Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.16/01
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
rf316_llratioplot.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #316
5///
6/// Using the likelihood ratio technique to construct a signal enhanced
7/// one-dimensional projection of a multi-dimensional p.d.f.
8///
9/// \macro_image
10/// \macro_output
11/// \macro_code
12/// \author 07/2008 - Wouter Verkerke
13
14
15#include "RooRealVar.h"
16#include "RooDataSet.h"
17#include "RooGaussian.h"
18#include "RooConstVar.h"
19#include "RooPolynomial.h"
20#include "RooAddPdf.h"
21#include "RooProdPdf.h"
22#include "TCanvas.h"
23#include "TAxis.h"
24#include "RooPlot.h"
25using namespace RooFit ;
26
27
29{
30
31 // C r e a t e 3 D p d f a n d d a t a
32 // -------------------------------------------
33
34 // Create observables
35 RooRealVar x("x","x",-5,5) ;
36 RooRealVar y("y","y",-5,5) ;
37 RooRealVar z("z","z",-5,5) ;
38
39 // Create signal pdf gauss(x)*gauss(y)*gauss(z)
40 RooGaussian gx("gx","gx",x,RooConst(0),RooConst(1)) ;
41 RooGaussian gy("gy","gy",y,RooConst(0),RooConst(1)) ;
42 RooGaussian gz("gz","gz",z,RooConst(0),RooConst(1)) ;
43 RooProdPdf sig("sig","sig",RooArgSet(gx,gy,gz)) ;
44
45 // Create background pdf poly(x)*poly(y)*poly(z)
46 RooPolynomial px("px","px",x,RooArgSet(RooConst(-0.1),RooConst(0.004))) ;
47 RooPolynomial py("py","py",y,RooArgSet(RooConst(0.1),RooConst(-0.004))) ;
48 RooPolynomial pz("pz","pz",z) ;
49 RooProdPdf bkg("bkg","bkg",RooArgSet(px,py,pz)) ;
50
51 // Create composite pdf sig+bkg
52 RooRealVar fsig("fsig","signal fraction",0.1,0.,1.) ;
53 RooAddPdf model("model","model",RooArgList(sig,bkg),fsig) ;
54
55 RooDataSet* data = model.generate(RooArgSet(x,y,z),20000) ;
56
57
58
59 // P r o j e c t p d f a n d d a t a o n x
60 // -------------------------------------------------
61
62 // Make plain projection of data and pdf on x observable
63 RooPlot* frame = x.frame(Title("Projection of 3D data and pdf on X"),Bins(40)) ;
64 data->plotOn(frame) ;
65 model.plotOn(frame) ;
66
67
68
69 // D e f i n e p r o j e c t e d s i g n a l l i k e l i h o o d r a t i o
70 // ----------------------------------------------------------------------------------
71
72 // Calculate projection of signal and total likelihood on (y,z) observables
73 // i.e. integrate signal and composite model over x
74 RooAbsPdf* sigyz = sig.createProjection(x) ;
75 RooAbsPdf* totyz = model.createProjection(x) ;
76
77 // Construct the log of the signal / signal+background probability
78 RooFormulaVar llratio_func("llratio","log10(@0)-log10(@1)",RooArgList(*sigyz,*totyz)) ;
79
80
81
82 // P l o t d a t a w i t h a L L r a t i o c u t
83 // -------------------------------------------------------
84
85 // Calculate the llratio value for each event in the dataset
86 data->addColumn(llratio_func) ;
87
88 // Extract the subset of data with large signal likelihood
89 RooDataSet* dataSel = (RooDataSet*) data->reduce(Cut("llratio>0.7")) ;
90
91 // Make plot frame
92 RooPlot* frame2 = x.frame(Title("Same projection on X with LLratio(y,z)>0.7"),Bins(40)) ;
93
94 // Plot select data on frame
95 dataSel->plotOn(frame2) ;
96
97
98
99 // M a k e M C p r o j e c t i o n o f p d f w i t h s a m e L L r a t i o c u t
100 // ---------------------------------------------------------------------------------------------
101
102 // Generate large number of events for MC integration of pdf projection
103 RooDataSet* mcprojData = model.generate(RooArgSet(x,y,z),10000) ;
104
105 // Calculate LL ratio for each generated event and select MC events with llratio)0.7
106 mcprojData->addColumn(llratio_func) ;
107 RooDataSet* mcprojDataSel = (RooDataSet*) mcprojData->reduce(Cut("llratio>0.7")) ;
108
109 // Project model on x, integrating projected observables (y,z) with Monte Carlo technique
110 // on set of events with the same llratio cut as was applied to data
111 model.plotOn(frame2,ProjWData(*mcprojDataSel)) ;
112
113
114
115 TCanvas* c = new TCanvas("rf316_llratioplot","rf316_llratioplot",800,400) ;
116 c->Divide(2) ;
117 c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ;
118 c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.4) ; frame2->Draw() ;
119
120
121
122}
#define c(i)
Definition: RSha256.hxx:101
#define gPad
Definition: TVirtualPad.h:286
RooAbsData * reduce(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg())
Create a reduced copy of this dataset.
Definition: RooAbsData.cxx:360
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Calls RooPlot* plotOn(RooPlot* frame, const RooLinkedList& cmdList) const ;.
Definition: RooAbsData.cxx:531
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
virtual RooAbsPdf * createProjection(const RooArgSet &iset)
Return a p.d.f that represent a projection of this p.d.f integrated over given observables.
Definition: RooAbsPdf.cxx:2914
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
virtual RooAbsArg * addColumn(RooAbsArg &var, Bool_t adjustRange=kTRUE)
Add a column with the values of the given (function) argument to this dataset.
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooPolynomial implements a polynomial p.d.f of the form.
Definition: RooPolynomial.h:28
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition: RooProdPdf.h:31
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
RooCmdArg ProjWData(const RooAbsData &projData, Bool_t binData=kFALSE)
RooConstVar & RooConst(Double_t val)
RooCmdArg Cut(const char *cutSpec)
RooCmdArg Bins(Int_t nbin)
const char * Title
Definition: TXMLSetup.cxx:67