30 Generate binned Asimov dataset for a continuous pdf.
31 One should in principle be able to use
32 pdf.generateBinned(x, n_events, RooFit::ExpectedData()).
33 Unfortunately it has a problem: it also has the bin bias that this tutorial
34 demonstrates, to if we would use it, the biases would cancel out.
51 Force numeric integration and do this numeric integration with the
52 RooBinIntegrator, which sums the function values at the bin centers.
63 Reset the integrator config to disable the RooBinIntegrator.
93fit1 =
expo.fitTo(expo_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
104fit2 =
expo.fitTo(expo_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
117fit3 =
powerlaw.fitTo(powerlaw_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
128fit4 =
powerlaw.fitTo(powerlaw_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
138fit5 =
powerlaw.fitTo(powerlaw_data, IntegrateBins=1e-3, Save=
True, PrintLevel=-1, SumW2Error=
False)
170model =
ROOT.RooAddPdf(
"model",
"model", [gauss, expo], [nsig, nbkg])
179fit6 =
model.fitTo(model_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
194fit7 =
model.fitTo(model_data, Offset=
"bin", Save=
True, PrintLevel=-1, SumW2Error=
False)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.