Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.16/01
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
rf303_conditional.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #303
5///
6/// Use of tailored p.d.f as conditional p.d.fs.s
7///
8/// pdf = gauss(x,f(y),sx | y ) with f(y) = a0 + a1*y
9///
10/// \macro_image
11/// \macro_output
12/// \macro_code
13/// \author 07/2008 - Wouter Verkerke
14
15
16#include "RooRealVar.h"
17#include "RooDataSet.h"
18#include "RooDataHist.h"
19#include "RooGaussian.h"
20#include "RooPolyVar.h"
21#include "RooProdPdf.h"
22#include "RooPlot.h"
23#include "TRandom.h"
24#include "TCanvas.h"
25#include "TAxis.h"
26#include "TH1.h"
27
28using namespace RooFit;
29
30
31RooDataSet* makeFakeDataXY() ;
32
33void rf303_conditional()
34{
35 // S e t u p c o m p o s e d m o d e l g a u s s ( x , m ( y ) , s )
36 // -----------------------------------------------------------------------
37
38 // Create observables
39 RooRealVar x("x","x",-10,10) ;
40 RooRealVar y("y","y",-10,10) ;
41
42 // Create function f(y) = a0 + a1*y
43 RooRealVar a0("a0","a0",-0.5,-5,5) ;
44 RooRealVar a1("a1","a1",-0.5,-1,1) ;
45 RooPolyVar fy("fy","fy",y,RooArgSet(a0,a1)) ;
46
47 // Create gauss(x,f(y),s)
48 RooRealVar sigma("sigma","width of gaussian",0.5,0.1,2.0) ;
49 RooGaussian model("model","Gaussian with shifting mean",x,fy,sigma) ;
50
51
52 // Obtain fake external experimental dataset with values for x and y
53 RooDataSet* expDataXY = makeFakeDataXY() ;
54
55
56
57 // G e n e r a t e d a t a f r o m c o n d i t i o n a l p . d . f m o d e l ( x | y )
58 // ---------------------------------------------------------------------------------------------
59
60 // Make subset of experimental data with only y values
61 RooDataSet* expDataY= (RooDataSet*) expDataXY->reduce(y) ;
62
63 // Generate 10000 events in x obtained from _conditional_ model(x|y) with y values taken from experimental data
64 RooDataSet *data = model.generate(x,ProtoData(*expDataY)) ;
65 data->Print() ;
66
67
68
69 // F i t c o n d i t i o n a l p . d . f m o d e l ( x | y ) t o d a t a
70 // ---------------------------------------------------------------------------------------------
71
72 model.fitTo(*expDataXY,ConditionalObservables(y)) ;
73
74
75
76 // P r o j e c t c o n d i t i o n a l p . d . f o n x a n d y d i m e n s i o n s
77 // ---------------------------------------------------------------------------------------------
78
79 // Plot x distribution of data and projection of model on x = 1/Ndata sum(data(y_i)) model(x;y_i)
80 RooPlot* xframe = x.frame() ;
81 expDataXY->plotOn(xframe) ;
82 model.plotOn(xframe,ProjWData(*expDataY)) ;
83
84
85 // Speed up (and approximate) projection by using binned clone of data for projection
86 RooAbsData* binnedDataY = expDataY->binnedClone() ;
87 model.plotOn(xframe,ProjWData(*binnedDataY),LineColor(kCyan),LineStyle(kDotted)) ;
88
89
90 // Show effect of projection with too coarse binning
91 ((RooRealVar*)expDataY->get()->find("y"))->setBins(5) ;
92 RooAbsData* binnedDataY2 = expDataY->binnedClone() ;
93 model.plotOn(xframe,ProjWData(*binnedDataY2),LineColor(kRed)) ;
94
95
96 // Make canvas and draw RooPlots
97 new TCanvas("rf303_conditional","rf303_conditional",600, 460);
98 gPad->SetLeftMargin(0.15) ; xframe->GetYaxis()->SetTitleOffset(1.2) ; xframe->Draw() ;
99
100}
101
102
103
104
105RooDataSet* makeFakeDataXY()
106{
107 RooRealVar x("x","x",-10,10) ;
108 RooRealVar y("y","y",-10,10) ;
109 RooArgSet coord(x,y) ;
110
111 RooDataSet* d = new RooDataSet("d","d",RooArgSet(x,y)) ;
112
113 for (int i=0 ; i<10000 ; i++) {
114 Double_t tmpy = gRandom->Gaus(0,10) ;
115 Double_t tmpx = gRandom->Gaus(0.5*tmpy,1) ;
116 if (fabs(tmpy)<10 && fabs(tmpx)<10) {
117 x = tmpx ;
118 y = tmpy ;
119 d->add(coord) ;
120 }
121
122 }
123
124 return d ;
125}
126
#define d(i)
Definition: RSha256.hxx:102
double Double_t
Definition: RtypesCore.h:55
@ kRed
Definition: Rtypes.h:63
@ kCyan
Definition: Rtypes.h:63
@ kDotted
Definition: TAttLine.h:48
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
#define gPad
Definition: TVirtualPad.h:286
RooAbsArg * find(const char *name) const
Find object with given name in list.
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:37
RooAbsData * reduce(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg())
Create a reduced copy of this dataset.
Definition: RooAbsData.cxx:360
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Calls RooPlot* plotOn(RooPlot* frame, const RooLinkedList& cmdList) const ;.
Definition: RooAbsData.cxx:531
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
virtual const RooArgSet * get(Int_t index) const
Return RooArgSet with coordinates of event 'index'.
Definition: RooDataSet.cxx:995
RooDataHist * binnedClone(const char *newName=0, const char *newTitle=0) const
Return binned clone of this dataset.
Definition: RooDataSet.cxx:933
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
Class RooPolyVar is a RooAbsReal implementing a polynomial in terms of a list of RooAbsReal coefficie...
Definition: RooPolyVar.h:28
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:256
const Double_t sigma
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
RooCmdArg ProjWData(const RooAbsData &projData, Bool_t binData=kFALSE)
RooCmdArg ProtoData(const RooDataSet &protoData, Bool_t randomizeOrder=kFALSE, Bool_t resample=kFALSE)
RooCmdArg ConditionalObservables(const RooArgSet &set)
RooCmdArg LineColor(Color_t color)
RooCmdArg LineStyle(Style_t style)