Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
RNTupleModel.cxx
Go to the documentation of this file.
1/// \file RNTupleModel.cxx
2/// \ingroup NTuple
3/// \author Jakob Blomer <jblomer@cern.ch>
4/// \date 2018-10-15
5
6/*************************************************************************
7 * Copyright (C) 1995-2019, Rene Brun and Fons Rademakers. *
8 * All rights reserved. *
9 * *
10 * For the licensing terms see $ROOTSYS/LICENSE. *
11 * For the list of contributors see $ROOTSYS/README/CREDITS. *
12 *************************************************************************/
13
14#include <ROOT/RError.hxx>
15#include <ROOT/RField.hxx>
16#include <ROOT/RFieldToken.hxx>
17#include <ROOT/RNTupleModel.hxx>
18#include <ROOT/RNTupleUtils.hxx>
20#include <ROOT/StringUtils.hxx>
21
22#include <atomic>
23#include <cstdlib>
24#include <memory>
25#include <utility>
26
27namespace {
28std::uint64_t GetNewModelId()
29{
30 static std::atomic<std::uint64_t> gLastModelId = 0;
31 return ++gLastModelId;
32}
33} // anonymous namespace
34
36{
37 if (model.IsExpired()) {
38 throw RException(R__FAIL("invalid use of expired model"));
39 }
40 return *model.fFieldZero;
41}
42
44{
45 if (model.IsExpired()) {
46 throw RException(R__FAIL("invalid use of expired model"));
47 }
48 return *model.fProjectedFields;
49}
50
56
57//------------------------------------------------------------------------------
58
61{
62 auto source = fieldMap.at(target);
63
64 if (!target->GetColumnRepresentatives()[0].empty()) {
65 const auto representative = target->GetColumnRepresentatives()[0][0];
66 // If the user is trying to add a projected field upon which they called SetTruncated() or SetQuantized(),
67 // they probably have the wrong expectations about what should happen. Warn them about it.
70 << "calling SetQuantized() or SetTruncated() on a projected field has no effect, as the on-disk "
71 "representation of the value is decided by the projection source field. Reading back the field will "
72 "yield the correct values, but the value range and bits of precision you set on the projected field "
73 "will be ignored.";
74 }
75 }
76
77 const bool hasCompatibleStructure = (source->GetStructure() == target->GetStructure()) ||
78 ((source->GetStructure() == ROOT::ENTupleStructure::kCollection) &&
79 dynamic_cast<const ROOT::RCardinalityField *>(target));
81 return R__FAIL("field mapping structural mismatch: " + source->GetFieldName() + " --> " + target->GetFieldName());
82 if ((source->GetStructure() == ROOT::ENTupleStructure::kPlain) ||
83 (source->GetStructure() == ROOT::ENTupleStructure::kStreamer)) {
84 if (target->GetTypeName() != source->GetTypeName())
85 return R__FAIL("field mapping type mismatch: " + source->GetFieldName() + " --> " + target->GetFieldName());
86 }
87
88 auto fnHasArrayParent = [](const ROOT::RFieldBase &f) -> bool {
89 auto parent = f.GetParent();
90 while (parent) {
91 if (parent->GetNRepetitions() > 0)
92 return true;
93 parent = parent->GetParent();
94 }
95 return false;
96 };
98 return R__FAIL("unsupported field mapping across fixed-size arrays");
99 }
100
101 // We support projections only across records and collections. In the following, we check that the projected
102 // field is on the same path of collection fields in the field tree than the source field.
103
104 // Finds the first non-record parent field of the input field
105 auto fnBreakPoint = [](const ROOT::RFieldBase *f) -> const ROOT::RFieldBase * {
106 auto parent = f->GetParent();
107 while (parent) {
108 if ((parent->GetStructure() != ROOT::ENTupleStructure::kRecord) &&
109 (parent->GetStructure() != ROOT::ENTupleStructure::kPlain)) {
110 return parent;
111 }
112 parent = parent->GetParent();
113 }
114 // We reached the zero field
115 return nullptr;
116 };
117
118 // If source or target has a variant or reference as a parent, error out
121 return R__FAIL("unsupported field mapping (source structure)");
124 return R__FAIL("unsupported field mapping (target structure)");
125
127 // Source and target have no collections as parent
128 return RResult<void>::Success();
129 }
132 // Source and target are children of the same collection
133 return RResult<void>::Success();
134 }
135 if (auto it = fieldMap.find(targetBreakPoint); it != fieldMap.end() && it->second == sourceBreakPoint) {
136 // The parent collection of parent is mapped to the parent collection of the source
137 return RResult<void>::Success();
138 }
139 // Source and target are children of different collections
140 return R__FAIL("field mapping structure mismatch: " + source->GetFieldName() + " --> " + target->GetFieldName());
141 }
142
143 // Either source or target have no collection as a parent, but the other one has; that doesn't fit
144 return R__FAIL("field mapping structure mismatch: " + source->GetFieldName() + " --> " + target->GetFieldName());
145}
146
148ROOT::Internal::RProjectedFields::Add(std::unique_ptr<ROOT::RFieldBase> field, const FieldMap_t &fieldMap)
149{
150 auto result = EnsureValidMapping(field.get(), fieldMap);
151 if (!result)
152 return R__FORWARD_ERROR(result);
153 for (const auto &f : *field) {
154 result = EnsureValidMapping(&f, fieldMap);
155 if (!result)
156 return R__FORWARD_ERROR(result);
157 }
158
159 fFieldMap.insert(fieldMap.begin(), fieldMap.end());
160 fFieldZero->Attach(std::move(field));
161 return RResult<void>::Success();
162}
163
165{
166 if (auto it = fFieldMap.find(target); it != fFieldMap.end())
167 return it->second;
168 return nullptr;
169}
170
171std::unique_ptr<ROOT::Internal::RProjectedFields>
173{
174 auto cloneFieldZero =
175 std::unique_ptr<ROOT::RFieldZero>(static_cast<ROOT::RFieldZero *>(fFieldZero->Clone("").release()));
176 auto clone = std::unique_ptr<RProjectedFields>(new RProjectedFields(std::move(cloneFieldZero)));
177 clone->fModel = &newModel;
178 // TODO(jblomer): improve quadratic search to re-wire the field mappings given the new model and the cloned
179 // projected fields. Not too critical as we generally expect a limited number of projected fields
180 for (const auto &[k, v] : fFieldMap) {
181 for (const auto &f : clone->GetFieldZero()) {
182 if (f.GetQualifiedFieldName() == k->GetQualifiedFieldName()) {
183 clone->fFieldMap[&f] = &newModel.GetConstField(v->GetQualifiedFieldName());
184 break;
185 }
186 }
187 }
188 return clone;
189}
190
192 : fWriter(writer), fOpenChangeset(fWriter.GetUpdatableModel())
193{
194}
195
197{
198 fOpenChangeset.fModel.Unfreeze();
199 // We set the model ID to zero until CommitUpdate(). That prevents calls to RNTupleWriter::Fill() in the middle
200 // of updates
201 std::swap(fOpenChangeset.fModel.fModelId, fNewModelId);
202}
203
205{
206 fOpenChangeset.fModel.Freeze();
207 std::swap(fOpenChangeset.fModel.fModelId, fNewModelId);
208 if (fOpenChangeset.IsEmpty())
209 return;
210 Internal::RNTupleModelChangeset toCommit{fOpenChangeset.fModel};
211 std::swap(fOpenChangeset.fAddedFields, toCommit.fAddedFields);
212 std::swap(fOpenChangeset.fAddedProjectedFields, toCommit.fAddedProjectedFields);
213 fWriter.GetSink().UpdateSchema(toCommit, fWriter.GetNEntries());
214}
215
216void ROOT::Internal::RNTupleModelChangeset::AddField(std::unique_ptr<ROOT::RFieldBase> field)
217{
218 auto fieldp = field.get();
219 fModel.AddField(std::move(field));
220 fAddedFields.emplace_back(fieldp);
221}
222
223void ROOT::RNTupleModel::RUpdater::AddField(std::unique_ptr<ROOT::RFieldBase> field)
224{
225 fOpenChangeset.AddField(std::move(field));
226}
227
230{
231 auto fieldp = field.get();
232 auto result = fModel.AddProjectedField(std::move(field), mapping);
233 if (result)
234 fAddedProjectedFields.emplace_back(fieldp);
236}
237
240{
241 return R__FORWARD_RESULT(fOpenChangeset.AddProjectedField(std::move(field), std::move(mapping)));
242}
243
245{
247 if (!nameValid) {
248 nameValid.Throw();
249 }
250 if (fieldName.empty()) {
251 throw RException(R__FAIL("name cannot be empty string \"\""));
252 }
253 auto fieldNameStr = std::string(fieldName);
254 if (fFieldNames.count(fieldNameStr) > 0)
255 throw RException(R__FAIL("field name '" + fieldNameStr + "' already exists in NTuple model"));
256}
257
259{
260 if (IsFrozen())
261 throw RException(R__FAIL("invalid attempt to modify frozen model"));
262}
263
265{
266 if (IsBare())
267 throw RException(R__FAIL("invalid attempt to use default entry of bare model"));
268}
269
270ROOT::RNTupleModel::RNTupleModel(std::unique_ptr<ROOT::RFieldZero> fieldZero)
272{
273}
274
275std::unique_ptr<ROOT::RNTupleModel> ROOT::RNTupleModel::CreateBare()
276{
277 return CreateBare(std::make_unique<ROOT::RFieldZero>());
278}
279
280std::unique_ptr<ROOT::RNTupleModel> ROOT::RNTupleModel::CreateBare(std::unique_ptr<ROOT::RFieldZero> fieldZero)
281{
282 auto model = std::unique_ptr<RNTupleModel>(new RNTupleModel(std::move(fieldZero)));
283 model->fProjectedFields = std::make_unique<Internal::RProjectedFields>(*model);
284 return model;
285}
286
287std::unique_ptr<ROOT::RNTupleModel> ROOT::RNTupleModel::Create()
288{
289 return Create(std::make_unique<ROOT::RFieldZero>());
290}
291
292std::unique_ptr<ROOT::RNTupleModel> ROOT::RNTupleModel::Create(std::unique_ptr<ROOT::RFieldZero> fieldZero)
293{
294 auto model = CreateBare(std::move(fieldZero));
295 model->fDefaultEntry = std::unique_ptr<ROOT::REntry>(new ROOT::REntry(model->fModelId, model->fSchemaId));
296 return model;
297}
298
299std::unique_ptr<ROOT::RNTupleModel> ROOT::RNTupleModel::Clone() const
300{
301 auto cloneModel = std::unique_ptr<RNTupleModel>(new RNTupleModel(
302 std::unique_ptr<ROOT::RFieldZero>(static_cast<ROOT::RFieldZero *>(fFieldZero->Clone("").release()))));
303 cloneModel->fModelId = GetNewModelId();
304 // For a frozen model, we can keep the schema id because adding new fields is forbidden. It is reset in Unfreeze()
305 // if called by the user.
306 if (IsFrozen()) {
307 cloneModel->fSchemaId = fSchemaId;
308 } else {
309 cloneModel->fSchemaId = cloneModel->fModelId;
310 }
311 cloneModel->fModelState = (fModelState == EState::kExpired) ? EState::kFrozen : fModelState;
312 cloneModel->fFieldNames = fFieldNames;
313 cloneModel->fDescription = fDescription;
314 cloneModel->fProjectedFields = fProjectedFields->Clone(*cloneModel);
315 cloneModel->fRegisteredSubfields = fRegisteredSubfields;
316 if (fDefaultEntry) {
317 cloneModel->fDefaultEntry =
318 std::unique_ptr<ROOT::REntry>(new ROOT::REntry(cloneModel->fModelId, cloneModel->fSchemaId));
319 for (const auto &f : cloneModel->fFieldZero->GetMutableSubfields()) {
320 cloneModel->fDefaultEntry->AddValue(f->CreateValue());
321 }
322 for (const auto &f : cloneModel->fRegisteredSubfields) {
323 cloneModel->AddSubfield(f, *cloneModel->fDefaultEntry);
324 }
325 }
326 return cloneModel;
327}
328
330{
331 if (fieldName.empty())
332 return nullptr;
333
334 auto *field = static_cast<ROOT::RFieldBase *>(fFieldZero.get());
335 for (auto subfieldName : ROOT::Split(fieldName, ".")) {
336 const auto subfields = field->GetMutableSubfields();
337 auto it = std::find_if(subfields.begin(), subfields.end(),
338 [&](const auto *f) { return f->GetFieldName() == subfieldName; });
339 if (it != subfields.end()) {
340 field = *it;
341 } else {
342 field = nullptr;
343 break;
344 }
345 }
346
347 return field;
348}
349
350void ROOT::RNTupleModel::AddField(std::unique_ptr<ROOT::RFieldBase> field)
351{
352 EnsureNotFrozen();
353 if (!field)
354 throw RException(R__FAIL("null field"));
355 EnsureValidFieldName(field->GetFieldName());
356
357 if (fDefaultEntry)
358 fDefaultEntry->AddValue(field->CreateValue());
359 fFieldNames.insert(field->GetFieldName());
360 fFieldZero->Attach(std::move(field));
361}
362
364 bool initializeValue) const
365{
366 auto field = FindField(qualifiedFieldName);
367 if (initializeValue)
368 entry.AddValue(field->CreateValue());
369 else
370 entry.AddValue(field->BindValue(nullptr));
371}
372
374{
375 if (qualifiedFieldName.empty())
376 throw RException(R__FAIL("no field name provided"));
377
378 if (fFieldNames.find(std::string(qualifiedFieldName)) != fFieldNames.end()) {
379 throw RException(
380 R__FAIL("cannot register top-level field \"" + std::string(qualifiedFieldName) + "\" as a subfield"));
381 }
382
383 if (fRegisteredSubfields.find(std::string(qualifiedFieldName)) != fRegisteredSubfields.end())
384 throw RException(R__FAIL("subfield \"" + std::string(qualifiedFieldName) + "\" already registered"));
385
386 EnsureNotFrozen();
387
388 auto *field = FindField(qualifiedFieldName);
389 if (!field) {
390 throw RException(R__FAIL("could not find subfield \"" + std::string(qualifiedFieldName) + "\" in model"));
391 }
392
393 auto parent = field->GetParent();
394 while (parent && !parent->GetFieldName().empty()) {
395 if (parent->GetStructure() == ROOT::ENTupleStructure::kCollection || parent->GetNRepetitions() > 0 ||
396 parent->GetStructure() == ROOT::ENTupleStructure::kVariant) {
397 throw RException(R__FAIL(
398 "registering a subfield as part of a collection, fixed-sized array or std::variant is not supported"));
399 }
400 parent = parent->GetParent();
401 }
402
403 if (fDefaultEntry)
404 AddSubfield(qualifiedFieldName, *fDefaultEntry);
405 fRegisteredSubfields.emplace(qualifiedFieldName);
406}
407
410{
411 EnsureNotFrozen();
412 if (!field)
413 return R__FAIL("null field");
414 auto fieldName = field->GetFieldName();
415
417 auto sourceField = FindField(mapping(fieldName));
418 if (!sourceField)
419 return R__FAIL("no such field: " + mapping(fieldName));
420 fieldMap[field.get()] = sourceField;
421 for (const auto &subField : *field) {
422 sourceField = FindField(mapping(subField.GetQualifiedFieldName()));
423 if (!sourceField)
424 return R__FAIL("no such field: " + mapping(subField.GetQualifiedFieldName()));
426 }
427
428 EnsureValidFieldName(fieldName);
429 auto result = fProjectedFields->Add(std::move(field), fieldMap);
430 if (!result) {
431 return R__FORWARD_ERROR(result);
432 }
433 fFieldNames.insert(fieldName);
434 return RResult<void>::Success();
435}
436
438{
439 if (IsFrozen())
440 throw RException(R__FAIL("invalid attempt to get mutable zero field of frozen model"));
441 return *fFieldZero;
442}
443
445{
446 if (IsFrozen())
447 throw RException(R__FAIL("invalid attempt to get mutable field of frozen model"));
448 auto f = FindField(fieldName);
449 if (!f)
450 throw RException(R__FAIL("invalid field: " + std::string(fieldName)));
451
452 return *f;
453}
454
456{
457 auto f = FindField(fieldName);
458 if (!f)
459 throw RException(R__FAIL("invalid field: " + std::string(fieldName)));
460
461 return *f;
462}
463
465{
466 EnsureNotBare();
467 return *fDefaultEntry;
468}
469
471{
472 if (!IsFrozen())
473 throw RException(R__FAIL("invalid attempt to get default entry of unfrozen model"));
474 EnsureNotBare();
475 return *fDefaultEntry;
476}
477
478std::unique_ptr<ROOT::REntry> ROOT::RNTupleModel::CreateEntry() const
479{
480 switch (fModelState) {
481 case EState::kBuilding: throw RException(R__FAIL("invalid attempt to create entry of unfrozen model"));
482 case EState::kExpired: throw RException(R__FAIL("invalid attempt to create entry of expired model"));
483 case EState::kFrozen: break;
484 }
485
486 auto entry = std::unique_ptr<ROOT::REntry>(new ROOT::REntry(fModelId, fSchemaId));
487 for (const auto &f : fFieldZero->GetMutableSubfields()) {
488 entry->AddValue(f->CreateValue());
489 }
490 for (const auto &f : fRegisteredSubfields) {
491 AddSubfield(f, *entry);
492 }
493 return entry;
494}
495
496std::unique_ptr<ROOT::REntry> ROOT::RNTupleModel::CreateBareEntry() const
497{
498 switch (fModelState) {
499 case EState::kBuilding: throw RException(R__FAIL("invalid attempt to create entry of unfrozen model"));
500 case EState::kExpired: throw RException(R__FAIL("invalid attempt to create entry of expired model"));
501 case EState::kFrozen: break;
502 }
503
504 auto entry = std::unique_ptr<ROOT::REntry>(new ROOT::REntry(fModelId, fSchemaId));
505 for (const auto &f : fFieldZero->GetMutableSubfields()) {
506 entry->AddValue(f->BindValue(nullptr));
507 }
508 for (const auto &f : fRegisteredSubfields) {
509 AddSubfield(f, *entry, false /* initializeValue */);
510 }
511 return entry;
512}
513
514std::unique_ptr<ROOT::Detail::RRawPtrWriteEntry> ROOT::RNTupleModel::CreateRawPtrWriteEntry() const
515{
516 switch (fModelState) {
517 case EState::kBuilding: throw RException(R__FAIL("invalid attempt to create entry of unfrozen model"));
518 case EState::kExpired: throw RException(R__FAIL("invalid attempt to create entry of expired model"));
519 case EState::kFrozen: break;
520 }
521
522 auto entry = std::unique_ptr<Detail::RRawPtrWriteEntry>(new Detail::RRawPtrWriteEntry(fModelId, fSchemaId));
523 for (const auto &f : fFieldZero->GetMutableSubfields()) {
524 entry->AddField(*f);
525 }
526 // fRegisteredSubfields are not relevant for writing
527 return entry;
528}
529
531{
532 const auto &topLevelFields = fFieldZero->GetConstSubfields();
533 auto it = std::find_if(topLevelFields.begin(), topLevelFields.end(),
534 [&fieldName](const ROOT::RFieldBase *f) { return f->GetFieldName() == fieldName; });
535
536 if (it == topLevelFields.end()) {
537 throw RException(R__FAIL("invalid field name: " + std::string(fieldName)));
538 }
539 return ROOT::RFieldToken(std::distance(topLevelFields.begin(), it), fSchemaId);
540}
541
543{
544 switch (fModelState) {
545 case EState::kBuilding: throw RException(R__FAIL("invalid attempt to create bulk of unfrozen model"));
546 case EState::kExpired: throw RException(R__FAIL("invalid attempt to create bulk of expired model"));
547 case EState::kFrozen: break;
548 }
549
550 auto f = FindField(fieldName);
551 if (!f)
552 throw RException(R__FAIL("no such field: " + std::string(fieldName)));
553 return f->CreateBulk();
554}
555
557{
558 switch (fModelState) {
559 case EState::kExpired: return;
560 case EState::kBuilding: throw RException(R__FAIL("invalid attempt to expire unfrozen model"));
561 case EState::kFrozen: break;
562 }
563
564 // Ensure that Fill() does not work anymore
565 fModelId = 0;
566 fModelState = EState::kExpired;
567}
568
570{
571 switch (fModelState) {
572 case EState::kBuilding: return;
573 case EState::kExpired: throw RException(R__FAIL("invalid attempt to unfreeze expired model"));
574 case EState::kFrozen: break;
575 }
576
577 fModelId = GetNewModelId();
578 fSchemaId = fModelId;
579 if (fDefaultEntry) {
580 fDefaultEntry->fModelId = fModelId;
581 fDefaultEntry->fSchemaId = fSchemaId;
582 }
583 fModelState = EState::kBuilding;
584}
585
587{
588 if (fModelState == EState::kExpired)
589 throw RException(R__FAIL("invalid attempt to freeze expired model"));
590
591 fModelState = EState::kFrozen;
592}
593
595{
596 EnsureNotFrozen();
597 fDescription = std::string(description);
598}
599
601{
602 std::size_t bytes = 0;
603 std::size_t minPageBufferSize = 0;
604
605 // Start with the size of the page buffers used to fill a persistent sink
606 std::size_t nColumns = 0;
607 for (auto &&field : *fFieldZero) {
608 for (const auto &r : field.GetColumnRepresentatives()) {
609 nColumns += r.size();
610 minPageBufferSize += r.size() * options.GetInitialUnzippedPageSize();
611 }
612 }
613 bytes = std::min(options.GetPageBufferBudget(), nColumns * options.GetMaxUnzippedPageSize());
614
615 // If using buffered writing with RPageSinkBuf, we create a clone of the model and keep at least
616 // the compressed pages in memory.
617 if (options.GetUseBufferedWrite()) {
619 // Use the target cluster size as an estimate for all compressed pages combined.
621 int compression = options.GetCompression();
623 // With IMT, compression happens asynchronously which means that the uncompressed pages also stay around. Use a
624 // compression factor of 2x as a very rough estimate.
625 bytes += 2 * options.GetApproxZippedClusterSize();
626 }
627 }
628
629 return bytes;
630}
#define R__FORWARD_ERROR(res)
Short-hand to return an RResult<T> in an error state (i.e. after checking)
Definition RError.hxx:304
#define R__FORWARD_RESULT(res)
Short-hand to return an RResult<T> value from a subroutine to the calling stack frame.
Definition RError.hxx:302
#define R__FAIL(msg)
Short-hand to return an RResult<T> in an error state; the RError is implicitly converted into RResult...
Definition RError.hxx:300
#define R__LOG_WARNING(...)
Definition RLogger.hxx:358
#define f(i)
Definition RSha256.hxx:104
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t bytes
A container of const raw pointers, corresponding to a row in the data set.
Container for the projected fields of an RNTupleModel.
const ROOT::RFieldBase * GetSourceField(const ROOT::RFieldBase *target) const
std::unordered_map< const ROOT::RFieldBase *, const ROOT::RFieldBase * > FieldMap_t
The map keys are the projected target fields, the map values are the backing source fields Note that ...
RResult< void > Add(std::unique_ptr< ROOT::RFieldBase > field, const FieldMap_t &fieldMap)
Adds a new projected field.
std::unique_ptr< RProjectedFields > Clone(const RNTupleModel &newModel) const
Clones this container and all the projected fields it owns.
RResult< void > EnsureValidMapping(const ROOT::RFieldBase *target, const FieldMap_t &fieldMap)
Asserts that the passed field is a valid target of the source field provided in the field map.
An artificial field that transforms an RNTuple column that contains the offset of collections into co...
Definition RField.hxx:346
The REntry is a collection of values in an RNTuple corresponding to a complete row in the data set.
Definition REntry.hxx:47
Base class for all ROOT issued exceptions.
Definition RError.hxx:79
Points to an array of objects with RNTuple I/O support, used for bulk reading.
A field translates read and write calls from/to underlying columns to/from tree values.
const RFieldBase * GetParent() const
A field token identifies a (sub)field in an entry.
The container field for an ntuple model, which itself has no physical representation.
Definition RField.hxx:59
void CommitUpdate()
Commit changes since the last call to BeginUpdate().
RResult< void > AddProjectedField(std::unique_ptr< ROOT::RFieldBase > field, FieldMappingFunc_t mapping)
RUpdater(ROOT::RNTupleWriter &writer)
void AddField(std::unique_ptr< ROOT::RFieldBase > field)
void BeginUpdate()
Begin a new set of alterations to the underlying model.
The RNTupleModel encapulates the schema of an RNTuple.
std::unique_ptr< REntry > CreateEntry() const
Creates a new entry with default values for each field.
RNTupleModel(std::unique_ptr< ROOT::RFieldZero > fieldZero)
void AddSubfield(std::string_view fieldName, ROOT::REntry &entry, bool initializeValue=true) const
Add a subfield to the provided entry.
std::unique_ptr< RNTupleModel > Clone() const
std::uint64_t fModelId
Every model has a unique ID to distinguish it from other models.
void EnsureValidFieldName(std::string_view fieldName)
Checks that user-provided field names are valid in the context of this RNTupleModel.
ROOT::RFieldZero & GetMutableFieldZero()
Retrieves the field zero of this model, i.e.
std::size_t EstimateWriteMemoryUsage(const ROOT::RNTupleWriteOptions &options=ROOT::RNTupleWriteOptions()) const
Estimate the memory usage for this model during writing.
void Unfreeze()
Transitions an RNTupleModel from the frozen state back to the building state, invalidating all previo...
REntry & GetDefaultEntry()
Retrieves the default entry of this model.
ROOT::RFieldBase::RBulkValues CreateBulk(std::string_view fieldName) const
Calls the given field's CreateBulk() method. Throws an RException if no field with the given name exi...
void EnsureNotFrozen() const
Throws an RException if fFrozen is true.
void AddField(std::unique_ptr< ROOT::RFieldBase > field)
Adds a field whose type is not known at compile time.
static std::unique_ptr< RNTupleModel > Create()
bool IsFrozen() const
void SetDescription(std::string_view description)
std::unique_ptr< Internal::RProjectedFields > fProjectedFields
The set of projected top-level fields.
std::unique_ptr< Detail::RRawPtrWriteEntry > CreateRawPtrWriteEntry() const
RResult< void > AddProjectedField(std::unique_ptr< ROOT::RFieldBase > field, FieldMappingFunc_t mapping)
Adds a top-level field based on existing fields.
ROOT::RFieldToken GetToken(std::string_view fieldName) const
Creates a token to be used in REntry methods to address a field present in the entry.
std::unordered_set< std::string > fFieldNames
Keeps track of which field names are taken, including projected field names.
std::unique_ptr< ROOT::RFieldZero > fFieldZero
Hierarchy of fields consisting of simple types and collections (sub trees)
void EnsureNotBare() const
Throws an RException if fDefaultEntry is nullptr.
void RegisterSubfield(std::string_view qualifiedFieldName)
Register a subfield so it can be accessed directly from entries belonging to the model.
ROOT::RFieldBase * FindField(std::string_view fieldName) const
The field name can be a top-level field or a nested field. Returns nullptr if the field is not in the...
void Freeze()
Transitions an RNTupleModel from the building state to the frozen state, disabling adding additional ...
ROOT::RFieldBase & GetMutableField(std::string_view fieldName)
Retrieves the field with fully-qualified name fieldName.
static std::unique_ptr< RNTupleModel > CreateBare()
Creates a "bare model", i.e. an RNTupleModel with no default entry.
std::function< std::string(const std::string &)> FieldMappingFunc_t
User-provided function that describes the mapping of existing source fields to projected fields in te...
void Expire()
Transitions an RNTupleModel from the frozen state to the expired state, invalidating all previously c...
bool IsExpired() const
std::uint64_t fSchemaId
Models have a separate schema ID to remember that the clone of a frozen model still has the same sche...
const ROOT::RFieldBase & GetConstField(std::string_view fieldName) const
std::unique_ptr< REntry > CreateBareEntry() const
Creates a "bare entry", i.e.
Common user-tunable settings for storing RNTuples.
std::size_t GetPageBufferBudget() const
std::size_t GetApproxZippedClusterSize() const
std::size_t GetMaxUnzippedPageSize() const
std::uint32_t GetCompression() const
EImplicitMT GetUseImplicitMT() const
std::size_t GetInitialUnzippedPageSize() const
An RNTuple that gets filled with entries (data) and writes them to storage.
const_iterator begin() const
const_iterator end() const
The class is used as a return type for operations that can fail; wraps a value of type T or an RError...
Definition RError.hxx:198
ROOT::RFieldZero & GetFieldZeroOfModel(RNTupleModel &model)
RResult< void > EnsureValidNameForRNTuple(std::string_view name, std::string_view where)
Check whether a given string is a valid name according to the RNTuple specification.
ROOT::RLogChannel & NTupleLog()
Log channel for RNTuple diagnostics.
RProjectedFields & GetProjectedFieldsOfModel(RNTupleModel &model)
std::vector< std::string > Split(std::string_view str, std::string_view delims, bool skipEmpty=false)
Splits a string at each character in delims.
The incremental changes to a RNTupleModel
void AddField(std::unique_ptr< ROOT::RFieldBase > field)
ROOT::RResult< void > AddProjectedField(std::unique_ptr< ROOT::RFieldBase > field, RNTupleModel::FieldMappingFunc_t mapping)