34#ifndef ROOT_TMVA_MethodFisher
35#define ROOT_TMVA_MethodFisher
72 void Train(
void )
override;
152 void Init(
void )
override;
#define ClassDefOverride(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
1-D histogram with a double per channel (see TH1 documentation)
Class that contains all the data information.
Virtual base Class for all MVA method.
void ReadWeightsFromStream(std::istream &) override=0
Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis)
void GetCov_Full(void)
compute full covariance matrix from sum of within and between matrices
Double_t fSumOfWeightsS
sum-of-weights for signal training events
void GetHelpMessage() const override
get help message text
TMatrixD * fBetw
between-class matrix
MethodFisher(const TString &jobName, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="Fisher")
standard constructor for the "Fisher"
TMatrixD * fCov
full covariance matrix
virtual ~MethodFisher(void)
destructor
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets) override
Fisher can only handle classification with 2 classes.
void AddWeightsXMLTo(void *parent) const override
create XML description of Fisher classifier
void GetDiscrimPower(void)
computation of discrimination power indicator for each variable small values of "fWith" indicates lit...
TMatrixD * fWith
within-class matrix
EFisherMethod GetFisherMethod(void)
void PrintCoefficients(void)
display Fisher coefficients and discriminating power for each variable check maximum length of variab...
void GetCov_BetweenClass(void)
the matrix of covariance 'between class' reflects the dispersion of the events of a class relative to...
void Init(void) override
default initialization called by all constructors
void DeclareOptions() override
MethodFisher options: format and syntax of option string: "type" where type is "Fisher" or "Mahalanob...
EFisherMethod fFisherMethod
Fisher or Mahalanobis.
std::vector< Double_t > * fFisherCoeff
Fisher coefficients.
std::vector< Double_t > * fDiscrimPow
discriminating power
void MakeClassSpecific(std::ostream &, const TString &) const override
write Fisher-specific classifier response
void ReadWeightsFromXML(void *wghtnode) override
read Fisher coefficients from xml weight file
void GetFisherCoeff(void)
Fisher = Sum { [coeff]*[variables] }.
void GetMean(void)
compute mean values of variables in each sample, and the overall means
void Train(void) override
computation of Fisher coefficients by series of matrix operations
void InitMatrices(void)
initialization method; creates global matrices and vectors
void GetCov_WithinClass(void)
the matrix of covariance 'within class' reflects the dispersion of the events relative to the center ...
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr) override
returns the Fisher value (no fixed range)
void ProcessOptions() override
process user options
TString fTheMethod
Fisher or Mahalanobis.
const Ranking * CreateRanking() override
computes ranking of input variables
Double_t fSumOfWeightsB
sum-of-weights for background training events
void ReadWeightsFromStream(std::istream &i) override
read Fisher coefficients from weight file
Ranking for variables in method (implementation)
create variable transformations