Logo ROOT   6.14/05
Reference Guide
HybridOriginalDemo.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_roostats
3 /// \notebook -js
4 /// Example on how to use the HybridCalculatorOriginal class
5 ///
6 /// With this example, you should get: CL_sb = 0.130 and CL_b = 0.946
7 /// (if data had -2lnQ = -3.0742).
8 ///
9 /// \macro_image
10 /// \macro_output
11 /// \macro_code
12 ///
13 /// \author Gregory Schott
14 
15 #include "RooRandom.h"
16 #include "RooRealVar.h"
17 #include "RooGaussian.h"
18 #include "RooPolynomial.h"
19 #include "RooArgSet.h"
20 #include "RooAddPdf.h"
21 #include "RooDataSet.h"
22 #include "RooExtendPdf.h"
23 #include "RooConstVar.h"
25 #include "RooStats/HybridResult.h"
26 #include "RooStats/HybridPlot.h"
27 
28 void HybridOriginalDemo(int ntoys = 1000)
29 {
30  using namespace RooFit;
31  using namespace RooStats;
32 
33  // set RooFit random seed
35 
36  /// build the models for background and signal+background
37  RooRealVar x("x","",-3,3);
38  RooArgList observables(x); // variables to be generated
39 
40  // gaussian signal
41  RooGaussian sig_pdf("sig_pdf","",x, RooConst(0.0),RooConst(0.8));
42  RooRealVar sig_yield("sig_yield","",20,0,300);
43 
44  // flat background (extended PDF)
45  RooPolynomial bkg_pdf("bkg_pdf","", x, RooConst(0));
46  RooRealVar bkg_yield("bkg_yield","",40,0,300);
47  RooExtendPdf bkg_ext_pdf("bkg_ext_pdf","",bkg_pdf,bkg_yield);
48 
49  // bkg_yield.setConstant(kTRUE);
50  sig_yield.setConstant(kTRUE);
51 
52  // total sig+bkg (extended PDF)
53  RooAddPdf tot_pdf("tot_pdf","",RooArgList(sig_pdf,bkg_pdf),RooArgList(sig_yield,bkg_yield));
54 
55  // build the prior PDF on the parameters to be integrated
56  // gaussian contraint on the background yield ( N_B = 40 +/- 10 ie. 25% )
57  RooGaussian bkg_yield_prior("bkg_yield_prior","",bkg_yield,RooConst(bkg_yield.getVal()),RooConst(10.));
58 
59  RooArgSet nuisance_parameters(bkg_yield); // variables to be integrated
60 
61  /// generate a data sample
62  RooDataSet* data = tot_pdf.generate(observables,RooFit::Extended());
63 
64  // run HybridCalculator on those inputs
65  // use interface from HypoTest calculator by default
66 
67  HybridCalculatorOriginal myHybridCalc(*data, tot_pdf , bkg_ext_pdf ,
68  &nuisance_parameters, &bkg_yield_prior);
69 
70  // here I use the default test statistics: 2*lnQ (optional)
71  myHybridCalc.SetTestStatistic(1);
72  //myHybridCalc.SetTestStatistic(3); // profile likelihood ratio
73 
74  myHybridCalc.SetNumberOfToys(ntoys);
75  myHybridCalc.UseNuisance(true);
76 
77  // for speed up generation (do binned data)
78  myHybridCalc.SetGenerateBinned(false);
79 
80  // calculate by running ntoys for the S+B and B hypothesis and retrieve the result
81  HybridResult* myHybridResult = myHybridCalc.GetHypoTest();
82 
83  if (! myHybridResult) {
84  std::cerr << "\nError returned from Hypothesis test" << std::endl;
85  return;
86  }
87 
88  /// nice plot of the results
89  HybridPlot* myHybridPlot = myHybridResult->GetPlot("myHybridPlot","Plot of results with HybridCalculatorOriginal",100);
90  myHybridPlot->Draw();
91 
92  /// recover and display the results
93  double clsb_data = myHybridResult->CLsplusb();
94  double clb_data = myHybridResult->CLb();
95  double cls_data = myHybridResult->CLs();
96  double data_significance = myHybridResult->Significance();
97  double min2lnQ_data = myHybridResult->GetTestStat_data();
98 
99  /// compute the mean expected significance from toys
100  double mean_sb_toys_test_stat = myHybridPlot->GetSBmean();
101  myHybridResult->SetDataTestStatistics(mean_sb_toys_test_stat);
102  double toys_significance = myHybridResult->Significance();
103 
104  std::cout << "Completed HybridCalculatorOriginal example:\n";
105  std::cout << " - -2lnQ = " << min2lnQ_data << endl;
106  std::cout << " - CL_sb = " << clsb_data << std::endl;
107  std::cout << " - CL_b = " << clb_data << std::endl;
108  std::cout << " - CL_s = " << cls_data << std::endl;
109  std::cout << " - significance of data = " << data_significance << std::endl;
110  std::cout << " - mean significance of toys = " << toys_significance << std::endl;
111 }
112 
113 
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
HybridPlot * GetPlot(const char *name, const char *title, int n_bins)
prepare a plot showing a result and return a pointer to a HybridPlot object the needed arguments are:...
virtual Double_t CLb() const
Convert NullPValue into a "confidence level".
HybridCalculatorOriginal class.
void Draw(const char *options="")
Draw on current pad.
Definition: HybridPlot.cxx:138
RooCmdArg Extended(Bool_t flag=kTRUE)
void SetDataTestStatistics(double testStat_data_val)
set the value of the test statistics on data
virtual Double_t Significance() const
familiar name for the Null p-value in terms of 1-sided Gaussian significance
Double_t x[n]
Definition: legend1.C:17
virtual void SetSeed(ULong_t seed=0)
Set the random generator seed.
Definition: TRandom.cxx:589
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
static TRandom * randomGenerator()
Return a pointer to a singleton random-number generator implementation.
Definition: RooRandom.cxx:54
This class provides the plots for the result of a study performed with the HybridCalculatorOriginal c...
Definition: HybridPlot.h:36
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:29
virtual Double_t CLs() const
is simply (not a method, but a quantity)
virtual Double_t CLsplusb() const
Convert AlternatePValue into a "confidence level".
double GetSBmean()
Get SB histo mean.
Definition: HybridPlot.h:76
Namespace for the RooStats classes.
Definition: Asimov.h:20
double GetTestStat_data()
Get test statistics value for data.
Definition: HybridResult.h:57
RooConstVar & RooConst(Double_t val)
RooPolynomial implements a polynomial p.d.f of the form By default coefficient a_0 is chosen to be 1...
Definition: RooPolynomial.h:28
const Bool_t kTRUE
Definition: RtypesCore.h:87
Class encapsulating the result of the HybridCalculatorOriginal.
Definition: HybridResult.h:25