Processing /mnt/build/workspace/root-makedoc-v614/rootspi/rdoc/src/v6-14-00-patches/tutorials/roostats/StandardHypoTestDemo.C...
[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
RooWorkspace(combined) combined contents
variables
---------
(Lumi,SigXsecOverSM,alpha_syst1,alpha_syst2,alpha_syst3,binWidth_obs_x_channel1_0,binWidth_obs_x_channel1_1,binWidth_obs_x_channel1_2,channelCat,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1,nominalLumi,obs_x_channel1,weightVar)
p.d.f.s
-------
RooGaussian::alpha_syst1Constraint[ x=alpha_syst1 mean=nom_alpha_syst1 sigma=1 ] = 1
RooGaussian::alpha_syst2Constraint[ x=alpha_syst2 mean=nom_alpha_syst2 sigma=1 ] = 1
RooGaussian::alpha_syst3Constraint[ x=alpha_syst3 mean=nom_alpha_syst3 sigma=1 ] = 1
RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ] = 220
RooPoisson::gamma_stat_channel1_bin_0_constraint[ x=nom_gamma_stat_channel1_bin_0 mean=gamma_stat_channel1_bin_0_poisMean ] = 0.019943
RooPoisson::gamma_stat_channel1_bin_1_constraint[ x=nom_gamma_stat_channel1_bin_1 mean=gamma_stat_channel1_bin_1_poisMean ] = 0.039861
RooGaussian::lumiConstraint[ x=Lumi mean=nominalLumi sigma=0.1 ] = 1
RooProdPdf::model_channel1[ lumiConstraint * alpha_syst1Constraint * alpha_syst2Constraint * alpha_syst3Constraint * gamma_stat_channel1_bin_0_constraint * gamma_stat_channel1_bin_1_constraint * channel1_model(obs_x_channel1) ] = 0.174888
RooSimultaneous::simPdf[ indexCat=channelCat channel1=model_channel1 ] = 0.174888
functions
--------
RooProduct::L_x_background1_channel1_overallSyst_x_StatUncert[ Lumi * background1_channel1_overallSyst_x_StatUncert ] = 0
RooProduct::L_x_background2_channel1_overallSyst_x_StatUncert[ Lumi * background2_channel1_overallSyst_x_StatUncert ] = 100
RooProduct::L_x_signal_channel1_overallSyst_x_Exp[ Lumi * signal_channel1_overallSyst_x_Exp ] = 10
RooStats::HistFactory::FlexibleInterpVar::background1_channel1_epsilon[ paramList=(alpha_syst2) ] = 1
RooHistFunc::background1_channel1_nominal[ depList=(obs_x_channel1) depList=(obs_x_channel1) ] = 0
RooProduct::background1_channel1_overallSyst_x_Exp[ background1_channel1_nominal * background1_channel1_epsilon ] = 0
RooProduct::background1_channel1_overallSyst_x_StatUncert[ mc_stat_channel1 * background1_channel1_overallSyst_x_Exp ] = 0
RooStats::HistFactory::FlexibleInterpVar::background2_channel1_epsilon[ paramList=(alpha_syst3) ] = 1
RooHistFunc::background2_channel1_nominal[ depList=(obs_x_channel1) depList=(obs_x_channel1) ] = 100
RooProduct::background2_channel1_overallSyst_x_Exp[ background2_channel1_nominal * background2_channel1_epsilon ] = 100
RooProduct::background2_channel1_overallSyst_x_StatUncert[ mc_stat_channel1 * background2_channel1_overallSyst_x_Exp ] = 100
RooProduct::gamma_stat_channel1_bin_0_poisMean[ gamma_stat_channel1_bin_0 * gamma_stat_channel1_bin_0_tau ] = 400
RooProduct::gamma_stat_channel1_bin_1_poisMean[ gamma_stat_channel1_bin_1 * gamma_stat_channel1_bin_1_tau ] = 100
ParamHistFunc::mc_stat_channel1[ ] = 1
RooStats::HistFactory::FlexibleInterpVar::signal_channel1_epsilon[ paramList=(alpha_syst1) ] = 1
RooHistFunc::signal_channel1_nominal[ depList=(obs_x_channel1) depList=(obs_x_channel1) ] = 10
RooProduct::signal_channel1_overallNorm_x_sigma_epsilon[ SigXsecOverSM * signal_channel1_epsilon ] = 1
RooProduct::signal_channel1_overallSyst_x_Exp[ signal_channel1_nominal * signal_channel1_overallNorm_x_sigma_epsilon ] = 10
datasets
--------
RooDataSet::asimovData(obs_x_channel1,weightVar,channelCat)
RooDataSet::obsData(channelCat,obs_x_channel1)
embedded datasets (in pdfs and functions)
-----------------------------------------
RooDataHist::signal_channel1nominalDHist(obs_x_channel1)
RooDataHist::background1_channel1nominalDHist(obs_x_channel1)
RooDataHist::background2_channel1nominalDHist(obs_x_channel1)
parameter snapshots
-------------------
NominalParamValues = (nom_alpha_syst2=0[C],nom_alpha_syst3=0[C],nom_gamma_stat_channel1_bin_0=400[C],nom_gamma_stat_channel1_bin_1=100[C],weightVar=0,obs_x_channel1=1.75,Lumi=1[C],nominalLumi=1[C],alpha_syst1=0[C],nom_alpha_syst1=0[C],alpha_syst2=0,alpha_syst3=0,gamma_stat_channel1_bin_0=1,gamma_stat_channel1_bin_1=1,SigXsecOverSM=1,binWidth_obs_x_channel1_0=2[C],binWidth_obs_x_channel1_1=2[C],binWidth_obs_x_channel1_2=2[C])
named sets
----------
ModelConfig_GlobalObservables:(nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
ModelConfig_NuisParams:(alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
ModelConfig_Observables:(obs_x_channel1,weightVar,channelCat)
ModelConfig_POI:(SigXsecOverSM)
globalObservables:(nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
observables:(obs_x_channel1,weightVar,channelCat)
generic objects
---------------
RooStats::ModelConfig::ModelConfig
=== Using the following for ModelConfigB_only ===
Observables: RooArgSet:: = (obs_x_channel1,weightVar,channelCat)
Parameters of Interest: RooArgSet:: = (SigXsecOverSM)
Nuisance Parameters: RooArgSet:: = (alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
Global Observables: RooArgSet:: = (nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
PDF: RooSimultaneous::simPdf[ indexCat=channelCat channel1=model_channel1 ] = 0.174888
Snapshot:
1) 0x41df810 RooRealVar:: SigXsecOverSM = 0 L(0 - 3) "SigXsecOverSM"
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (obs_x_channel1,weightVar,channelCat)
Parameters of Interest: RooArgSet:: = (SigXsecOverSM)
Nuisance Parameters: RooArgSet:: = (alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
Global Observables: RooArgSet:: = (nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
PDF: RooSimultaneous::simPdf[ indexCat=channelCat channel1=model_channel1 ] = 0.174888
Snapshot:
1) 0x41df810 RooRealVar:: SigXsecOverSM = 1 L(0 - 3) "SigXsecOverSM"
[#0] PROGRESS:Generation -- Test Statistic on data: 1.77404
[#1] INFO:InputArguments -- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments -- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation -- generated toys: 500 / 5000
[#0] PROGRESS:Generation -- generated toys: 1000 / 5000
[#0] PROGRESS:Generation -- generated toys: 1500 / 5000
[#0] PROGRESS:Generation -- generated toys: 2000 / 5000
[#0] PROGRESS:Generation -- generated toys: 2500 / 5000
[#0] PROGRESS:Generation -- generated toys: 3000 / 5000
[#0] PROGRESS:Generation -- generated toys: 3500 / 5000
[#0] PROGRESS:Generation -- generated toys: 4000 / 5000
[#0] PROGRESS:Generation -- generated toys: 4500 / 5000
[#1] INFO:InputArguments -- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments -- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation -- generated toys: 500 / 1250
[#0] PROGRESS:Generation -- generated toys: 1000 / 1250
Results HypoTestCalculator_result:
- Null p-value = 0.0304 +/- 0.002428
- Significance = 1.87495 +/- 0.0352942 sigma
- Number of Alt toys: 1250
- Number of Null toys: 5000
- Test statistic evaluated on data: 1.77404
- CL_b: 0.0304 +/- 0.002428
- CL_s+b: 0.4328 +/- 0.0140138
- CL_s: 14.2368 +/- 1.22696
Expected p -value and significance at -2 sigma = 0.839 significance -0.990356 sigma
Expected p -value and significance at -1 sigma = 0.2238 significance 0.759422 sigma
Expected p -value and significance at 0 sigma = 0.0434 significance 1.71252 sigma
Expected p -value and significance at 1 sigma = 0.0028 significance 2.77033 sigma
Expected p -value and significance at 2 sigma = 0.0002 significance 3.54008 sigma
#include <cassert>
struct HypoTestOptions {
bool noSystematics = false;
double nToysRatio = 4;
double poiValue = -1;
int printLevel=0;
bool generateBinned = false;
bool useProof = false;
bool enableDetailedOutput = false;
};
HypoTestOptions optHT;
void StandardHypoTestDemo(const char* infile = "",
const char* workspaceName = "combined",
const char* modelSBName = "ModelConfig",
const char* modelBName = "",
const char* dataName = "obsData",
int calcType = 0,
int testStatType = 3,
int ntoys = 5000,
bool useNC = false,
const char * nuisPriorName = 0)
{
bool noSystematics = optHT.noSystematics;
double nToysRatio = optHT.nToysRatio;
double poiValue = optHT.poiValue;
int printLevel = optHT.printLevel;
bool generateBinned = optHT.generateBinned;
bool useProof = optHT.useProof;
bool enableDetOutput = optHT.enableDetailedOutput;
SimpleLikelihoodRatioTestStat::SetAlwaysReuseNLL(true);
ProfileLikelihoodTestStat::SetAlwaysReuseNLL(true);
RatioOfProfiledLikelihoodsTestStat::SetAlwaysReuseNLL(true);
const char* filename = "";
if (!strcmp(infile,"")) {
filename = "results/example_combined_GaussExample_model.root";
if (!fileExist) {
#ifdef _WIN32
cout << "HistFactory file cannot be generated on Windows - exit" << endl;
return;
#endif
cout <<"will run standard hist2workspace example"<<endl;
gROOT->ProcessLine(
".! prepareHistFactory .");
gROOT->ProcessLine(
".! hist2workspace config/example.xml");
cout <<"\n\n---------------------"<<endl;
cout <<"Done creating example input"<<endl;
cout <<"---------------------\n\n"<<endl;
}
}
else
filename = infile;
if(!file ){
cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
return;
}
if(!w){
cout <<"workspace not found" << endl;
return;
}
if(!data || !sbModel){
cout << "data or ModelConfig was not found" <<endl;
return;
}
if (noSystematics) {
if (nuisPar && nuisPar->
getSize() > 0) {
std::cout << "StandardHypoTestInvDemo" << " - Switch off all systematics by setting them constant to their initial values" << std::endl;
}
if (bModel) {
if (bnuisPar)
}
}
if (!bModel ) {
Info(
"StandardHypoTestInvDemo",
"The background model %s does not exist",modelBName);
Info(
"StandardHypoTestInvDemo",
"Copy it from ModelConfig %s and set POI to zero",modelSBName);
bModel->
SetName(TString(modelSBName)+TString(
"B_only"));
if (!var) return;
double oldval = var->
getVal();
}
Info(
"StandardHypoTestDemo",
"Model %s has no snapshot - make one using model poi",modelSBName);
if (!var) return;
double oldval = var->
getVal();
if (poiValue > 0) var->
setVal(poiValue);
if (poiValue > 0) var->
setVal(oldval);
}
if (enableDetOutput) {
ropl->EnableDetailedOutput();
}
AsymptoticCalculator::SetPrintLevel(printLevel);
else if (calcType == 1) hypoCalc=
new HybridCalculator(*data, *sbModel, *bModel);
if (calcType == 0) {
}
if (calcType == 1) {
}
if (calcType == 2 ) {
if (testStatType != 2 && testStatType != 3)
Warning(
"StandardHypoTestDemo",
"Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
}
if (nuisPriorName) nuisPdf = w->
pdf(nuisPriorName);
if (!nuisPdf) {
Info(
"StandardHypoTestDemo",
"No nuisance pdf given for the HybridCalculator - try to deduce pdf from the model");
else
}
if (!nuisPdf ) {
Info(
"StandardHypoTestDemo",
"No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->
GetName());
}
else {
Error(
"StandardHypoTestDemo",
"Cannot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived");
return;
}
}
assert(nuisPdf);
Info(
"StandardHypoTestDemo",
"Using as nuisance Pdf ... " );
Warning(
"StandardHypoTestDemo",
"Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
}
delete np;
}
if (sampler && (calcType == 0 || calcType == 1) ) {
if (useNC)
Warning(
"StandardHypoTestDemo",
"Pdf is extended: but number counting flag is set: ignore it ");
}
else {
if (!useNC) {
Info(
"StandardHypoTestDemo",
"Pdf is not extended: number of events to generate taken from observed data set is %d",nEvents);
}
else {
Info(
"StandardHypoTestDemo",
"using a number counting pdf");
}
}
Info(
"StandardHypoTestDemo",
"Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set generateBinned to true\n",data->
numEntries(), data->
sumEntries());
}
if (useProof) {
}
}
delete sampler;
delete slrts;
delete ropl;
delete profll;
if (calcType != 2) {
}
else {
std::cout << "Asymptotic results " << std::endl;
}
if (calcType != 2) {
htExp.Append(htr);
double p[5];
double q[5];
for (int i = 0; i < 5; ++i) {
double sig = -2 + i;
}
for (int i = 0; i < 5; ++i) {
htExp.SetTestStatisticData( q[i] );
double sig = -2 + i;
std::cout << " Expected p -value and significance at " << sig << " sigma = "
<< htExp.NullPValue() << " significance " << htExp.Significance() << " sigma " << std::endl;
}
}
else {
for (int i = 0; i < 5; ++i) {
double sig = -2 + i;
std::cout << " Expected p -value and significance at " << sig << " sigma = "
}
}
bool writeResult = (calcType != 2);
if (enableDetOutput) {
writeResult=true;
Info(
"StandardHypoTestDemo",
"Detailed output will be written in output result file");
}
if (htr != NULL && writeResult) {
const char * calcTypeName = (calcType == 0) ? "Freq" : (calcType == 1) ? "Hybr" : "Asym";
TString resultFileName =
TString::Format(
"%s_HypoTest_ts%d_",calcTypeName,testStatType);
TString name = infile;
name.Replace(0, name.Last('/')+1, "");
TFile * fileOut = new TFile(resultFileName,"RECREATE");
Info(
"StandardHypoTestDemo",
"HypoTestResult has been written in the file %s",resultFileName.Data());
fileOut->Close();
}
}