import ROOT
x = ROOT.RooRealVar("x", "x", 0, 10)
mean = ROOT.RooRealVar("mean", "mean of gaussians", 5)
sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5)
sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1)
sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1)
sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2)
a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0., 1.)
a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0., 1.)
bkg = ROOT.RooChebychev("bkg", "Background", x, ROOT.RooArgList(a0, a1))
sig1frac = ROOT.RooRealVar(
"sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.)
sig = ROOT.RooAddPdf(
"sig", "Signal", ROOT.RooArgList(sig1, sig2), ROOT.RooArgList(sig1frac))
x.setRange("signalRange", 4, 6)
nsig = ROOT.RooRealVar(
"nsig", "number of signal events in signalRange", 500, 0., 10000)
nbkg = ROOT.RooRealVar(
"nbkg", "number of background events in signalRange", 500, 0, 10000)
esig = ROOT.RooExtendPdf(
"esig", "extended signal p.d.f", sig, nsig, "signalRange")
ebkg = ROOT.RooExtendPdf(
"ebkg", "extended background p.d.f", bkg, nbkg, "signalRange")
model = ROOT.RooAddPdf("model", "(g1+g2)+a", ROOT.RooArgList(ebkg, esig))
data = model.generate(ROOT.RooArgSet(x), 1000)
r = model.fitTo(data, ROOT.RooFit.Extended(ROOT.kTRUE), ROOT.RooFit.Save())
r.Print()