Logo ROOT   6.10/09
Reference Guide
langaus.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_fit
3 /// \notebook
4 /// Convoluted Landau and Gaussian Fitting Function
5 /// (using ROOT's Landau and Gauss functions)
6 ///
7 /// Based on a Fortran code by R.Fruehwirth (fruhwirth@hephy.oeaw.ac.at)
8 ///
9 /// to execute this example, do:
10 ///
11 /// ~~~{.cpp}
12 /// root > .x langaus.C
13 /// ~~~
14 ///
15 /// or
16 ///
17 /// ~~~{.cpp}
18 /// root > .x langaus.C++
19 /// ~~~
20 ///
21 /// \macro_image
22 /// \macro_output
23 /// \macro_code
24 ///
25 /// \authors H.Pernegger, Markus Friedl
26 
27 #include "TH1.h"
28 #include "TF1.h"
29 #include "TROOT.h"
30 #include "TStyle.h"
31 #include "TMath.h"
32 
33 Double_t langaufun(Double_t *x, Double_t *par) {
34 
35  //Fit parameters:
36  //par[0]=Width (scale) parameter of Landau density
37  //par[1]=Most Probable (MP, location) parameter of Landau density
38  //par[2]=Total area (integral -inf to inf, normalization constant)
39  //par[3]=Width (sigma) of convoluted Gaussian function
40  //
41  //In the Landau distribution (represented by the CERNLIB approximation),
42  //the maximum is located at x=-0.22278298 with the location parameter=0.
43  //This shift is corrected within this function, so that the actual
44  //maximum is identical to the MP parameter.
45 
46  // Numeric constants
47  Double_t invsq2pi = 0.3989422804014; // (2 pi)^(-1/2)
48  Double_t mpshift = -0.22278298; // Landau maximum location
49 
50  // Control constants
51  Double_t np = 100.0; // number of convolution steps
52  Double_t sc = 5.0; // convolution extends to +-sc Gaussian sigmas
53 
54  // Variables
55  Double_t xx;
56  Double_t mpc;
57  Double_t fland;
58  Double_t sum = 0.0;
59  Double_t xlow,xupp;
60  Double_t step;
61  Double_t i;
62 
63 
64  // MP shift correction
65  mpc = par[1] - mpshift * par[0];
66 
67  // Range of convolution integral
68  xlow = x[0] - sc * par[3];
69  xupp = x[0] + sc * par[3];
70 
71  step = (xupp-xlow) / np;
72 
73  // Convolution integral of Landau and Gaussian by sum
74  for(i=1.0; i<=np/2; i++) {
75  xx = xlow + (i-.5) * step;
76  fland = TMath::Landau(xx,mpc,par[0]) / par[0];
77  sum += fland * TMath::Gaus(x[0],xx,par[3]);
78 
79  xx = xupp - (i-.5) * step;
80  fland = TMath::Landau(xx,mpc,par[0]) / par[0];
81  sum += fland * TMath::Gaus(x[0],xx,par[3]);
82  }
83 
84  return (par[2] * step * sum * invsq2pi / par[3]);
85 }
86 
87 
88 
89 TF1 *langaufit(TH1F *his, Double_t *fitrange, Double_t *startvalues, Double_t *parlimitslo, Double_t *parlimitshi, Double_t *fitparams, Double_t *fiterrors, Double_t *ChiSqr, Int_t *NDF)
90 {
91  // Once again, here are the Landau * Gaussian parameters:
92  // par[0]=Width (scale) parameter of Landau density
93  // par[1]=Most Probable (MP, location) parameter of Landau density
94  // par[2]=Total area (integral -inf to inf, normalization constant)
95  // par[3]=Width (sigma) of convoluted Gaussian function
96  //
97  // Variables for langaufit call:
98  // his histogram to fit
99  // fitrange[2] lo and hi boundaries of fit range
100  // startvalues[4] reasonable start values for the fit
101  // parlimitslo[4] lower parameter limits
102  // parlimitshi[4] upper parameter limits
103  // fitparams[4] returns the final fit parameters
104  // fiterrors[4] returns the final fit errors
105  // ChiSqr returns the chi square
106  // NDF returns ndf
107 
108  Int_t i;
109  Char_t FunName[100];
110 
111  sprintf(FunName,"Fitfcn_%s",his->GetName());
112 
113  TF1 *ffitold = (TF1*)gROOT->GetListOfFunctions()->FindObject(FunName);
114  if (ffitold) delete ffitold;
115 
116  TF1 *ffit = new TF1(FunName,langaufun,fitrange[0],fitrange[1],4);
117  ffit->SetParameters(startvalues);
118  ffit->SetParNames("Width","MP","Area","GSigma");
119 
120  for (i=0; i<4; i++) {
121  ffit->SetParLimits(i, parlimitslo[i], parlimitshi[i]);
122  }
123 
124  his->Fit(FunName,"RB0"); // fit within specified range, use ParLimits, do not plot
125 
126  ffit->GetParameters(fitparams); // obtain fit parameters
127  for (i=0; i<4; i++) {
128  fiterrors[i] = ffit->GetParError(i); // obtain fit parameter errors
129  }
130  ChiSqr[0] = ffit->GetChisquare(); // obtain chi^2
131  NDF[0] = ffit->GetNDF(); // obtain ndf
132 
133  return (ffit); // return fit function
134 
135 }
136 
137 
138 Int_t langaupro(Double_t *params, Double_t &maxx, Double_t &FWHM) {
139 
140  // Seaches for the location (x value) at the maximum of the
141  // Landau-Gaussian convolute and its full width at half-maximum.
142  //
143  // The search is probably not very efficient, but it's a first try.
144 
145  Double_t p,x,fy,fxr,fxl;
146  Double_t step;
147  Double_t l,lold;
148  Int_t i = 0;
149  Int_t MAXCALLS = 10000;
150 
151 
152  // Search for maximum
153 
154  p = params[1] - 0.1 * params[0];
155  step = 0.05 * params[0];
156  lold = -2.0;
157  l = -1.0;
158 
159 
160  while ( (l != lold) && (i < MAXCALLS) ) {
161  i++;
162 
163  lold = l;
164  x = p + step;
165  l = langaufun(&x,params);
166 
167  if (l < lold)
168  step = -step/10;
169 
170  p += step;
171  }
172 
173  if (i == MAXCALLS)
174  return (-1);
175 
176  maxx = x;
177 
178  fy = l/2;
179 
180 
181  // Search for right x location of fy
182 
183  p = maxx + params[0];
184  step = params[0];
185  lold = -2.0;
186  l = -1e300;
187  i = 0;
188 
189 
190  while ( (l != lold) && (i < MAXCALLS) ) {
191  i++;
192 
193  lold = l;
194  x = p + step;
195  l = TMath::Abs(langaufun(&x,params) - fy);
196 
197  if (l > lold)
198  step = -step/10;
199 
200  p += step;
201  }
202 
203  if (i == MAXCALLS)
204  return (-2);
205 
206  fxr = x;
207 
208 
209  // Search for left x location of fy
210 
211  p = maxx - 0.5 * params[0];
212  step = -params[0];
213  lold = -2.0;
214  l = -1e300;
215  i = 0;
216 
217  while ( (l != lold) && (i < MAXCALLS) ) {
218  i++;
219 
220  lold = l;
221  x = p + step;
222  l = TMath::Abs(langaufun(&x,params) - fy);
223 
224  if (l > lold)
225  step = -step/10;
226 
227  p += step;
228  }
229 
230  if (i == MAXCALLS)
231  return (-3);
232 
233 
234  fxl = x;
235 
236  FWHM = fxr - fxl;
237  return (0);
238 }
239 
240 void langaus() {
241  // Fill Histogram
242  Int_t data[100] = {0,0,0,0,0,0,2,6,11,18,18,55,90,141,255,323,454,563,681,
243  737,821,796,832,720,637,558,519,460,357,291,279,241,212,
244  153,164,139,106,95,91,76,80,80,59,58,51,30,49,23,35,28,23,
245  22,27,27,24,20,16,17,14,20,12,12,13,10,17,7,6,12,6,12,4,
246  9,9,10,3,4,5,2,4,1,5,5,1,7,1,6,3,3,3,4,5,4,4,2,2,7,2,4};
247  TH1F *hSNR = new TH1F("snr","Signal-to-noise",400,0,400);
248 
249  for (Int_t i=0; i<100; i++) hSNR->Fill(i,data[i]);
250 
251  // Fitting SNR histo
252  printf("Fitting...\n");
253 
254  // Setting fit range and start values
255  Double_t fr[2];
256  Double_t sv[4], pllo[4], plhi[4], fp[4], fpe[4];
257  fr[0]=0.3*hSNR->GetMean();
258  fr[1]=3.0*hSNR->GetMean();
259 
260  pllo[0]=0.5; pllo[1]=5.0; pllo[2]=1.0; pllo[3]=0.4;
261  plhi[0]=5.0; plhi[1]=50.0; plhi[2]=1000000.0; plhi[3]=5.0;
262  sv[0]=1.8; sv[1]=20.0; sv[2]=50000.0; sv[3]=3.0;
263 
264  Double_t chisqr;
265  Int_t ndf;
266  TF1 *fitsnr = langaufit(hSNR,fr,sv,pllo,plhi,fp,fpe,&chisqr,&ndf);
267 
268  Double_t SNRPeak, SNRFWHM;
269  langaupro(fp,SNRPeak,SNRFWHM);
270 
271  printf("Fitting done\nPlotting results...\n");
272 
273  // Global style settings
274  gStyle->SetOptStat(1111);
275  gStyle->SetOptFit(111);
276  gStyle->SetLabelSize(0.03,"x");
277  gStyle->SetLabelSize(0.03,"y");
278 
279  hSNR->GetXaxis()->SetRange(0,70);
280  hSNR->Draw();
281  fitsnr->Draw("lsame");
282 }
283 
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
double par[1]
Definition: unuranDistr.cxx:38
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3126
Double_t Landau(Double_t x, Double_t mpv=0, Double_t sigma=1, Bool_t norm=kFALSE)
The LANDAU function.
Definition: TMath.cxx:472
static long int sum(long int i)
Definition: Factory.cxx:2162
virtual void SetParameters(const Double_t *params)
Definition: TF1.h:588
virtual void SetParNames(const char *name0="p0", const char *name1="p1", const char *name2="p2", const char *name3="p3", const char *name4="p4", const char *name5="p5", const char *name6="p6", const char *name7="p7", const char *name8="p8", const char *name9="p9", const char *name10="p10")
Set up to 10 parameter names.
Definition: TF1.cxx:3231
R__EXTERN TStyle * gStyle
Definition: TStyle.h:402
THist< 1, float, THistStatContent, THistStatUncertainty > TH1F
Definition: THist.hxx:311
#define gROOT
Definition: TROOT.h:375
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
Definition: TH1.cxx:6763
tomato 1-D histogram with a float per channel (see TH1 documentation)}
Definition: TH1.h:551
int Int_t
Definition: RtypesCore.h:41
virtual void Draw(Option_t *option="")
Draw this function with its current attributes.
Definition: TF1.cxx:1087
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
Definition: TF1.cxx:1656
Short_t Abs(Short_t d)
Definition: TMathBase.h:108
virtual Int_t GetNDF() const
Return the number of degrees of freedom in the fit the fNDF parameter has been previously computed du...
Definition: TF1.cxx:1616
Double_t x[n]
Definition: legend1.C:17
virtual void SetRange(Int_t first=0, Int_t last=0)
Set the viewing range for the axis from bin first to last.
Definition: TAxis.cxx:889
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set limits for parameter ipar.
Definition: TF1.cxx:3267
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2851
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
Definition: TStyle.cxx:1219
TLine * l
Definition: textangle.C:4
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculate a gaussian function with mean and sigma.
Definition: TMath.cxx:452
Double_t GetChisquare() const
Definition: TF1.h:398
double Double_t
Definition: RtypesCore.h:55
void SetLabelSize(Float_t size=0.04, Option_t *axis="X")
Set size of axis labels.
Definition: TStyle.cxx:1073
char Char_t
Definition: RtypesCore.h:29
1-Dim function class
Definition: TF1.h:150
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Definition: TStyle.cxx:1267
virtual Double_t * GetParameters() const
Definition: TF1.h:474
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
Definition: TH1.cxx:3564
TAxis * GetXaxis()
Definition: TH1.h:300