Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.16/01
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
rf307_fullpereventerrors.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook
4/// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #307
5///
6/// Complete example with use of full p.d.f. with per-event errors
7///
8///
9///
10/// \macro_code
11/// \author 07/2008 - Wouter Verkerke
12
13
14#include "RooRealVar.h"
15#include "RooDataSet.h"
16#include "RooGaussian.h"
17#include "RooGaussModel.h"
18#include "RooConstVar.h"
19#include "RooDecay.h"
20#include "RooLandau.h"
21#include "RooProdPdf.h"
22#include "RooHistPdf.h"
23#include "RooPlot.h"
24#include "TCanvas.h"
25#include "TAxis.h"
26#include "TH1.h"
27using namespace RooFit ;
28
29
31{
32 // B - p h y s i c s p d f w i t h p e r - e v e n t G a u s s i a n r e s o l u t i o n
33 // ----------------------------------------------------------------------------------------------
34
35 // Observables
36 RooRealVar dt("dt","dt",-10,10) ;
37 RooRealVar dterr("dterr","per-event error on dt",0.01,10) ;
38
39 // Build a gaussian resolution model scaled by the per-event error = gauss(dt,bias,sigma*dterr)
40 RooRealVar bias("bias","bias",0,-10,10) ;
41 RooRealVar sigma("sigma","per-event error scale factor",1,0.1,10) ;
42 RooGaussModel gm("gm1","gauss model scaled bt per-event error",dt,bias,sigma,dterr) ;
43
44 // Construct decay(dt) (x) gauss1(dt|dterr)
45 RooRealVar tau("tau","tau",1.548) ;
46 RooDecay decay_gm("decay_gm","decay",dt,tau,gm,RooDecay::DoubleSided) ;
47
48
49
50 // C o n s t r u c t e m p i r i c a l p d f f o r p e r - e v e n t e r r o r
51 // -----------------------------------------------------------------
52
53 // Use landau p.d.f to get empirical distribution with long tail
54 RooLandau pdfDtErr("pdfDtErr","pdfDtErr",dterr,RooConst(1),RooConst(0.25)) ;
55 RooDataSet* expDataDterr = pdfDtErr.generate(dterr,10000) ;
56
57 // Construct a histogram pdf to describe the shape of the dtErr distribution
58 RooDataHist* expHistDterr = expDataDterr->binnedClone() ;
59 RooHistPdf pdfErr("pdfErr","pdfErr",dterr,*expHistDterr) ;
60
61
62 // C o n s t r u c t c o n d i t i o n a l p r o d u c t d e c a y _ d m ( d t | d t e r r ) * p d f ( d t e r r )
63 // ----------------------------------------------------------------------------------------------------------------------
64
65 // Construct production of conditional decay_dm(dt|dterr) with empirical pdfErr(dterr)
66 RooProdPdf model("model","model",pdfErr,Conditional(decay_gm,dt)) ;
67
68 // (Alternatively you could also use the landau shape pdfDtErr)
69 //RooProdPdf model("model","model",pdfDtErr,Conditional(decay_gm,dt)) ;
70
71
72
73 // S a m p l e, f i t a n d p l o t p r o d u c t m o d e l
74 // ------------------------------------------------------------------
75
76 // Specify external dataset with dterr values to use model_dm as conditional p.d.f.
77 RooDataSet* data = model.generate(RooArgSet(dt,dterr),10000) ;
78
79
80
81 // F i t c o n d i t i o n a l d e c a y _ d m ( d t | d t e r r )
82 // ---------------------------------------------------------------------
83
84 // Specify dterr as conditional observable
85 model.fitTo(*data) ;
86
87
88
89 // P l o t c o n d i t i o n a l d e c a y _ d m ( d t | d t e r r )
90 // ---------------------------------------------------------------------
91
92
93 // Make two-dimensional plot of conditional p.d.f in (dt,dterr)
94 TH1* hh_model = model.createHistogram("hh_model",dt,Binning(50),YVar(dterr,Binning(50))) ;
95 hh_model->SetLineColor(kBlue) ;
96
97
98 // Make projection of data an dt
99 RooPlot* frame = dt.frame(Title("Projection of model(dt|dterr) on dt")) ;
100 data->plotOn(frame) ;
101 model.plotOn(frame) ;
102
103
104 // Draw all frames on canvas
105 TCanvas* c = new TCanvas("rf307_fullpereventerrors","rf307_fullperventerrors",800, 400);
106 c->Divide(2) ;
107 c->cd(1) ; gPad->SetLeftMargin(0.20) ; hh_model->GetZaxis()->SetTitleOffset(2.5) ; hh_model->Draw("surf") ;
108 c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ;
109
110
111
112}
#define c(i)
Definition: RSha256.hxx:101
@ kBlue
Definition: Rtypes.h:63
#define gPad
Definition: TVirtualPad.h:286
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooDataSet is a container class to hold N-dimensional binned data.
Definition: RooDataHist.h:40
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
RooDataHist * binnedClone(const char *newName=0, const char *newTitle=0) const
Return binned clone of this dataset.
Definition: RooDataSet.cxx:933
Single or double sided decay function that can be analytically convolved with any RooResolutionModel ...
Definition: RooDecay.h:22
@ DoubleSided
Definition: RooDecay.h:25
Class RooGaussModel implements a RooResolutionModel that models a Gaussian distribution.
Definition: RooGaussModel.h:26
RooHistPdf implements a probablity density function sampled from a multidimensional histogram.
Definition: RooHistPdf.h:28
Landau distribution p.d.f.
Definition: RooLandau.h:24
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition: RooProdPdf.h:31
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition: TAttLine.h:40
The Canvas class.
Definition: TCanvas.h:31
The TH1 histogram class.
Definition: TH1.h:56
TAxis * GetZaxis()
Definition: TH1.h:318
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2974
const Double_t sigma
RooCmdArg Binning(const RooAbsBinning &binning)
RooCmdArg YVar(const RooAbsRealLValue &var, const RooCmdArg &arg=RooCmdArg::none())
RooConstVar & RooConst(Double_t val)
RooCmdArg Conditional(const RooArgSet &pdfSet, const RooArgSet &depSet, Bool_t depsAreCond=kFALSE)
const char * Title
Definition: TXMLSetup.cxx:67