Logo ROOT   6.10/09
Reference Guide
tdf002_dataModel.C File Reference

Detailed Description

View in nbviewer Open in SWAN This tutorial shows the possibility to use data models which are more complex than flat ntuples with TDataFrame

// ## Preparation
// This notebook can be compiled with this invocation
// `g++ -o tdf002_dataModel tdf002_dataModel.C `root-config --cflags --libs` -lTreePlayer`
#include "Math/Vector3D.h"
#include "Math/Vector4D.h"
#include "TCanvas.h"
#include "TMath.h"
#include "TRandom3.h"
#include "TFile.h"
#include "TH1F.h"
#include "TTree.h"
using FourVector = ROOT::Math::XYZTVector;
using FourVectors = std::vector<FourVector>;
using CylFourVector = ROOT::Math::RhoEtaPhiVector;
// A simple helper function to fill a test tree: this makes the example
// stand-alone.
void fill_tree(const char *filename, const char *treeName)
{
TFile f(filename, "RECREATE");
TTree t(treeName, treeName);
FourVectors tracks;
t.Branch("tracks", &tracks);
const double M = 0.13957; // set pi+ mass
TRandom3 R(1);
for (int i = 0; i < 50; ++i) {
auto nPart = R.Poisson(15);
tracks.clear();
tracks.reserve(nPart);
for (int j = 0; j < nPart; ++j) {
double px = R.Gaus(0, 10);
double py = R.Gaus(0, 10);
double pt = sqrt(px * px + py * py);
double eta = R.Uniform(-3, 3);
double phi = R.Uniform(0.0, 2 * TMath::Pi());
CylFourVector vcyl(pt, eta, phi);
// set energy
double E = sqrt(vcyl.R() * vcyl.R() + M * M);
FourVector q(vcyl.X(), vcyl.Y(), vcyl.Z(), E);
// fill track vector
tracks.emplace_back(q);
}
t.Fill();
}
t.Write();
f.Close();
return;
}
{
// We prepare an input tree to run on
auto fileName = "tdf002_dataModel.root";
auto treeName = "myTree";
fill_tree(fileName, treeName);
// We read the tree from the file and create a TDataFrame, a class that
// allows us to interact with the data contained in the tree.
ROOT::Experimental::TDataFrame d(treeName, fileName, {"tracks"});
// ## Operating on branches which are collection of objects
// Here we deal with the simplest of the cuts: we decide to accept the event
// only if the number of tracks is greater than 5.
auto n_cut = [](const FourVectors &tracks) { return tracks.size() > 8; };
auto nentries = d.Filter(n_cut, {"tracks"}).Count();
std::cout << *nentries << " passed all filters" << std::endl;
// Another possibility consists in creating a new column containing the
// quantity we are interested in.
// In this example, we will cut on the number of tracks and plot their
// transverse momentum.
auto getPt = [](const FourVectors &tracks) {
std::vector<double> pts;
pts.reserve(tracks.size());
for (auto &t : tracks) pts.emplace_back(t.Pt());
return pts;
};
// We do the same for the weights.
auto getPtWeights = [](const FourVectors &tracks) {
std::vector<double> ptsw;
ptsw.reserve(tracks.size());
for (auto &t : tracks) ptsw.emplace_back(1. / t.Pt());
return ptsw;
};
auto augmented_d = d.Define("tracks_n", [](const FourVectors &tracks) { return (int)tracks.size(); })
.Filter([](int tracks_n) { return tracks_n > 2; }, {"tracks_n"})
.Define("tracks_pts", getPt)
.Define("tracks_pts_weights", getPtWeights);
auto trN = augmented_d.Histo1D(TH1F{"", "", 40, -.5, 39.5}, "tracks_n");
auto trPts = augmented_d.Histo1D("tracks_pts");
auto trWPts = augmented_d.Histo1D("tracks_pts", "tracks_pts_weights");
trN->Draw();
c1.Print("tracks_n.png");
trPts->Draw();
c2.Print("tracks_pt.png");
trWPts->Draw();
c3.Print("tracks_Wpt.png");
return 0;
}
int main()
{
return tdf002_dataModel();
}
Date
December 2016
Author
Danilo Piparo

Definition in file tdf002_dataModel.C.