137   , fNodePurityLimit(0)
 
  143   , fRandomisedTrees(
kFALSE)
 
  145   , fUsePoissonNvars(0)  
 
  146   , fDeltaPruneStrength(0)
 
  148      fPruneBeforeBoost = 
kFALSE;
 
 
  163   , fNodePurityLimit(0)
 
  169   , fRandomisedTrees(
kFALSE)
 
  171   , fDeltaPruneStrength(0)
 
 
  213   DeclareOptionRef(fRandomisedTrees,
"UseRandomisedTrees",
"Choose at each node splitting a random set of variables and *bagging*");
 
  214   DeclareOptionRef(fUseNvars,
"UseNvars",
"Number of variables used if randomised Tree option is chosen");
 
  215   DeclareOptionRef(fUsePoissonNvars,
"UsePoissonNvars", 
"Interpret \"UseNvars\" not as fixed number but as mean of a Poisson distribution in each split with RandomisedTree option");
 
  216   DeclareOptionRef(fUseYesNoLeaf=
kTRUE, 
"UseYesNoLeaf",
 
  217                    "Use Sig or Bkg node type or the ratio S/B as classification in the leaf node");
 
  218   DeclareOptionRef(fNodePurityLimit=0.5, 
"NodePurityLimit", 
"In boosting/pruning, nodes with purity > NodePurityLimit are signal; background otherwise.");
 
  219   DeclareOptionRef(fSepTypeS=
"GiniIndex", 
"SeparationType", 
"Separation criterion for node splitting");
 
  220   AddPreDefVal(
TString(
"MisClassificationError"));
 
  221   AddPreDefVal(
TString(
"GiniIndex"));
 
  222   AddPreDefVal(
TString(
"CrossEntropy"));
 
  223   AddPreDefVal(
TString(
"SDivSqrtSPlusB"));
 
  224   DeclareOptionRef(fMinNodeEvents=-1, 
"nEventsMin", 
"deprecated !!! Minimum number of events required in a leaf node");
 
  225   DeclareOptionRef(fMinNodeSizeS, 
"MinNodeSize", 
"Minimum percentage of training events required in a leaf node (default: Classification: 10%, Regression: 1%)");
 
  226   DeclareOptionRef(fNCuts, 
"nCuts", 
"Number of steps during node cut optimisation");
 
  227   DeclareOptionRef(fPruneStrength, 
"PruneStrength", 
"Pruning strength (negative value == automatic adjustment)");
 
  228   DeclareOptionRef(fPruneMethodS=
"NoPruning", 
"PruneMethod", 
"Pruning method: NoPruning (switched off), ExpectedError or CostComplexity");
 
  230   AddPreDefVal(
TString(
"NoPruning"));
 
  231   AddPreDefVal(
TString(
"ExpectedError"));
 
  232   AddPreDefVal(
TString(
"CostComplexity"));
 
  234   if (DoRegression()) {
 
  235      DeclareOptionRef(fMaxDepth=50,
"MaxDepth",
"Max depth of the decision tree allowed");
 
  237      DeclareOptionRef(fMaxDepth=3,
"MaxDepth",
"Max depth of the decision tree allowed");
 
 
  248   DeclareOptionRef(fPruneBeforeBoost=
kFALSE, 
"PruneBeforeBoost",
 
  249                    "--> removed option .. only kept for reader backward compatibility");
 
 
  259   else if (fSepTypeS == 
"giniindex")              fSepType = 
new GiniIndex();
 
  260   else if (fSepTypeS == 
"crossentropy")           fSepType = 
new CrossEntropy();
 
  261   else if (fSepTypeS == 
"sdivsqrtsplusb")         fSepType = 
new SdivSqrtSplusB();
 
  263      Log() << kINFO << GetOptions() << 
Endl;
 
  264      Log() << kFATAL << 
"<ProcessOptions> unknown Separation Index option called" << 
Endl;
 
  269   fPruneMethodS.ToLower();
 
  274      Log() << kINFO << GetOptions() << 
Endl;
 
  275      Log() << kFATAL << 
"<ProcessOptions> unknown PruneMethod option:" << fPruneMethodS <<
" called" << 
Endl;
 
  278   if (fPruneStrength < 0) fAutomatic = 
kTRUE;
 
  282            <<  
"Sorry automatic pruning strength determination is not implemented yet for ExpectedErrorPruning" << 
Endl;
 
  286   if (this->Data()->HasNegativeEventWeights()){
 
  287      Log() << kINFO << 
" You are using a Monte Carlo that has also negative weights. " 
  288            << 
"That should in principle be fine as long as on average you end up with " 
  289            << 
"something positive. For this you have to make sure that the minimal number " 
  290            << 
"of (un-weighted) events demanded for a tree node (currently you use: MinNodeSize=" 
  292            <<
", (or the deprecated equivalent nEventsMin) you can set this via the " 
  293            <<
"MethodDT option string when booking the " 
  294            << 
"classifier) is large enough to allow for reasonable averaging!!! " 
  295            << 
" If this does not help.. maybe you want to try the option: IgnoreNegWeightsInTraining  " 
  296            << 
"which ignores events with negative weight in the training. " << 
Endl 
  297            << 
Endl << 
"Note: You'll get a WARNING message during the training if that should ever happen" << 
Endl;
 
  300   if (fRandomisedTrees){
 
  301      Log() << kINFO << 
" Randomised trees should use *bagging* as *boost* method. Did you set this in the *MethodBoost* ? . Here I can enforce only the *no pruning*" << 
Endl;
 
  306   if (fMinNodeEvents > 0){
 
  307      fMinNodeSize = fMinNodeEvents / Data()->GetNTrainingEvents() * 100;
 
  308      Log() << kWARNING << 
"You have explicitly set *nEventsMin*, the min absolute number \n" 
  309            << 
"of events in a leaf node. This is DEPRECATED, please use the option \n" 
  310            << 
"*MinNodeSize* giving the relative number as percentage of training \n" 
  311            << 
"events instead. \n" 
  312            << 
"nEventsMin="<<fMinNodeEvents<< 
"--> MinNodeSize="<<fMinNodeSize<<
"%" 
  315      SetMinNodeSize(fMinNodeSizeS);
 
 
  324      Log() << kERROR << 
"you have demanded a minimal node size of " 
  326            << 
" that somehow does not make sense "<<
Endl;
 
 
  334      Log() << kERROR << 
"I had problems reading the option MinNodeEvents, which\n" 
 
  346   fMinNodeSizeS   = 
"5%";
 
  350   fDeltaPruneStrength=0.1;
 
  352   fUseNvars       = GetNvar();
 
  353   fUsePoissonNvars = 
kTRUE;
 
  356   SetSignalReferenceCut( 0 );
 
 
  377   fTree = 
new DecisionTree( fSepType, fMinNodeSize, fNCuts, &(DataInfo()), 0,
 
  378                             fRandomisedTrees, fUseNvars, fUsePoissonNvars,fMaxDepth,0 );
 
  379   fTree->SetNVars(GetNvar());
 
  380   if (fRandomisedTrees) Log()<<kWARNING<<
" randomised Trees do not work yet in this framework," 
  381                              << 
" as I do not know how to give each tree a new random seed, now they" 
  382                              << 
" will be all the same and that is not good " << 
Endl;
 
  383   fTree->SetAnalysisType( GetAnalysisType() );
 
  388   std::vector<const TMVA::Event*> tmp;
 
  391      tmp.push_back(event);
 
  393   fTree->BuildTree(tmp);
 
 
  413      std::vector<DecisionTreeNode*> nodes = 
pruneTool->GetOptimalPruneSequence();
 
  414      fPruneStrength = 
pruneTool->GetOptimalPruneStrength();
 
  415      for(
UInt_t i = 0; i < nodes.size(); i++)
 
  416         fTree->PruneNode(nodes[i]);
 
  496      fTree->SetPruneStrength(fPruneStrength);
 
  500   return fPruneStrength;
 
 
  513         if ((
dt->CheckEvent(
ev) > 
dt->GetNodePurityLimit() ) == DataInfo().IsSignal(
ev)) 
SumCorrect+=
ev->GetWeight();
 
 
  524   fTree->AddXMLTo(parent);
 
 
  535   fTree->ReadXML(
wghtnode,GetTrainingTMVAVersionCode());
 
 
  555   return fTree->CheckEvent(GetEvent(),fUseYesNoLeaf);
 
 
#define REGISTER_METHOD(CLASS)
for example
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regr...
Implementation of the CrossEntropy as separation criterion.
Class that contains all the data information.
static void SetIsTraining(bool on)
Implementation of a Decision Tree.
Implementation of the GiniIndex as separation criterion.
Virtual base Class for all MVA method.
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
Analysis of Boosted Decision Trees.
virtual ~MethodDT(void)
destructor
MethodDT(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
the standard constructor for just an ordinar "decision trees"
void DeclareOptions() override
Define the options (their key words) that can be set in the option string.
void ProcessOptions() override
the option string is decoded, for available options see "DeclareOptions"
void Init(void) override
common initialisation with defaults for the DT-Method
Double_t TestTreeQuality(DecisionTree *dt)
void ReadWeightsFromXML(void *wghtnode) override
const Ranking * CreateRanking() override
void GetHelpMessage() const override
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr) override
returns MVA value
Double_t PruneTree()
prune the decision tree if requested (good for individual trees that are best grown out,...
void DeclareCompatibilityOptions() override
options that are used ONLY for the READER to ensure backward compatibility
void ReadWeightsFromStream(std::istream &istr) override
void AddWeightsXMLTo(void *parent) const override
void Train(void) override
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets) override
FDA can handle classification with 2 classes and regression with one regression-target.
Bool_t fPruneBeforeBoost
ancient variable, only needed for "CompatibilityOptions"
void SetMinNodeSize(Double_t sizeInPercent)
Implementation of the MisClassificationError as separation criterion.
Ranking for variables in method (implementation)
Implementation of the SdivSqrtSplusB as separation criterion.
Singleton class for Global types used by TMVA.
@ kValidation
these are placeholders... currently not used, but could be moved "forward" if
create variable transformations
MsgLogger & Endl(MsgLogger &ml)