15from keras
import layers, models
19def CreateModel(nlayers = 4, nunits = 64):
22 for i
in range(1,nlayers) :
28 model.compile(loss =
'binary_crossentropy', optimizer =
'adam', weighted_metrics = [
'accuracy'])
37 sigData =
df1.AsNumpy(columns=[
'm_jj',
'm_jjj',
'm_lv',
'm_jlv',
'm_bb',
'm_wbb',
'm_wwbb'])
43 print(
"size of data", data_sig_size)
47 bkgData =
df2.AsNumpy(columns=[
'm_jj',
'm_jjj',
'm_lv',
'm_jlv',
'm_bb',
'm_wbb',
'm_wwbb'])
59 inputs_data, inputs_targets, test_size=0.50, random_state=1234)
61 return x_train, y_train, x_test, y_test
65 modelFile = name +
'.keras'
67 return model, modelFile
73 if not exists(modelFile):
74 raise FileNotFoundError(
"INput model file not existing. You need to run TMVA_Higgs_Classification.C to generate the Keras trained model")
93model = CreateModel(3,64)
94model, modelFile =
TrainModel(model,x_train, y_train,
'HiggsModel')
101modelHeaderFile = modelName +
".hxx"
114sofie =
getattr(ROOT,
'TMVA_SOFIE_' + modelName)
121print(
"input to model is ",x,
"\n\t -> output using SOFIE = ", y[0],
" using Keras = ", ykeras[0])
123if (abs(y[0]-ykeras[0]) > 0.01) :
124 raise RuntimeError(
'ERROR: Result is different between SOFIE and Keras')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...