_a0_a1->GetYaxis()->SetTitleOffset(1.4) ; hh_cor_a0_a1->Draw("box") ;
127 c->cd(7) ; gPad->SetLeftMargin(0.15) ; corrHist000->GetYaxis()->SetTitleOffset(1.4) ; corrHist000->Draw("colz") ;
128 c->cd(8) ; gPad->SetLeftMargin(0.15) ; corrHist127->GetYaxis()->SetTitleOffset(1.4) ; corrHist127->Draw("colz") ;
129 c->cd(9) ; gPad->SetLeftMargin(0.15) ; corrHist953->GetYaxis()->SetTitleOffset(1.4) ; corrHist953->Draw("colz") ;
130
131 // Make RooMCStudy object available on command line after
132 // macro finishes
133 gDirectory->Add(mcstudy) ;
134}
#define c(i)
Definition: RSha256.hxx:101
const Bool_t kTRUE
Definition: RtypesCore.h:87
#define gDirectory
Definition: TDirectory.h:213
R__EXTERN TStyle * gStyle
Definition: TStyle.h:406
#define gPad
Definition: TVirtualPad.h:286
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Chebychev polynomial p.d.f.
Definition: RooChebychev.h:25
TH2F * createHistogram(const RooAbsRealLValue &var1, const RooAbsRealLValue &var2, const char *cuts="", const char *name="hist") const
Create a TH2F histogram of the distribution of the specified variable using this dataset.
TH2 * correlationHist(const char *name="correlation_matrix") const
Return TH2D of correlation matrix.
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
RooMCStudy is a help class to facilitate Monte Carlo studies such as 'goodness-of-fit' studies,...
Definition: RooMCStudy.h:32
RooPlot * plotPull(const RooRealVar &param, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Plot the distribution of pull values for the specified parameter on a newly created frame.
RooPlot * plotError(const RooRealVar &param, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Plot the distribution of the fit errors for the specified parameter on a newly created frame.
RooPlot * plotParam(const RooRealVar &param, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Plot the distribution of the fitted value of the given parameter on a newly created frame.
RooPlot * plotNLL(const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Plot the distribution of the -log(L) values on a newly created frame.
const RooFitResult * fitResult(Int_t sampleNum) const
Return the RooFitResult object of the fit to given sample.
Definition: RooMCStudy.cxx:985
const RooDataSet & fitParDataSet()
Return a RooDataSet the resulting fit parameters of each toy cycle.
Definition: RooMCStudy.cxx:949
Bool_t generateAndFit(Int_t nSamples, Int_t nEvtPerSample=0, Bool_t keepGenData=kFALSE, const char *asciiFilePat=0)
Generate and fit 'nSamples' samples of 'nEvtPerSample' events.
Definition: RooMCStudy.cxx:646
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
The TH1 histogram class.
Definition: TH1.h:56
TAxis * GetYaxis()
Definition: TH1.h:317
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2974
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Definition: TStyle.cxx:1444
Double_t x[n]
Definition: legend1.C:17
RooCmdArg Binned(Bool_t flag=kTRUE)
RooCmdArg YVar(const RooAbsRealLValue &var, const RooCmdArg &arg=RooCmdArg::none())
RooCmdArg Extended(Bool_t flag=kTRUE)
RooCmdArg FitGauss(Bool_t flag=kTRUE)
RooCmdArg PrintEvalErrors(Int_t numErrors)
RooCmdArg Silence(Bool_t flag=kTRUE)
RooCmdArg Save(Bool_t flag=kTRUE)
RooCmdArg FitOptions(const char *opts)
RooCmdArg Bins(Int_t nbin)