Logo ROOT   6.10/09
Reference Guide
Classes
TMVA

The Multi Variate Analysis package.

The TMVA Multi-Variate-Analysis classes.

See:

Classes

class  TMVA::AbsoluteDeviationLossFunction
 Absolute Deviation Loss Function. More...
 
class  TMVA::AbsoluteDeviationLossFunctionBDT
 Absolute Deviation BDT Loss Function. More...
 
class  TMVA::BDTEventWrapper
 
class  TMVA::BinarySearchTree
 A simple Binary search tree including a volume search method. More...
 
class  TMVA::BinarySearchTreeNode
 Node for the BinarySearch or Decision Trees. More...
 
class  TMVA::BinaryTree
 Base class for BinarySearch and Decision Trees. More...
 
class  TMVA::CCPruner
 A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regression Trees by Leo Breiman et al) More...
 
class  TMVA::CCTreeWrapper
 
class  TMVA::ClassifierFactory
 This is the MVA factory. More...
 
class  TMVA::ClassInfo
 Class that contains all the information of a class. More...
 
class  TMVA::Config
 Singleton class for global configuration settings used by TMVA. More...
 
class  TMVA::ConvergenceTest
 Check for convergence. More...
 
class  TMVA::CostComplexityPruneTool
 A class to prune a decision tree using the Cost Complexity method. More...
 
class  TMVA::CrossEntropy
 Implementation of the CrossEntropy as separation criterion. More...
 
class  TMVA::CrossValidation
 
class  TMVA::CrossValidationResult
 
class  TMVA::DataInputHandler
 Class that contains all the data information. More...
 
class  TMVA::DataLoader
 
class  TMVA::DataSet
 Class that contains all the data information. More...
 
class  TMVA::DataSetFactory
 Class that contains all the data information. More...
 
class  TMVA::DataSetInfo
 Class that contains all the data information. More...
 
class  TMVA::DataSetManager
 Class that contains all the data information. More...
 
class  TMVA::DecisionTree
 Implementation of a Decision Tree. More...
 
class  TMVA::Envelope
 Base class for all machine learning algorithms. More...
 
class  TMVA::Event
 
class  TMVA::ExpectedErrorPruneTool
 A helper class to prune a decision tree using the expected error (C4.5) method. More...
 
class  TMVA::Factory
 This is the main MVA steering class. More...
 
class  TMVA::FitterBase
 Base class for TMVA fitters. More...
 
class  TMVA::GeneticAlgorithm
 Base definition for genetic algorithm. More...
 
class  TMVA::GeneticFitter
 Fitter using a Genetic Algorithm. More...
 
class  TMVA::GeneticGenes
 Cut optimisation interface class for genetic algorithm. More...
 
class  TMVA::GeneticPopulation
 Population definition for genetic algorithm. More...
 
class  TMVA::GeneticRange
 Range definition for genetic algorithm. More...
 
class  TMVA::GiniIndex
 Implementation of the GiniIndex as separation criterion. More...
 
class  TMVA::GiniIndexWithLaplace
 Implementation of the GiniIndex With Laplace correction as separation criterion. More...
 
class  TMVA::HuberLossFunction
 Huber Loss Function. More...
 
class  TMVA::HuberLossFunctionBDT
 Huber BDT Loss Function. More...
 
class  TMVA::HyperParameterOptimisation
 
class  TMVA::HyperParameterOptimisationResult
 
class  TMVA::IFitterTarget
 Interface for a fitter 'target'. More...
 
class  TMVA::IMethod
 Interface for all concrete MVA method implementations. More...
 
class  TMVA::Interval
 The TMVA::Interval Class. More...
 
class  TMVA::IPruneTool
 IPruneTool - a helper interface class to prune a decision tree. More...
 
class  TMVA::IPythonInteractive
 This class is needed by JsMVA, and it's a helper class for tracking errors during the training in Jupyter notebook. More...
 
class  TMVA::KDEKernel
 KDE Kernel for "smoothing" the PDFs. More...
 
class  TMVA::kNN
 This file contains binary tree and global function template that searches tree for k-nearest neigbors. More...
 
class  TMVA::LDA
 
class  TMVA::LeastSquaresLossFunction
 Least Squares Loss Function. More...
 
class  TMVA::LeastSquaresLossFunctionBDT
 Least Squares BDT Loss Function. More...
 
class  TMVA::LogInterval
 The TMVA::Interval Class. More...
 
class  TMVA::MCFitter
 Fitter using Monte Carlo sampling of parameters. More...
 
class  TMVA::MethodANNBase
 Base class for all TMVA methods using artificial neural networks. More...
 
class  TMVA::MethodBase
 Virtual base Class for all MVA method. More...
 
class  TMVA::MethodBayesClassifier
 Description of bayesian classifiers. More...
 
class  TMVA::MethodBDT
 Analysis of Boosted Decision Trees. More...
 
class  TMVA::MethodBoost
 Class for boosting a TMVA method. More...
 
class  TMVA::MethodCategory
 Class for categorizing the phase space. More...
 
class  TMVA::MethodCFMlpANN
 Interface to Clermond-Ferrand artificial neural network. More...
 
class  TMVA::MethodCFMlpANN_Utils
 Implementation of Clermond-Ferrand artificial neural network. More...
 
class  TMVA::MethodCompositeBase
 Virtual base class for combining several TMVA method. More...
 
class  TMVA::MethodCuts
 Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular minimum and maximum requirements. More...
 
class  TMVA::MethodDNN
 Deep Neural Network Implementation. More...
 
class  TMVA::MethodDT
 Analysis of Boosted Decision Trees. More...
 
class  TMVA::MethodFDA
 Function discriminant analysis (FDA). More...
 
class  TMVA::MethodFisher
 Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis) More...
 
class  TMVA::MethodHMatrix
 H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables. More...
 
class  TMVA::MethodKNN
 Analysis of k-nearest neighbor. More...
 
class  TMVA::MethodLD
 Linear Discriminant. More...
 
class  TMVA::MethodLikelihood
 Likelihood analysis ("non-parametric approach") More...
 
class  TMVA::MethodMLP
 Multilayer Perceptron class built off of MethodANNBase. More...
 
class  TMVA::MethodPDEFoam
 The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase space in a finite number of hyper-rectangles (cells) of constant event density. More...
 
class  TMVA::MethodPDERS
 This is a generalization of the above Likelihood methods to \( N_{var} \) dimensions, where \( N_{var} \) is the number of input variables used in the MVA. More...
 
class  TMVA::MethodRuleFit
 J Friedman's RuleFit method. More...
 
class  TMVA::MethodSVM
 SMO Platt's SVM classifier with Keerthi & Shavade improvements. More...
 
class  TMVA::MethodTMlpANN
 This is the TMVA TMultiLayerPerceptron interface class. More...
 
class  TMVA::MinuitFitter
 /Fitter using MINUIT More...
 
class  TMVA::MinuitWrapper
 Wrapper around MINUIT. More...
 
class  TMVA::MisClassificationError
 Implementation of the MisClassificationError as separation criterion. More...
 
class  TMVA::MsgLogger
 ostringstream derivative to redirect and format output More...
 
class  TMVA::Node
 Node for the BinarySearch or Decision Trees. More...
 
class  TMVA::OptimizeConfigParameters
 
class  TMVA::OptionBase
 Class for TMVA-option handling. More...
 
class  TMVA::OptionMap
 class to storage options for the differents methods More...
 
class  TMVA::PDEFoam
 Implementation of PDEFoam. More...
 
class  TMVA::PDEFoamCell
 
class  TMVA::PDEFoamDecisionTree
 This PDEFoam variant acts like a decision tree and stores in every cell the discriminant. More...
 
class  TMVA::PDEFoamDecisionTreeDensity
 This is a concrete implementation of PDEFoam. More...
 
class  TMVA::PDEFoamDensityBase
 This is an abstract class, which provides an interface for a PDEFoam density estimator. More...
 
class  TMVA::PDEFoamDiscriminant
 This PDEFoam variant stores in every cell the discriminant. More...
 
class  TMVA::PDEFoamDiscriminantDensity
 This is a concrete implementation of PDEFoam. More...
 
class  TMVA::PDEFoamEvent
 This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event weights. More...
 
class  TMVA::PDEFoamEventDensity
 This is a concrete implementation of PDEFoam. More...
 
class  TMVA::PDEFoamKernelBase
 This class is the abstract kernel interface for PDEFoam. More...
 
class  TMVA::PDEFoamKernelGauss
 This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gauss function. More...
 
class  TMVA::PDEFoamKernelLinN
 This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nearest neighbor cells. More...
 
class  TMVA::PDEFoamKernelTrivial
 This class is a trivial PDEFoam kernel estimator. More...
 
class  TMVA::PDEFoamMultiTarget
 This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamEvent), which has dimension: More...
 
class  TMVA::PDEFoamTarget
 This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as the statistical error on the target fTarget. More...
 
class  TMVA::PDEFoamTargetDensity
 This is a concrete implementation of PDEFoam. More...
 
class  TMVA::PDEFoamVect
 
class  TMVA::PDF
 PDF wrapper for histograms; uses user-defined spline interpolation. More...
 
class  TMVA::QuickMVAProbEstimator
 
class  TMVA::Ranking
 Ranking for variables in method (implementation) More...
 
class  TMVA::Reader
 The Reader class serves to use the MVAs in a specific analysis context. More...
 
class  TMVA::RegressionVariance
 Calculate the "SeparationGain" for Regression analysis separation criteria used in various training algorithms. More...
 
class  TMVA::Results
 Class that is the base-class for a vector of result. More...
 
class  TMVA::ResultsClassification
 Class that is the base-class for a vector of result. More...
 
class  TMVA::ResultsMulticlass
 Class which takes the results of a multiclass classification. More...
 
class  TMVA::ResultsRegression
 Class that is the base-class for a vector of result. More...
 
class  TMVA::ROCCalc
 
class  TMVA::ROCCurve
 
class  TMVA::RootFinder
 Root finding using Brents algorithm (translated from CERNLIB function RZERO) More...
 
class  TMVA::Rule
 Implementation of a rule. More...
 
class  TMVA::RuleCut
 A class describing a 'rule cut'. More...
 
class  TMVA::RuleEnsemble
 
class  TMVA::RuleFit
 A class implementing various fits of rule ensembles. More...
 
class  TMVA::RuleFitAPI
 J Friedman's RuleFit method. More...
 
class  TMVA::RuleFitParams
 A class doing the actual fitting of a linear model using rules as base functions. More...
 
class  TMVA::SdivSqrtSplusB
 Implementation of the SdivSqrtSplusB as separation criterion. More...
 
class  TMVA::SeparationBase
 An interface to calculate the "SeparationGain" for different separation criteria used in various training algorithms. More...
 
class  TMVA::SimulatedAnnealing
 Base implementation of simulated annealing fitting procedure. More...
 
class  TMVA::SimulatedAnnealingFitter
 Fitter using a Simulated Annealing Algorithm. More...
 
class  TMVA::SVEvent
 Event class for Support Vector Machine. More...
 
class  TMVA::SVKernelFunction
 Kernel for Support Vector Machine. More...
 
class  TMVA::SVKernelMatrix
 Kernel matrix for Support Vector Machine. More...
 
class  TMVA::SVWorkingSet
 Working class for Support Vector Machine. More...
 
class  TMVA::TActivation
 Interface for TNeuron activation function classes. More...
 
class  TMVA::TActivationChooser
 Class for easily choosing activation functions. More...
 
class  TMVA::TActivationIdentity
 Identity activation function for TNeuron. More...
 
class  TMVA::TActivationRadial
 Radial basis activation function for ANN. More...
 
class  TMVA::TActivationReLU
 Rectified Linear Unit activation function for TNeuron. More...
 
class  TMVA::TActivationSigmoid
 Sigmoid activation function for TNeuron. More...
 
class  TMVA::TActivationTanh
 Tanh activation function for ANN. More...
 
class  TMVA::Timer
 Timing information for training and evaluation of MVA methods. More...
 
class  TMVA::TNeuron
 Neuron class used by TMVA artificial neural network methods. More...
 
class  TMVA::TNeuronInput
 Interface for TNeuron input calculation classes. More...
 
class  TMVA::TNeuronInputAbs
 TNeuron input calculator – calculates the sum of the absolute values of the weighted inputs. More...
 
class  TMVA::TNeuronInputChooser
 Class for easily choosing neuron input functions. More...
 
class  TMVA::TNeuronInputSqSum
 TNeuron input calculator – calculates the squared weighted sum of inputs. More...
 
class  TMVA::TNeuronInputSum
 TNeuron input calculator – calculates the weighted sum of inputs. More...
 
class  TMVA::Tools
 Global auxiliary applications and data treatment routines. More...
 
class  TMVA::TransformationHandler
 Class that contains all the data information. More...
 
class  TMVA::TSpline1
 Linear interpolation of TGraph. More...
 
class  TMVA::TSpline2
 Quadratic interpolation of TGraph. More...
 
class  TMVA::TSynapse
 Synapse class used by TMVA artificial neural network methods. More...
 
class  TMVA::Types
 Singleton class for Global types used by TMVA. More...
 
class  TMVA::VariableDecorrTransform
 Linear interpolation class. More...
 
class  TMVA::VariableGaussTransform
 Gaussian Transformation of input variables. More...
 
class  TMVA::VariableIdentityTransform
 Linear interpolation class. More...
 
class  TMVA::VariableImportance
 
class  TMVA::VariableImportanceResult
 
class  TMVA::VariableInfo
 Class for type info of MVA input variable. More...
 
class  TMVA::VariableNormalizeTransform
 Linear interpolation class. More...
 
class  TMVA::VariablePCATransform
 Linear interpolation class. More...
 
class  TMVA::VariableRearrangeTransform
 Rearrangement of input variables. More...
 
class  TMVA::VariableTransformBase
 Linear interpolation class. More...
 
class  TMVA::Volume
 Volume for BinarySearchTree. More...