Logo ROOT   6.16/01
Reference Guide
ErrorIntegral.C File Reference

Detailed Description

View in nbviewer Open in SWAN Estimate the error in the integral of a fitted function taking into account the errors in the parameters resulting from the fit.

The error is estimated also using the correlations values obtained from the fit

run the macro doing:

.x ErrorIntegral.C
FCN=49.5952 FROM MIGRAD STATUS=CONVERGED 52 CALLS 53 TOTAL
EDM=1.22682e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.5 per cent
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 p0 3.13201e+00 3.12699e-02 -3.64656e-05 2.15221e-03
2 p1 2.97626e+01 1.00773e+00 6.67621e-05 -4.02033e-06
Integral = 19.005 +/- 0.6159
#include "TF1.h"
#include "TH1D.h"
#include "TVirtualFitter.h"
#include "TMath.h"
#include <assert.h>
#include <iostream>
#include <cmath>
TF1 * fitFunc; // fit function pointer
const int NPAR = 2; // number of function parameters;
//____________________________________________________________________
double f(double * x, double * p) {
// function used to fit the data
return p[1]*TMath::Sin( p[0] * x[0] );
}
//____________________________________________________________________
void ErrorIntegral() {
fitFunc = new TF1("f",f,0,1,NPAR);
TH1D * h1 = new TH1D("h1","h1",50,0,1);
double par[NPAR] = { 3.14, 1.};
fitFunc->SetParameters(par);
h1->FillRandom("f",1000); // fill histogram sampling fitFunc
fitFunc->SetParameter(0,3.); // vary a little the parameters
h1->Fit(fitFunc); // fit the histogram
h1->Draw();
/* calculate the integral*/
double integral = fitFunc->Integral(0,1);
assert(fitter != 0);
double * covMatrix = fitter->GetCovarianceMatrix();
/* using new function in TF1 (from 12/6/2007)*/
double sigma_integral = fitFunc->IntegralError(0,1);
std::cout << "Integral = " << integral << " +/- " << sigma_integral
<< std::endl;
// estimated integral and error analytically
double * p = fitFunc->GetParameters();
double ic = p[1]* (1-std::cos(p[0]) )/p[0];
double c0c = p[1] * (std::cos(p[0]) + p[0]*std::sin(p[0]) -1.)/p[0]/p[0];
double c1c = (1-std::cos(p[0]) )/p[0];
// estimated error with correlations
double sic = std::sqrt( c0c*c0c * covMatrix[0] + c1c*c1c * covMatrix[3]
+ 2.* c0c*c1c * covMatrix[1]);
if ( std::fabs(sigma_integral-sic) > 1.E-6*sic )
std::cout << " ERROR: test failed : different analytical integral : "
<< ic << " +/- " << sic << std::endl;
}
#define f(i)
Definition: RSha256.hxx:104
double cos(double)
double sqrt(double)
double sin(double)
1-Dim function class
Definition: TF1.h:211
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition: TF1.cxx:2496
virtual Double_t * GetParameters() const
Definition: TF1.h:504
virtual void SetParameters(const Double_t *params)
Definition: TF1.h:628
virtual void SetParameter(Int_t param, Double_t value)
Definition: TF1.h:618
virtual Double_t IntegralError(Double_t a, Double_t b, const Double_t *params=0, const Double_t *covmat=0, Double_t epsilon=1.E-2)
Return Error on Integral of a parametric function between a and b due to the parameter uncertainties.
Definition: TF1.cxx:2683
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:614
virtual void FillRandom(const char *fname, Int_t ntimes=5000)
Fill histogram following distribution in function fname.
Definition: TH1.cxx:3421
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
Definition: TH1.cxx:3695
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2974
Abstract Base Class for Fitting.
virtual Double_t * GetCovarianceMatrix() const =0
static TVirtualFitter * GetFitter()
static: return the current Fitter
Double_t x[n]
Definition: legend1.C:17
TH1F * h1
Definition: legend1.C:5
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
Double_t Sin(Double_t)
Definition: TMath.h:625
Author
Lorenzo Moneta

Definition in file ErrorIntegral.C.