Logo ROOT   6.16/01
Reference Guide
rf609_xychi2fit.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #609
5///
6/// Setting up a chi^2 fit to an unbinned dataset with X,Y,err(Y)
7/// values (and optionally err(X) values)
8///
9/// \macro_image
10/// \macro_output
11/// \macro_code
12/// \author 07/2008 - Wouter Verkerke
13
14
15#include "RooRealVar.h"
16#include "RooDataSet.h"
17#include "RooPolyVar.h"
18#include "RooConstVar.h"
19#include "RooChi2Var.h"
20#include "TCanvas.h"
21#include "TAxis.h"
22#include "RooPlot.h"
23#include "TRandom.h"
24
25using namespace RooFit ;
26
27
28void rf609_xychi2fit()
29{
30 // C r e a t e d a t a s e t w i t h X a n d Y v a l u e s
31 // -------------------------------------------------------------------
32
33 // Make weighted XY dataset with asymmetric errors stored
34 // The StoreError() argument is essential as it makes
35 // the dataset store the error in addition to the values
36 // of the observables. If errors on one or more observables
37 // are asymmetric, one can store the asymmetric error
38 // using the StoreAsymError() argument
39
40 RooRealVar x("x","x",-11,11) ;
41 RooRealVar y("y","y",-10,200) ;
42 RooDataSet dxy("dxy","dxy",RooArgSet(x,y),StoreError(RooArgSet(x,y))) ;
43
44 // Fill an example dataset with X,err(X),Y,err(Y) values
45 for (int i=0 ; i<=10 ; i++) {
46
47 // Set X value and error
48 x = -10 + 2*i;
49 x.setError( i<5 ? 0.5/1. : 1.0/1. ) ;
50
51 // Set Y value and error
52 y = x.getVal() * x.getVal() + 4*fabs(gRandom->Gaus()) ;
53 y.setError(sqrt(y.getVal())) ;
54
55 dxy.add(RooArgSet(x,y)) ;
56 }
57
58
59
60 // P e r f o r m c h i 2 f i t t o X + / - d x a n d Y + / - d Y v a l u e s
61 // ---------------------------------------------------------------------------------------
62
63 // Make fit function
64 RooRealVar a("a","a",0.0,-10,10) ;
65 RooRealVar b("b","b",0.0,-100,100) ;
66 RooPolyVar f("f","f",x,RooArgList(b,a,RooConst(1))) ;
67
68 // Plot dataset in X-Y interpretation
69 RooPlot* frame = x.frame(Title("Chi^2 fit of function set of (X#pmdX,Y#pmdY) values")) ;
70 dxy.plotOnXY(frame,YVar(y)) ;
71
72 // Fit chi^2 using X and Y errors
73 f.chi2FitTo(dxy,YVar(y)) ;
74
75 // Overlay fitted function
76 f.plotOn(frame) ;
77
78 // Alternative: fit chi^2 integrating f(x) over ranges defined by X errors, rather
79 // than taking point at center of bin
80 f.chi2FitTo(dxy,YVar(y),Integrate(kTRUE)) ;
81
82 // Overlay alternate fit result
83 f.plotOn(frame,LineStyle(kDashed),LineColor(kRed)) ;
84
85
86 // Draw the plot on a canvas
87 new TCanvas("rf609_xychi2fit","rf609_xychi2fit",600,600) ;
88 gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ;
89
90
91}
#define b(i)
Definition: RSha256.hxx:100
#define f(i)
Definition: RSha256.hxx:104
const Bool_t kTRUE
Definition: RtypesCore.h:87
@ kRed
Definition: Rtypes.h:63
@ kDashed
Definition: TAttLine.h:48
double sqrt(double)
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
#define gPad
Definition: TVirtualPad.h:286
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
Class RooPolyVar is a RooAbsReal implementing a polynomial in terms of a list of RooAbsReal coefficie...
Definition: RooPolyVar.h:28
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:256
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
RooCmdArg Integrate(Bool_t flag)
RooCmdArg YVar(const RooAbsRealLValue &var, const RooCmdArg &arg=RooCmdArg::none())
RooCmdArg StoreError(const RooArgSet &aset)
RooConstVar & RooConst(Double_t val)
RooCmdArg LineColor(Color_t color)
RooCmdArg LineStyle(Style_t style)
const char * Title
Definition: TXMLSetup.cxx:67
auto * a
Definition: textangle.C:12