Logo ROOT   6.16/01
Reference Guide
rf313_paramranges.C File Reference

Detailed Description

View in nbviewer Open in SWAN 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #313

Working with parametrized ranges to define non-rectangular regions for fitting and integration

␛[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby␛[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
[#1] INFO:NumericIntegration -- RooRealIntegral::init(pxyz_Int[z|R]_Norm[x,y,z]_Int[y|R]) using numeric integrator RooIntegrator1D to calculate Int(y)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(pxyz_Int[z|R]_Norm[x,y,z]_Int[y|R]_Int[x|R]) using numeric integrator RooIntegrator1D to calculate Int(x)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(pxyz_Int[z|R]_Norm[x,y,z]_Int[y|R]) using numeric integrator RooIntegrator1D to calculate Int(y)
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooPolynomial.h"
#include "RooProdPdf.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
using namespace RooFit ;
{
// C r e a t e 3 D p d f
// -------------------------
// Define observable (x,y,z)
RooRealVar x("x","x",0,10) ;
RooRealVar y("y","y",0,10) ;
RooRealVar z("z","z",0,10) ;
// Define 3 dimensional pdf
RooRealVar z0("z0","z0",-0.1,1) ;
RooPolynomial px("px","px",x,RooConst(0)) ;
RooPolynomial py("py","py",y,RooConst(0)) ;
RooPolynomial pz("pz","pz",z,z0) ;
RooProdPdf pxyz("pxyz","pxyz",RooArgSet(px,py,pz)) ;
// D e f i n e d n o n - r e c t a n g u l a r r e g i o n R i n ( x , y , z )
// -------------------------------------------------------------------------------------
//
// R = Z[0 - 0.1*Y^2] * Y[0.1*X - 0.9*X] * X[0 - 10]
//
// Construct range parametrized in "R" in y [ 0.1*x, 0.9*x ]
RooFormulaVar ylo("ylo","0.1*x",x) ;
RooFormulaVar yhi("yhi","0.9*x",x) ;
y.setRange("R",ylo,yhi) ;
// Construct parametrized ranged "R" in z [ 0, 0.1*y^2 ]
RooFormulaVar zlo("zlo","0.0*y",y) ;
RooFormulaVar zhi("zhi","0.1*y*y",y) ;
z.setRange("R",zlo,zhi) ;
// C a l c u l a t e i n t e g r a l o f n o r m a l i z e d p d f i n R
// ----------------------------------------------------------------------------------
// Create integral over normalized pdf model over x,y,z in "R" region
RooAbsReal* intPdf = pxyz.createIntegral(RooArgSet(x,y,z),RooArgSet(x,y,z),"R") ;
// Plot value of integral as function of pdf parameter z0
RooPlot* frame = z0.frame(Title("Integral of pxyz over x,y,z in region R")) ;
intPdf->plotOn(frame) ;
new TCanvas("rf313_paramranges","rf313_paramranges",600,600) ;
gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ;
return ;
}
#define gPad
Definition: TVirtualPad.h:286
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition: RooAbsReal.h:53
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg(), const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg(), const RooCmdArg &arg9=RooCmdArg(), const RooCmdArg &arg10=RooCmdArg()) const
Plot (project) PDF on specified frame.
RooAbsReal * createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Create an object that represents the integral of the function over one or more observables listed in ...
Definition: RooAbsReal.cxx:502
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooPolynomial implements a polynomial p.d.f of the form.
Definition: RooPolynomial.h:28
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition: RooProdPdf.h:31
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
RooConstVar & RooConst(Double_t val)
const char * Title
Definition: TXMLSetup.cxx:67
Author
07/2008 - Wouter Verkerke

Definition in file rf313_paramranges.C.