Logo ROOT   6.12/07
Reference Guide
rf314_paramfitrange.C File Reference

Detailed Description

View in nbviewer Open in SWAN 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #314

Working with parametrized ranges in a fit. This an example of a fit with an acceptance that changes per-event

pdf = exp(-t/tau) with t[tmin,5]

where t and tmin are both observables in the dataset

pict1_rf314_paramfitrange.C.png
Processing /mnt/build/workspace/root-makedoc-v612/rootspi/rdoc/src/v6-12-00-patches/tutorials/roofit/rf314_paramfitrange.C...
RooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
[#1] INFO:Minization -- RooMinimizer::optimizeConst: activating const optimization
**********
** 1 **SET PRINT 1
**********
**********
** 2 **SET NOGRAD
**********
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
1 tau -1.54000e+00 7.20000e-01 -1.00000e+01 -1.00000e-01
**********
** 3 **SET ERR 0.5
**********
**********
** 4 **SET PRINT 1
**********
**********
** 5 **SET STR 1
**********
NOW USING STRATEGY 1: TRY TO BALANCE SPEED AGAINST RELIABILITY
**********
** 6 **MIGRAD 500 1
**********
FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.
START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03
FCN=2824.02 FROM MIGRAD STATUS=INITIATE 4 CALLS 5 TOTAL
EDM= unknown STRATEGY= 1 NO ERROR MATRIX
EXT PARAMETER CURRENT GUESS STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 tau -1.54000e+00 7.20000e-01 2.12947e-01 -4.56069e+01
ERR DEF= 0.5
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=2823.97 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=6.75021e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 tau -1.53353e+00 2.21980e-02 2.34054e-04 4.07752e-02
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 1 ERR DEF=0.5
4.928e-04
**********
** 7 **SET ERR 0.5
**********
**********
** 8 **SET PRINT 1
**********
**********
** 9 **HESSE 500
**********
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=2823.97 FROM HESSE STATUS=OK 5 CALLS 18 TOTAL
EDM=6.74739e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE
1 tau -1.53353e+00 2.21980e-02 4.68108e-05 7.90063e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 1 ERR DEF=0.5
4.928e-04
[#1] INFO:Minization -- RooMinimizer::optimizeConst: deactivating const optimization
[#1] INFO:Plotting -- RooPlot::updateFitRangeNorm: New event count of 5000 will supercede previous event count of 10000 for normalization of PDF projections
RooFitResult: minimized FCN value: 2823.97, estimated distance to minimum: 6.74739e-08
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0 HESSE=0
Floating Parameter InitialValue FinalValue +/- Error GblCorr.
-------------------- ------------ -------------------------- --------
tau -1.5400e+00 -1.5335e+00 +/- 2.22e-02 <none>
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooExponential.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "RooFitResult.h"
using namespace RooFit ;
void rf314_paramfitrange()
{
// D e f i n e o b s e r v a b l e s a n d d e c a y p d f
// ---------------------------------------------------------------
// Declare observables
RooRealVar t("t","t",0,5) ;
RooRealVar tmin("tmin","tmin",0,0,5) ;
// Make parametrized range in t : [tmin,5]
t.setRange(tmin,RooConst(t.getMax())) ;
// Make pdf
RooRealVar tau("tau","tau",-1.54,-10,-0.1) ;
RooExponential model("model","model",t,tau) ;
// C r e a t e i n p u t d a t a
// ------------------------------------
// Generate complete dataset without acceptance cuts (for reference)
RooDataSet* dall = model.generate(t,10000) ;
// Generate a (fake) prototype dataset for acceptance limit values
RooDataSet* tmp = RooGaussian("gmin","gmin",tmin,RooConst(0),RooConst(0.5)).generate(tmin,5000) ;
// Generate dataset with t values that observe (t>tmin)
RooDataSet* dacc = model.generate(t,ProtoData(*tmp)) ;
// F i t p d f t o d a t a i n a c c e p t a n c e r e g i o n
// -----------------------------------------------------------------------
RooFitResult* r = model.fitTo(*dacc,Save()) ;
// P l o t f i t t e d p d f o n f u l l a n d a c c e p t e d d a t a
// ---------------------------------------------------------------------------------
// Make plot frame, add datasets and overlay model
RooPlot* frame = t.frame(Title("Fit to data with per-event acceptance")) ;
dall->plotOn(frame,MarkerColor(kRed),LineColor(kRed)) ;
model.plotOn(frame) ;
dacc->plotOn(frame) ;
// Print fit results to demonstrate absence of bias
r->Print("v") ;
new TCanvas("rf314_paramranges","rf314_paramranges",600,600) ;
gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ;
return ;
}
Author
07/2008 - Wouter Verkerke

Definition in file rf314_paramfitrange.C.