Logo ROOT   6.10/09
Reference Guide
fitNormSum.C File Reference

Detailed Description

View in nbviewer Open in SWAN Tutorial for normalized sum of two functions Here: a background exponential and a crystalball function Parameters can be set:

  1. with the TF1 object before adding the function (for 3) and 4))
  2. with the TF1NormSum object (first two are the coefficients, then the non constant parameters)
  3. with the TF1 object after adding the function

Sum can be constructed by:

  1. by a string containing the names of the functions and/or the coefficient in front
  2. by a string containg formulas like expo, gaus...
  3. by the list of functions and coefficients (which are 1 by default)
  4. by a std::vector for functions and coefficients
pict1_fitNormSum.C.png
pict2_fitNormSum.C.png
Processing /mnt/build/workspace/root-makedoc-v610/rootspi/rdoc/src/v6-10-00-patches/tutorials/fit/fitNormSum.C...
Time to generate 1050000 events: Real time 0:00:00, CP time 0.110
****************************************
Minimizer is Minuit / Migrad
Chi2 = 1021.04
NDf = 993
Edm = 1.09215e-06
NCalls = 251
NSignal = 50086.4 +/- 1238.58
NBackground = 998893 +/- 1575.64
Mean = 2.99897 +/- 0.00224469
Sigma = 0.297888 +/- 0.00230959
Alpha = 2.12457 +/- 0.14016
N = 1.15531 +/- 0.475307
Slope = -0.300345 +/- 0.00064478
Time to fit using ROOT TF1Normsum: Real time 0:00:00, CP time 0.110
#include <TMath.h>
#include <TCanvas.h>
#include <TF1NormSum.h>
#include <TF1.h>
#include <TH1.h>
using namespace std;
void fitNormSum()
{
const int nsig = 5.E4;
const int nbkg = 1.e6;
Int_t NEvents = nsig+nbkg;
Int_t NBins = 1e3;
double signal_mean = 3;
TF1 *f_cb = new TF1("MyCrystalBall","crystalball",-5.,5.);
TF1 *f_exp = new TF1("MyExponential","expo",-5.,5.);
// I.:
f_exp-> SetParameters(1.,-0.3);
f_cb -> SetParameters(1,signal_mean,0.3,2,1.5);
// CONSTRUCTION OF THE TF1NORMSUM OBJECT ........................................
// 1) :
TF1NormSum *fnorm_exp_cb = new TF1NormSum(f_cb,f_exp,nsig,nbkg);
// 4) :
TF1 * f_sum = new TF1("fsum", *fnorm_exp_cb, -5., 5., fnorm_exp_cb->GetNpar());
f_sum->Draw();
// III.:
f_sum->SetParameters( fnorm_exp_cb->GetParameters().data() );
f_sum->SetParName(1,"NBackground");
f_sum->SetParName(0,"NSignal");
for (int i = 2; i < f_sum->GetNpar(); ++i)
f_sum->SetParName(i,fnorm_exp_cb->GetParName(i) );
// GENERATE HISTOGRAM TO FIT ..............................................................
w.Start();
TH1D *h_sum = new TH1D("h_ExpCB", "Exponential Bkg + CrystalBall function", NBins, -5., 5.);
for (int i=0; i<NEvents; i++)
{
h_sum -> Fill(f_sum -> GetRandom());
}
printf("Time to generate %d events: ",NEvents);
w.Print();
//TH1F *h_orig = new TH1F(*h_sum);
// need to scale histogram with width since we are fitting a density
h_sum -> Sumw2();
h_sum -> Scale(1., "width");
//fit - use Minuit2 if available
new TCanvas("Fit","Fit",800,1000);
// do a least-square fit of the spectrum
auto result = h_sum -> Fit("fsum","SQ");
result->Print();
h_sum -> Draw();
printf("Time to fit using ROOT TF1Normsum: ");
w.Print();
// test if parameters are fine
std::vector<double> pref = {nsig, nbkg, signal_mean};
for (unsigned int i = 0; i< pref.size(); ++i) {
if (!TMath::AreEqualAbs(pref[i], f_sum->GetParameter(i), f_sum->GetParError(i)*10.) )
Error("testFitNormSum","Difference found in fitted %s - difference is %g sigma",f_sum->GetParName(i), (f_sum->GetParameter(i)-pref[i])/f_sum->GetParError(i));
}
// add parameters
auto t1 = new TLatex(-2.5, 300000, TString::Format("%s = %8.0f #pm %4.0f", "NSignal",f_sum->GetParameter(0), f_sum->GetParError(0) ) );
auto t2 = new TLatex(-2.5, 270000, TString::Format("%s = %8.0f #pm %4.0f", "Nbackgr",f_sum->GetParameter(1), f_sum->GetParError(1) ) );
t1->Draw();
t2->Draw();
}
Author
Rene Brun

Definition in file fitNormSum.C.