Logo ROOT   6.16/01
Reference Guide
rf315_projectpdf.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_;;;;
3/// \notebook
4/// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #315
5///
6/// Marginizalization of multi-dimensional p.d.f.s through integration
7///
8/// \macro_image
9/// \macro_output
10/// \macro_code
11/// \author 07/2008 - Wouter Verkerke
12
13
14#include "RooRealVar.h"
15#include "RooDataHist.h"
16#include "RooGaussian.h"
17#include "RooProdPdf.h"
18#include "RooPolyVar.h"
19#include "TH1.h"
20#include "TCanvas.h"
21#include "TAxis.h"
22#include "RooPlot.h"
23#include "RooNumIntConfig.h"
24#include "RooConstVar.h"
25using namespace RooFit ;
26
27
29{
30 // C r e a t e p d f m ( x , y ) = g x ( x | y ) * g ( y )
31 // --------------------------------------------------------------
32
33 // Increase default precision of numeric integration
34 // as this exercise has high sensitivity to numeric integration precision
37
38 // Create observables
39 RooRealVar x("x","x",-5,5) ;
40 RooRealVar y("y","y",-2,2) ;
41
42 // Create function f(y) = a0 + a1*y
43 RooRealVar a0("a0","a0",0) ;
44 RooRealVar a1("a1","a1",-1.5,-3,1) ;
45 RooPolyVar fy("fy","fy",y,RooArgSet(a0,a1)) ;
46
47 // Create gaussx(x,f(y),sx)
48 RooRealVar sigmax("sigmax","width of gaussian",0.5) ;
49 RooGaussian gaussx("gaussx","Gaussian in x with shifting mean in y",x,fy,sigmax) ;
50
51 // Create gaussy(y,0,2)
52 RooGaussian gaussy("gaussy","Gaussian in y",y,RooConst(0),RooConst(2)) ;
53
54 // Create gaussx(x,sx|y) * gaussy(y)
55 RooProdPdf model("model","gaussx(x|y)*gaussy(y)",gaussy,Conditional(gaussx,x)) ;
56
57
58
59 // M a r g i n a l i z e m ( x , y ) t o m ( x )
60 // ----------------------------------------------------
61
62 // modelx(x) = Int model(x,y) dy
63 RooAbsPdf* modelx = model.createProjection(y) ;
64
65
66
67 // U s e m a r g i n a l i z e d p . d . f . a s r e g u l a r 1 - D p . d . f .
68 // ------------------------------------------------------------------------------------------
69
70 // Sample 1000 events from modelx
71 RooAbsData* data = modelx->generateBinned(x,1000) ;
72
73 // Fit modelx to toy data
74 modelx->fitTo(*data,Verbose()) ;
75
76 // Plot modelx over data
77 RooPlot* frame = x.frame(40) ;
78 data->plotOn(frame) ;
79 modelx->plotOn(frame) ;
80
81 // Make 2D histogram of model(x,y)
82 TH1* hh = model.createHistogram("x,y") ;
83 hh->SetLineColor(kBlue) ;
84
85
86 TCanvas* c = new TCanvas("rf315_projectpdf","rf315_projectpdf",800,400) ;
87 c->Divide(2) ;
88 c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ;
89 c->cd(2) ; gPad->SetLeftMargin(0.20) ; hh->GetZaxis()->SetTitleOffset(2.5) ; hh->Draw("surf") ;
90
91}
#define c(i)
Definition: RSha256.hxx:101
#define e(i)
Definition: RSha256.hxx:103
@ kBlue
Definition: Rtypes.h:63
#define gPad
Definition: TVirtualPad.h:286
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:37
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
virtual RooFitResult * fitTo(RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Fit PDF to given dataset.
Definition: RooAbsPdf.cxx:1081
virtual RooDataHist * generateBinned(const RooArgSet &whatVars, Double_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none())
As RooAbsPdf::generateBinned(const RooArgSet&, const RooCmdArg&,const RooCmdArg&, const RooCmdArg&,...
Definition: RooAbsPdf.h:105
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none(), const RooCmdArg &arg9=RooCmdArg::none(), const RooCmdArg &arg10=RooCmdArg::none()) const
Helper calling plotOn(RooPlot*, RooLinkedList&) const.
Definition: RooAbsPdf.h:119
static RooNumIntConfig * defaultIntegratorConfig()
Returns the default numeric integration configuration for all RooAbsReals.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
void setEpsAbs(Double_t newEpsAbs)
Set absolute convergence criteria (convergence if abs(Err)<newEpsAbs)
void setEpsRel(Double_t newEpsRel)
Set relative convergence criteria (convergence if abs(Err)/abs(Int)<newEpsRel)
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
Class RooPolyVar is a RooAbsReal implementing a polynomial in terms of a list of RooAbsReal coefficie...
Definition: RooPolyVar.h:28
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition: RooProdPdf.h:31
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition: TAttLine.h:40
The Canvas class.
Definition: TCanvas.h:31
The TH1 histogram class.
Definition: TH1.h:56
TAxis * GetZaxis()
Definition: TH1.h:318
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2974
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
RooConstVar & RooConst(Double_t val)
RooCmdArg Verbose(Bool_t flag=kTRUE)
RooCmdArg Conditional(const RooArgSet &pdfSet, const RooArgSet &depSet, Bool_t depsAreCond=kFALSE)