Logo ROOT   6.10/09
Reference Guide
fitConvolution.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_fit
3 /// \notebook -js
4 /// Tutorial for convolution of two functions
5 ///
6 /// \macro_image
7 /// \macro_output
8 /// \macro_code
9 ///
10 /// \author Aurelie Flandi
11 
12 #include <stdio.h>
13 #include <TMath.h>
14 #include <TCanvas.h>
15 #include <iostream>
16 #include <TROOT.h>
17 #include <TChain.h>
18 #include <TObject.h>
19 #include <TRandom.h>
20 #include <TFile.h>
21 #include <math.h>
22 #include <TF1Convolution.h>
23 #include <TF1.h>
24 #include <TH1F.h>
25 #include <TGraph.h>
26 #include <TStopwatch.h>
27 
28 using namespace std;
29 
30 void fitConvolution()
31 {
32  //construction of histogram to fit
33  TH1F *h_ExpGauss = new TH1F("h_ExpGauss","Exponential convoluted by gaussian",100,0.,5.);
34  for (int i=0;i<1e6;i++)
35  {
36  Double_t x = gRandom->Exp(1./0.3);//gives a alpha of -0.3 in the exp
37  x += gRandom->Gaus(0.,3.);
38  h_ExpGauss->Fill(x);//probability density function of the addition of two variables is the convolution of 2 dens. functions
39  }
40 
41  TF1Convolution *f_conv = new TF1Convolution("expo","gaus",-1,6,true);
42  f_conv->SetRange(-1.,6.);
43  f_conv->SetNofPointsFFT(1000);
44  TF1 *f = new TF1("f",*f_conv, 0., 5., f_conv->GetNpar());
45  f->SetParameters(1.,-0.3,0.,1.);
46 
47  //fit
48  new TCanvas("c","c",800,1000);
49  h_ExpGauss -> Fit("f");
50  h_ExpGauss->Draw();
51 
52 }
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3126
virtual void SetParameters(const Double_t *params)
Definition: TF1.h:588
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:235
THist< 1, float, THistStatContent, THistStatUncertainty > TH1F
Definition: THist.hxx:311
tomato 1-D histogram with a float per channel (see TH1 documentation)}
Definition: TH1.h:551
STL namespace.
Class wrapping convolution of two functions.
Double_t x[n]
Definition: legend1.C:17
void SetRange(Double_t a, Double_t b)
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2851
void SetNofPointsFFT(Int_t n)
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
Int_t GetNpar() const
The Canvas class.
Definition: TCanvas.h:31
double f(double x)
double Double_t
Definition: RtypesCore.h:55
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
Definition: HFitImpl.cxx:134
1-Dim function class
Definition: TF1.h:150
virtual Double_t Exp(Double_t tau)
Returns an exponential deviate.
Definition: TRandom.cxx:212