Logo ROOT   6.10/09
Reference Guide
Integration.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_r
3 /// \notebook -nodraw
4 /// Numerical integration using R passing the function from ROOT
5 ///
6 /// \macro_code
7 ///
8 /// \author
9 
10 #include<TMath.h>
11 #include<TRInterface.h>
12 #include<Math/Integrator.h>
13 #include<TF1.h>
14 
15 //To integrate using R the function must be vectorized
16 //The idea is just to receive a vector like an argument,to evaluate
17 //every element saving the result in another vector
18 //and return the resultant vector.
19 std::vector<Double_t> BreitWignerVectorized(std::vector<Double_t> xx)
20 {
21  std::vector<Double_t> result(xx.size());
22  for(Int_t i=0;i<xx.size();i++)
23  {
24  result[i]=TMath::BreitWigner(xx[i]);
25  }
26  return result;
27 }
28 
29 double BreitWignerWrap( double x){
30  return TMath::BreitWigner(x);
31 }
32 
33 
34 void Integration()
35 {
37 
38  r["BreitWigner"]=ROOT::R::TRFunctionExport(BreitWignerVectorized);
39 
40  Double_t value=r.Eval("integrate(BreitWigner, lower = -2, upper = 2)$value");
41 
42  std::cout.precision(18);
43  std::cout<<"Integral of the BreitWigner Function in the interval [-2, 2] R = "<<value<<std::endl;
44 
45 
46  ROOT::Math::WrappedFunction<> wf(BreitWignerWrap);
48  value=i.Integral(-2,2);
49  std::cout<<"Integral of the BreitWigner Function in the interval [-2, 2] MathMore = "<<value<<std::endl;
50 
51 
52  TF1 f1("BreitWigner","BreitWignerWrap(x)");
53  value=f1.Integral(-2,2);
54  std::cout<<"Integral of the BreitWigner Function in the interval [-2, 2] TF1 = "<<value<<std::endl;
55 
56  // infinite limits
57  value=r.Eval("integrate(BreitWigner, lower = -Inf, upper = Inf)$value");
58  std::cout<<"Integral of BreitWigner Function in the interval [-Inf, Inf] R = "<<value<<std::endl;
59 }
Double_t BreitWigner(Double_t x, Double_t mean=0, Double_t gamma=1)
Calculate a Breit Wigner function with mean and gamma.
Definition: TMath.cxx:441
int Int_t
Definition: RtypesCore.h:41
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition: TF1.cxx:2309
Template class to wrap any C++ callable object which takes one argument i.e.
Double_t x[n]
Definition: legend1.C:17
TRandom2 r(17)
User Class for performing numerical integration of a function in one dimension.
Definition: Integrator.h:94
double Double_t
Definition: RtypesCore.h:55
static TRInterface & Instance()
static method to get an TRInterface instance reference
1-Dim function class
Definition: TF1.h:150
TF1 * f1
Definition: legend1.C:11
double result[121]
Int_t Eval(const TString &code, TRObject &ans)
Method to eval R code and you get the result in a reference to TRObject.
Definition: TRInterface.cxx:63
This is a class to pass functions from ROOT to R