Logo ROOT   6.14/05
Reference Guide
NumericalMinimization.C File Reference

Detailed Description

View in nbviewer Open in SWAN Example on how to use the new Minimizer class in ROOT Show usage with all the possible minimizers.

Minimize the Rosenbrock function (a 2D -function) This example is described also in http://root.cern.ch/drupal/content/numerical-minimization#multidim_minim input : minimizer name + algorithm name randomSeed: = <0 : fixed value: 0 random with seed 0; >0 random with given seed

#include "Math/Minimizer.h"
#include "Math/Factory.h"
#include "Math/Functor.h"
#include "TRandom2.h"
#include "TError.h"
#include <iostream>
double RosenBrock(const double *xx )
{
const Double_t x = xx[0];
const Double_t y = xx[1];
const Double_t tmp1 = y-x*x;
const Double_t tmp2 = 1-x;
return 100*tmp1*tmp1+tmp2*tmp2;
}
int NumericalMinimization(const char * minName = "Minuit2",
const char *algoName = "" ,
int randomSeed = -1)
{
// create minimizer giving a name and a name (optionally) for the specific
// algorithm
// possible choices are:
// minName algoName
// Minuit /Minuit2 Migrad, Simplex,Combined,Scan (default is Migrad)
// Minuit2 Fumili2
// Fumili
// GSLMultiMin ConjugateFR, ConjugatePR, BFGS,
// BFGS2, SteepestDescent
// GSLMultiFit
// GSLSimAn
// Genetic
// set tolerance , etc...
minimum->SetMaxFunctionCalls(1000000); // for Minuit/Minuit2
minimum->SetMaxIterations(10000); // for GSL
minimum->SetTolerance(0.001);
minimum->SetPrintLevel(1);
// create function wrapper for minimizer
// a IMultiGenFunction type
ROOT::Math::Functor f(&RosenBrock,2);
double step[2] = {0.01,0.01};
// starting point
double variable[2] = { -1.,1.2};
if (randomSeed >= 0) {
TRandom2 r(randomSeed);
variable[0] = r.Uniform(-20,20);
variable[1] = r.Uniform(-20,20);
}
minimum->SetFunction(f);
// Set the free variables to be minimized !
minimum->SetVariable(0,"x",variable[0], step[0]);
minimum->SetVariable(1,"y",variable[1], step[1]);
// do the minimization
minimum->Minimize();
const double *xs = minimum->X();
std::cout << "Minimum: f(" << xs[0] << "," << xs[1] << "): "
<< minimum->MinValue() << std::endl;
// expected minimum is 0
if ( minimum->MinValue() < 1.E-4 && f(xs) < 1.E-4)
std::cout << "Minimizer " << minName << " - " << algoName
<< " converged to the right minimum" << std::endl;
else {
std::cout << "Minimizer " << minName << " - " << algoName
<< " failed to converge !!!" << std::endl;
Error("NumericalMinimization","fail to converge");
}
return 0;
}
Author
Lorenzo Moneta

Definition in file NumericalMinimization.C.