Logo ROOT   6.16/01
Reference Guide
rf401_importttreethx.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -nodraw
4/// 'DATA AND CATEGORIES' RooFit tutorial macro #401
5///
6/// Overview of advanced option for importing data from ROOT TTree and THx histograms
7/// Basic import options are demonstrated in rf102_dataimport.C
8///
9/// \macro_output
10/// \macro_code
11/// \author 07/2008 - Wouter Verkerke
12
13
14#include "RooRealVar.h"
15#include "RooDataSet.h"
16#include "RooDataHist.h"
17#include "RooCategory.h"
18#include "RooGaussian.h"
19#include "RooConstVar.h"
20#include "TCanvas.h"
21#include "TAxis.h"
22#include "RooPlot.h"
23#include "TH1.h"
24#include "TTree.h"
25#include "TRandom.h"
26#include <map>
27
28using namespace RooFit ;
29
30
31
32TH1* makeTH1(const char* name, Double_t mean, Double_t sigma) ;
33TTree* makeTTree() ;
34
35
36void rf401_importttreethx()
37{
38 // I m p o r t m u l t i p l e T H 1 i n t o a R o o D a t a H i s t
39 // --------------------------------------------------------------------------
40
41 // Create thee ROOT TH1 histograms
42 TH1* hh_1 = makeTH1("hh1",0,3) ;
43 TH1* hh_2 = makeTH1("hh2",-3,1) ;
44 TH1* hh_3 = makeTH1("hh3",+3,4) ;
45
46 // Declare observable x
47 RooRealVar x("x","x",-10,10) ;
48
49 // Create category observable c that serves as index for the ROOT histograms
50 RooCategory c("c","c") ;
51 c.defineType("SampleA") ;
52 c.defineType("SampleB") ;
53 c.defineType("SampleC") ;
54
55 // Create a binned dataset that imports contents of all TH1 mapped by index category c
56 RooDataHist* dh = new RooDataHist("dh","dh",x,Index(c),Import("SampleA",*hh_1),Import("SampleB",*hh_2),Import("SampleC",*hh_3)) ;
57 dh->Print() ;
58
59 // Alternative constructor form for importing multiple histograms
60 map<string,TH1*> hmap ;
61 hmap["SampleA"] = hh_1 ;
62 hmap["SampleB"] = hh_2 ;
63 hmap["SampleC"] = hh_3 ;
64 RooDataHist* dh2 = new RooDataHist("dh","dh",x,c,hmap) ;
65 dh2->Print() ;
66
67
68
69 // I m p o r t i n g a T T r e e i n t o a R o o D a t a S e t w i t h c u t s
70 // -----------------------------------------------------------------------------------------
71
72 TTree* tree = makeTTree() ;
73
74 // Define observables y,z
75 RooRealVar y("y","y",-10,10) ;
76 RooRealVar z("z","z",-10,10) ;
77
78 // Import only observables (y,z)
79 RooDataSet ds("ds","ds",RooArgSet(x,y),Import(*tree)) ;
80 ds.Print() ;
81
82 // Import observables (x,y,z) but only event for which (y+z<0) is true
83 RooDataSet ds2("ds2","ds2",RooArgSet(x,y,z),Import(*tree),Cut("y+z<0")) ;
84 ds2.Print() ;
85
86
87
88 // I m p o r t i n g i n t e g e r T T r e e b r a n c h e s
89 // ---------------------------------------------------------------
90
91 // Import integer tree branch as RooRealVar
92 RooRealVar i("i","i",0,5) ;
93 RooDataSet ds3("ds3","ds3",RooArgSet(i,x),Import(*tree)) ;
94 ds3.Print() ;
95
96 // Define category i
97 RooCategory icat("i","i") ;
98 icat.defineType("State0",0) ;
99 icat.defineType("State1",1) ;
100
101 // Import integer tree branch as RooCategory (only events with i==0 and i==1
102 // will be imported as those are the only defined states)
103 RooDataSet ds4("ds4","ds4",RooArgSet(icat,x),Import(*tree)) ;
104 ds4.Print() ;
105
106
107
108 // I m p o r t m u l t i p l e R o o D a t a S e t s i n t o a R o o D a t a S e t
109 // ----------------------------------------------------------------------------------------
110
111 // Create three RooDataSets in (y,z)
112 RooDataSet* dsA = (RooDataSet*) ds2.reduce(RooArgSet(x,y),"z<-5") ;
113 RooDataSet* dsB = (RooDataSet*) ds2.reduce(RooArgSet(x,y),"abs(z)<5") ;
114 RooDataSet* dsC = (RooDataSet*) ds2.reduce(RooArgSet(x,y),"z>5") ;
115
116 // Create a dataset that imports contents of all the above datasets mapped by index category c
117 RooDataSet* dsABC = new RooDataSet("dsABC","dsABC",RooArgSet(x,y),Index(c),Import("SampleA",*dsA),Import("SampleB",*dsB),Import("SampleC",*dsC)) ;
118
119 dsABC->Print() ;
120
121}
122
123
124
125TH1* makeTH1(const char* name, Double_t mean, Double_t sigma)
126{
127 // Create ROOT TH1 filled with a Gaussian distribution
128
129 TH1D* hh = new TH1D(name,name,100,-10,10) ;
130 for (int i=0 ; i<1000 ; i++) {
131 hh->Fill(gRandom->Gaus(mean,sigma)) ;
132 }
133 return hh ;
134}
135
136
137
138TTree* makeTTree()
139{
140 // Create ROOT TTree filled with a Gaussian distribution in x and a uniform distribution in y
141
142 TTree* tree = new TTree("tree","tree") ;
143 Double_t* px = new Double_t ;
144 Double_t* py = new Double_t ;
145 Double_t* pz = new Double_t ;
146 Int_t* pi = new Int_t ;
147 tree->Branch("x",px,"x/D") ;
148 tree->Branch("y",py,"y/D") ;
149 tree->Branch("z",pz,"z/D") ;
150 tree->Branch("i",pi,"i/I") ;
151 for (int i=0 ; i<100 ; i++) {
152 *px = gRandom->Gaus(0,3) ;
153 *py = gRandom->Uniform()*30 - 15 ;
154 *pz = gRandom->Gaus(0,5) ;
155 *pi = i % 3 ;
156 tree->Fill() ;
157 }
158 return tree ;
159}
160
161
162
#define c(i)
Definition: RSha256.hxx:101
int Int_t
Definition: RtypesCore.h:41
double Double_t
Definition: RtypesCore.h:55
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
RooAbsData * reduce(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg())
Create a reduced copy of this dataset.
Definition: RooAbsData.cxx:360
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooAbsData.h:161
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooCategory represents a fundamental (non-derived) discrete value object.
Definition: RooCategory.h:24
RooDataSet is a container class to hold N-dimensional binned data.
Definition: RooDataHist.h:40
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:614
The TH1 histogram class.
Definition: TH1.h:56
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3251
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:256
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
Definition: TRandom.cxx:627
const Double_t sigma
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
RooCmdArg Index(RooCategory &icat)
RooCmdArg Import(const char *state, TH1 &histo)
RooCmdArg Cut(const char *cutSpec)
static constexpr double pi
Definition: tree.py:1