Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.16/01
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
rf602_chi2fit.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -nodraw
4/// 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #602
5///
6/// Setting up a chi^2 fit to a binned dataset
7///
8/// \macro_output
9/// \macro_code
10/// \author 07/2008 - Wouter Verkerke
11
12
13#include "RooRealVar.h"
14#include "RooDataSet.h"
15#include "RooGaussian.h"
16#include "RooConstVar.h"
17#include "RooChebychev.h"
18#include "RooAddPdf.h"
19#include "RooChi2Var.h"
20#include "TCanvas.h"
21#include "TAxis.h"
22#include "RooPlot.h"
23using namespace RooFit ;
24
25
26void rf602_chi2fit()
27{
28
29 // S e t u p m o d e l
30 // ---------------------
31
32 // Declare observable x
33 RooRealVar x("x","x",0,10) ;
34
35 // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
36 RooRealVar mean("mean","mean of gaussians",5) ;
37 RooRealVar sigma1("sigma1","width of gaussians",0.5) ;
38 RooRealVar sigma2("sigma2","width of gaussians",1) ;
39
40 RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
41 RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
42
43 // Build Chebychev polynomial p.d.f.
44 RooRealVar a0("a0","a0",0.5,0.,1.) ;
45 RooRealVar a1("a1","a1",0.2,0.,1.) ;
46 RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
47
48 // Sum the signal components into a composite signal p.d.f.
49 RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
50 RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
51
52 // Sum the composite signal and background
53 RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ;
54 RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ;
55
56
57 // C r e a t e b i n n e d d a t a s e t
58 // -----------------------------------------
59
60 RooDataSet* d = model.generate(x,10000) ;
61 RooDataHist* dh = d->binnedClone() ;
62
63 // Construct a chi^2 of the data and the model.
64 // When a p.d.f. is used in a chi^2 fit, the probability density scaled
65 // by the number of events in the dataset to obtain the fit function
66 // If model is an extended p.d.f, the expected number events is used
67 // instead of the observed number of events.
68 model.chi2FitTo(*dh) ;
69
70 // NB: It is also possible to fit a RooAbsReal function to a RooDataHist
71 // using chi2FitTo().
72
73 // Note that entries with zero bins are _not_ allowed
74 // for a proper chi^2 calculation and will give error
75 // messages
76 RooDataSet* dsmall = (RooDataSet*) d->reduce(EventRange(1,100)) ;
77 RooDataHist* dhsmall = dsmall->binnedClone() ;
78 RooChi2Var chi2_lowstat("chi2_lowstat","chi2",model,*dhsmall) ;
79 cout << chi2_lowstat.getVal() << endl ;
80
81
82}
#define d(i)
Definition: RSha256.hxx:102
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Chebychev polynomial p.d.f.
Definition: RooChebychev.h:25
RooDataSet is a container class to hold N-dimensional binned data.
Definition: RooDataHist.h:40
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
RooDataHist * binnedClone(const char *newName=0, const char *newTitle=0) const
Return binned clone of this dataset.
Definition: RooDataSet.cxx:933
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
Double_t x[n]
Definition: legend1.C:17
RooCmdArg EventRange(Int_t nStart, Int_t nStop)