149#include <unordered_map>
170 , fSigToBkgFraction(0)
175 , fBaggedGradBoost(
kFALSE)
179 , fMinNodeSizeS(
"5%")
182 , fMinLinCorrForFisher(.8)
183 , fUseExclusiveVars(0)
185 , fNodePurityLimit(0)
190 , fFValidationEvents(0)
192 , fRandomisedTrees(
kFALSE)
194 , fUsePoissonNvars(0)
195 , fUseNTrainEvents(0)
196 , fBaggedSampleFraction(0)
197 , fNoNegWeightsInTraining(
kFALSE)
198 , fInverseBoostNegWeights(
kFALSE)
199 , fPairNegWeightsGlobal(
kFALSE)
200 , fTrainWithNegWeights(
kFALSE)
210 , fSkipNormalization(
kFALSE)
225 , fSigToBkgFraction(0)
230 , fBaggedGradBoost(
kFALSE)
234 , fMinNodeSizeS(
"5%")
237 , fMinLinCorrForFisher(.8)
238 , fUseExclusiveVars(0)
240 , fNodePurityLimit(0)
245 , fFValidationEvents(0)
247 , fRandomisedTrees(
kFALSE)
249 , fUsePoissonNvars(0)
250 , fUseNTrainEvents(0)
251 , fBaggedSampleFraction(0)
252 , fNoNegWeightsInTraining(
kFALSE)
253 , fInverseBoostNegWeights(
kFALSE)
254 , fPairNegWeightsGlobal(
kFALSE)
255 , fTrainWithNegWeights(
kFALSE)
265 , fSkipNormalization(
kFALSE)
335 DeclareOptionRef(fNTrees,
"NTrees",
"Number of trees in the forest");
336 if (DoRegression()) {
337 DeclareOptionRef(fMaxDepth=50,
"MaxDepth",
"Max depth of the decision tree allowed");
339 DeclareOptionRef(fMaxDepth=3,
"MaxDepth",
"Max depth of the decision tree allowed");
342 TString tmp=
"5%";
if (DoRegression()) tmp=
"0.2%";
343 DeclareOptionRef(fMinNodeSizeS=tmp,
"MinNodeSize",
"Minimum percentage of training events required in a leaf node (default: Classification: 5%, Regression: 0.2%)");
345 DeclareOptionRef(fNCuts,
"nCuts",
"Number of grid points in variable range used in finding optimal cut in node splitting");
347 DeclareOptionRef(fBoostType,
"BoostType",
"Boosting type for the trees in the forest (note: AdaCost is still experimental)");
349 AddPreDefVal(
TString(
"AdaBoost"));
350 AddPreDefVal(
TString(
"RealAdaBoost"));
351 AddPreDefVal(
TString(
"AdaCost"));
352 AddPreDefVal(
TString(
"Bagging"));
354 AddPreDefVal(
TString(
"AdaBoostR2"));
356 if (DoRegression()) {
357 fBoostType =
"AdaBoostR2";
359 fBoostType =
"AdaBoost";
361 DeclareOptionRef(fAdaBoostR2Loss=
"Quadratic",
"AdaBoostR2Loss",
"Type of Loss function in AdaBoostR2");
362 AddPreDefVal(
TString(
"Linear"));
363 AddPreDefVal(
TString(
"Quadratic"));
364 AddPreDefVal(
TString(
"Exponential"));
366 DeclareOptionRef(fBaggedBoost=
kFALSE,
"UseBaggedBoost",
"Use only a random subsample of all events for growing the trees in each boost iteration.");
367 DeclareOptionRef(fShrinkage = 1.0,
"Shrinkage",
"Learning rate for BoostType=Grad algorithm");
368 DeclareOptionRef(fAdaBoostBeta=.5,
"AdaBoostBeta",
"Learning rate for AdaBoost algorithm");
369 DeclareOptionRef(fRandomisedTrees,
"UseRandomisedTrees",
"Determine at each node splitting the cut variable only as the best out of a random subset of variables (like in RandomForests)");
370 DeclareOptionRef(fUseNvars,
"UseNvars",
"Size of the subset of variables used with RandomisedTree option");
371 DeclareOptionRef(fUsePoissonNvars,
"UsePoissonNvars",
"Interpret \"UseNvars\" not as fixed number but as mean of a Poisson distribution in each split with RandomisedTree option");
372 DeclareOptionRef(fBaggedSampleFraction=.6,
"BaggedSampleFraction",
"Relative size of bagged event sample to original size of the data sample (used whenever bagging is used (i.e. UseBaggedBoost, Bagging,)" );
374 DeclareOptionRef(fUseYesNoLeaf=
kTRUE,
"UseYesNoLeaf",
375 "Use Sig or Bkg categories, or the purity=S/(S+B) as classification of the leaf node -> Real-AdaBoost");
376 if (DoRegression()) {
380 DeclareOptionRef(fNegWeightTreatment=
"InverseBoostNegWeights",
"NegWeightTreatment",
"How to treat events with negative weights in the BDT training (particular the boosting) : IgnoreInTraining; Boost With inverse boostweight; Pair events with negative and positive weights in training sample and *annihilate* them (experimental!)");
381 AddPreDefVal(
TString(
"InverseBoostNegWeights"));
382 AddPreDefVal(
TString(
"IgnoreNegWeightsInTraining"));
383 AddPreDefVal(
TString(
"NoNegWeightsInTraining"));
384 AddPreDefVal(
TString(
"PairNegWeightsGlobal"));
389 DeclareOptionRef(fCss=1.,
"Css",
"AdaCost: cost of true signal selected signal");
390 DeclareOptionRef(fCts_sb=1.,
"Cts_sb",
"AdaCost: cost of true signal selected bkg");
391 DeclareOptionRef(fCtb_ss=1.,
"Ctb_ss",
"AdaCost: cost of true bkg selected signal");
392 DeclareOptionRef(fCbb=1.,
"Cbb",
"AdaCost: cost of true bkg selected bkg ");
394 DeclareOptionRef(fNodePurityLimit=0.5,
"NodePurityLimit",
"In boosting/pruning, nodes with purity > NodePurityLimit are signal; background otherwise.");
397 DeclareOptionRef(fSepTypeS,
"SeparationType",
"Separation criterion for node splitting");
398 AddPreDefVal(
TString(
"CrossEntropy"));
399 AddPreDefVal(
TString(
"GiniIndex"));
400 AddPreDefVal(
TString(
"GiniIndexWithLaplace"));
401 AddPreDefVal(
TString(
"MisClassificationError"));
402 AddPreDefVal(
TString(
"SDivSqrtSPlusB"));
403 AddPreDefVal(
TString(
"RegressionVariance"));
404 if (DoRegression()) {
405 fSepTypeS =
"RegressionVariance";
407 fSepTypeS =
"GiniIndex";
410 DeclareOptionRef(fRegressionLossFunctionBDTGS =
"Huber",
"RegressionLossFunctionBDTG",
"Loss function for BDTG regression.");
411 AddPreDefVal(
TString(
"Huber"));
412 AddPreDefVal(
TString(
"AbsoluteDeviation"));
413 AddPreDefVal(
TString(
"LeastSquares"));
415 DeclareOptionRef(fHuberQuantile = 0.7,
"HuberQuantile",
"In the Huber loss function this is the quantile that separates the core from the tails in the residuals distribution.");
417 DeclareOptionRef(fDoBoostMonitor=
kFALSE,
"DoBoostMonitor",
"Create control plot with ROC integral vs tree number");
419 DeclareOptionRef(fUseFisherCuts=
kFALSE,
"UseFisherCuts",
"Use multivariate splits using the Fisher criterion");
420 DeclareOptionRef(fMinLinCorrForFisher=.8,
"MinLinCorrForFisher",
"The minimum linear correlation between two variables demanded for use in Fisher criterion in node splitting");
421 DeclareOptionRef(fUseExclusiveVars=
kFALSE,
"UseExclusiveVars",
"Variables already used in fisher criterion are not anymore analysed individually for node splitting");
424 DeclareOptionRef(fDoPreselection=
kFALSE,
"DoPreselection",
"and and apply automatic pre-selection for 100% efficient signal (bkg) cuts prior to training");
427 DeclareOptionRef(fSigToBkgFraction=1,
"SigToBkgFraction",
"Sig to Bkg ratio used in Training (similar to NodePurityLimit, which cannot be used in real adaboost");
429 DeclareOptionRef(fPruneMethodS,
"PruneMethod",
"Note: for BDTs use small trees (e.g.MaxDepth=3) and NoPruning: Pruning: Method used for pruning (removal) of statistically insignificant branches ");
430 AddPreDefVal(
TString(
"NoPruning"));
431 AddPreDefVal(
TString(
"ExpectedError"));
432 AddPreDefVal(
TString(
"CostComplexity"));
434 DeclareOptionRef(fPruneStrength,
"PruneStrength",
"Pruning strength");
436 DeclareOptionRef(fFValidationEvents=0.5,
"PruningValFraction",
"Fraction of events to use for optimizing automatic pruning.");
438 DeclareOptionRef(fSkipNormalization=
kFALSE,
"SkipNormalization",
"Skip normalization at initialization, to keep expectation value of BDT output according to the fraction of events");
441 DeclareOptionRef(fMinNodeEvents=0,
"nEventsMin",
"deprecated: Use MinNodeSize (in % of training events) instead");
443 DeclareOptionRef(fBaggedGradBoost=
kFALSE,
"UseBaggedGrad",
"deprecated: Use *UseBaggedBoost* instead: Use only a random subsample of all events for growing the trees in each iteration.");
444 DeclareOptionRef(fBaggedSampleFraction,
"GradBaggingFraction",
"deprecated: Use *BaggedSampleFraction* instead: Defines the fraction of events to be used in each iteration, e.g. when UseBaggedGrad=kTRUE. ");
445 DeclareOptionRef(fUseNTrainEvents,
"UseNTrainEvents",
"deprecated: Use *BaggedSampleFraction* instead: Number of randomly picked training events used in randomised (and bagged) trees");
446 DeclareOptionRef(fNNodesMax,
"NNodesMax",
"deprecated: Use MaxDepth instead to limit the tree size" );
458 DeclareOptionRef(fHistoricBool=
kTRUE,
"UseWeightedTrees",
459 "Use weighted trees or simple average in classification from the forest");
460 DeclareOptionRef(fHistoricBool=
kFALSE,
"PruneBeforeBoost",
"Flag to prune the tree before applying boosting algorithm");
461 DeclareOptionRef(fHistoricBool=
kFALSE,
"RenormByClass",
"Individually re-normalize each event class to the original size after boosting");
463 AddPreDefVal(
TString(
"NegWeightTreatment"),
TString(
"IgnoreNegWeights"));
474 else if (fSepTypeS ==
"giniindex") fSepType =
new GiniIndex();
476 else if (fSepTypeS ==
"crossentropy") fSepType =
new CrossEntropy();
477 else if (fSepTypeS ==
"sdivsqrtsplusb") fSepType =
new SdivSqrtSplusB();
478 else if (fSepTypeS ==
"regressionvariance") fSepType = NULL;
480 Log() << kINFO << GetOptions() <<
Endl;
481 Log() << kFATAL <<
"<ProcessOptions> unknown Separation Index option " << fSepTypeS <<
" called" <<
Endl;
484 if(!(fHuberQuantile >= 0.0 && fHuberQuantile <= 1.0)){
485 Log() << kINFO << GetOptions() <<
Endl;
486 Log() << kFATAL <<
"<ProcessOptions> Huber Quantile must be in range [0,1]. Value given, " << fHuberQuantile <<
", does not match this criteria" <<
Endl;
490 fRegressionLossFunctionBDTGS.ToLower();
491 if (fRegressionLossFunctionBDTGS ==
"huber") fRegressionLossFunctionBDTG =
new HuberLossFunctionBDT(fHuberQuantile);
495 Log() << kINFO << GetOptions() <<
Endl;
496 Log() << kFATAL <<
"<ProcessOptions> unknown Regression Loss Function BDT option " << fRegressionLossFunctionBDTGS <<
" called" <<
Endl;
499 fPruneMethodS.ToLower();
504 Log() << kINFO << GetOptions() <<
Endl;
505 Log() << kFATAL <<
"<ProcessOptions> unknown PruneMethod " << fPruneMethodS <<
" option called" <<
Endl;
511 <<
"Sorry automatic pruning strength determination is not implemented yet for ExpectedErrorPruning" <<
Endl;
515 if (fMinNodeEvents > 0){
516 fMinNodeSize =
Double_t(fMinNodeEvents*100.) / Data()->GetNTrainingEvents();
517 Log() << kWARNING <<
"You have explicitly set ** nEventsMin = " << fMinNodeEvents<<
" ** the min absolute number \n"
518 <<
"of events in a leaf node. This is DEPRECATED, please use the option \n"
519 <<
"*MinNodeSize* giving the relative number as percentage of training \n"
520 <<
"events instead. \n"
521 <<
"nEventsMin="<<fMinNodeEvents<<
"--> MinNodeSize="<<fMinNodeSize<<
"%"
523 Log() << kWARNING <<
"Note also that explicitly setting *nEventsMin* so far OVERWRITES the option recommended \n"
524 <<
" *MinNodeSize* = " << fMinNodeSizeS <<
" option !!" <<
Endl ;
528 SetMinNodeSize(fMinNodeSizeS);
532 fAdaBoostR2Loss.ToLower();
534 if (fBoostType==
"Grad") {
536 if (fNegWeightTreatment==
"InverseBoostNegWeights"){
537 Log() << kINFO <<
"the option NegWeightTreatment=InverseBoostNegWeights does"
538 <<
" not exist for BoostType=Grad" <<
Endl;
539 Log() << kINFO <<
"--> change to new default NegWeightTreatment=Pray" <<
Endl;
540 Log() << kDEBUG <<
"i.e. simply keep them as if which should work fine for Grad Boost" <<
Endl;
541 fNegWeightTreatment=
"Pray";
542 fNoNegWeightsInTraining=
kFALSE;
544 }
else if (fBoostType==
"RealAdaBoost"){
545 fBoostType =
"AdaBoost";
547 }
else if (fBoostType==
"AdaCost"){
551 if (fFValidationEvents < 0.0) fFValidationEvents = 0.0;
552 if (fAutomatic && fFValidationEvents > 0.5) {
553 Log() << kWARNING <<
"You have chosen to use more than half of your training sample "
554 <<
"to optimize the automatic pruning algorithm. This is probably wasteful "
555 <<
"and your overall results will be degraded. Are you sure you want this?"
560 if (this->Data()->HasNegativeEventWeights()){
561 Log() << kINFO <<
" You are using a Monte Carlo that has also negative weights. "
562 <<
"That should in principle be fine as long as on average you end up with "
563 <<
"something positive. For this you have to make sure that the minimal number "
564 <<
"of (un-weighted) events demanded for a tree node (currently you use: MinNodeSize="
565 << fMinNodeSizeS <<
" ("<< fMinNodeSize <<
"%)"
566 <<
", (or the deprecated equivalent nEventsMin) you can set this via the "
567 <<
"BDT option string when booking the "
568 <<
"classifier) is large enough to allow for reasonable averaging!!! "
569 <<
" If this does not help.. maybe you want to try the option: IgnoreNegWeightsInTraining "
570 <<
"which ignores events with negative weight in the training. " <<
Endl
571 <<
Endl <<
"Note: You'll get a WARNING message during the training if that should ever happen" <<
Endl;
574 if (DoRegression()) {
575 if (fUseYesNoLeaf && !IsConstructedFromWeightFile()){
576 Log() << kWARNING <<
"Regression Trees do not work with fUseYesNoLeaf=TRUE --> I will set it to FALSE" <<
Endl;
580 if (fSepType != NULL){
581 Log() << kWARNING <<
"Regression Trees do not work with Separation type other than <RegressionVariance> --> I will use it instead" <<
Endl;
585 Log() << kWARNING <<
"Sorry, UseFisherCuts is not available for regression analysis, I will ignore it!" <<
Endl;
589 Log() << kWARNING <<
"Sorry, the option of nCuts<0 using a more elaborate node splitting algorithm " <<
Endl;
590 Log() << kWARNING <<
"is not implemented for regression analysis ! " <<
Endl;
591 Log() << kWARNING <<
"--> I switch do default nCuts = 20 and use standard node splitting"<<
Endl;
595 if (fRandomisedTrees){
596 Log() << kINFO <<
" Randomised trees use no pruning" <<
Endl;
601 if (fUseFisherCuts) {
602 Log() << kWARNING <<
"When using the option UseFisherCuts, the other option nCuts<0 (i.e. using" <<
Endl;
603 Log() <<
" a more elaborate node splitting algorithm) is not implemented. " <<
Endl;
610 Log() << kERROR <<
" Zero Decision Trees demanded... that does not work !! "
611 <<
" I set it to 1 .. just so that the program does not crash"
616 fNegWeightTreatment.ToLower();
617 if (fNegWeightTreatment ==
"ignorenegweightsintraining") fNoNegWeightsInTraining =
kTRUE;
618 else if (fNegWeightTreatment ==
"nonegweightsintraining") fNoNegWeightsInTraining =
kTRUE;
619 else if (fNegWeightTreatment ==
"inverseboostnegweights") fInverseBoostNegWeights =
kTRUE;
620 else if (fNegWeightTreatment ==
"pairnegweightsglobal") fPairNegWeightsGlobal =
kTRUE;
621 else if (fNegWeightTreatment ==
"pray") Log() << kDEBUG <<
"Yes, good luck with praying " <<
Endl;
623 Log() << kINFO << GetOptions() <<
Endl;
624 Log() << kFATAL <<
"<ProcessOptions> unknown option for treating negative event weights during training " << fNegWeightTreatment <<
" requested" <<
Endl;
627 if (fNegWeightTreatment ==
"pairnegweightsglobal")
628 Log() << kWARNING <<
" you specified the option NegWeightTreatment=PairNegWeightsGlobal : This option is still considered EXPERIMENTAL !! " <<
Endl;
635 while (tmp < fNNodesMax){
639 Log() << kWARNING <<
"You have specified a deprecated option *NNodesMax="<<fNNodesMax
640 <<
"* \n this has been translated to MaxDepth="<<fMaxDepth<<
Endl;
644 if (fUseNTrainEvents>0){
645 fBaggedSampleFraction = (
Double_t) fUseNTrainEvents/Data()->GetNTrainingEvents();
646 Log() << kWARNING <<
"You have specified a deprecated option *UseNTrainEvents="<<fUseNTrainEvents
647 <<
"* \n this has been translated to BaggedSampleFraction="<<fBaggedSampleFraction<<
"(%)"<<
Endl;
650 if (fBoostType==
"Bagging") fBaggedBoost =
kTRUE;
651 if (fBaggedGradBoost){
652 fBaggedBoost =
kTRUE;
653 Log() << kWARNING <<
"You have specified a deprecated option *UseBaggedGrad* --> please use *UseBaggedBoost* instead" <<
Endl;
661 if (sizeInPercent > 0 && sizeInPercent < 50){
662 fMinNodeSize=sizeInPercent;
665 Log() << kFATAL <<
"you have demanded a minimal node size of "
666 << sizeInPercent <<
"% of the training events.. \n"
667 <<
" that somehow does not make sense "<<
Endl;
677 if (sizeInPercent.
IsFloat()) SetMinNodeSize(sizeInPercent.
Atof());
679 Log() << kFATAL <<
"I had problems reading the option MinNodeEvents, which "
680 <<
"after removing a possible % sign now reads " << sizeInPercent <<
Endl;
692 fBoostType =
"AdaBoost";
693 if(DataInfo().GetNClasses()!=0)
697 fBoostType =
"AdaBoostR2";
698 fAdaBoostR2Loss =
"Quadratic";
699 if(DataInfo().GetNClasses()!=0)
705 fPruneMethodS =
"NoPruning";
709 fFValidationEvents = 0.5;
710 fRandomisedTrees =
kFALSE;
713 fUsePoissonNvars =
kTRUE;
718 SetSignalReferenceCut( 0 );
731 for (
UInt_t i=0; i<fForest.size(); i++)
delete fForest[i];
734 fBoostWeights.clear();
735 if (fMonitorNtuple) { fMonitorNtuple->Delete(); fMonitorNtuple=NULL; }
736 fVariableImportance.clear();
738 fLossFunctionEventInfo.clear();
742 if (Data()) Data()->DeleteResults(GetMethodName(),
Types::kTraining, GetAnalysisType());
743 Log() << kDEBUG <<
" successfully(?) reset the method " <<
Endl;
755 for (
UInt_t i=0; i<fForest.size(); i++)
delete fForest[i];
763 if (!HasTrainingTree()) Log() << kFATAL <<
"<Init> Data().TrainingTree() is zero pointer" <<
Endl;
765 if (fEventSample.size() > 0) {
767 for (
UInt_t iev=0; iev<fEventSample.size(); iev++) fEventSample[iev]->SetBoostWeight(1.);
770 UInt_t nevents = Data()->GetNTrainingEvents();
772 std::vector<const TMVA::Event*> tmpEventSample;
773 for (
Long64_t ievt=0; ievt<nevents; ievt++) {
775 Event*
event =
new Event( *GetTrainingEvent(ievt) );
776 tmpEventSample.push_back(event);
779 if (!DoRegression()) DeterminePreselectionCuts(tmpEventSample);
780 else fDoPreselection =
kFALSE;
782 for (
UInt_t i=0; i<tmpEventSample.size(); i++)
delete tmpEventSample[i];
787 for (
Long64_t ievt=0; ievt<nevents; ievt++) {
790 Event*
event =
new Event( *GetTrainingEvent(ievt) );
791 if (fDoPreselection){
792 if (
TMath::Abs(ApplyPreselectionCuts(event)) > 0.05) {
798 if (event->GetWeight() < 0 && (IgnoreEventsWithNegWeightsInTraining() || fNoNegWeightsInTraining)){
799 if (firstNegWeight) {
800 Log() << kWARNING <<
" Note, you have events with negative event weight in the sample, but you've chosen to ignore them" <<
Endl;
804 }
else if (event->GetWeight()==0){
805 if (firstZeroWeight) {
807 Log() <<
"Events with weight == 0 are going to be simply ignored " <<
Endl;
811 if (event->GetWeight() < 0) {
812 fTrainWithNegWeights=
kTRUE;
815 if (fPairNegWeightsGlobal){
816 Log() << kWARNING <<
"Events with negative event weights are found and "
817 <<
" will be removed prior to the actual BDT training by global "
818 <<
" paring (and subsequent annihilation) with positiv weight events"
821 Log() << kWARNING <<
"Events with negative event weights are USED during "
822 <<
"the BDT training. This might cause problems with small node sizes "
823 <<
"or with the boosting. Please remove negative events from training "
824 <<
"using the option *IgnoreEventsWithNegWeightsInTraining* in case you "
825 <<
"observe problems with the boosting"
832 Double_t modulo = 1.0/(fFValidationEvents);
833 Int_t imodulo =
static_cast<Int_t>( fmod(modulo,1.0) > 0.5 ? ceil(modulo) : floor(modulo) );
834 if (ievt % imodulo == 0) fValidationSample.push_back( event );
835 else fEventSample.push_back( event );
838 fEventSample.push_back(event);
844 Log() << kINFO <<
"<InitEventSample> Internally I use " << fEventSample.size()
845 <<
" for Training and " << fValidationSample.size()
846 <<
" for Pruning Validation (" << ((
Float_t)fValidationSample.size())/((
Float_t)fEventSample.size()+fValidationSample.size())*100.0
847 <<
"% of training used for validation)" <<
Endl;
851 if (fPairNegWeightsGlobal) PreProcessNegativeEventWeights();
854 if (DoRegression()) {
856 }
else if (DoMulticlass()) {
858 }
else if (!fSkipNormalization) {
860 Log() << kDEBUG <<
"\t<InitEventSample> For classification trees, "<<
Endl;
861 Log() << kDEBUG <<
" \tthe effective number of backgrounds is scaled to match "<<
Endl;
862 Log() << kDEBUG <<
" \tthe signal. Otherwise the first boosting step would do 'just that'!"<<
Endl;
876 Double_t nevents = fEventSample.size();
878 Int_t sumSig=0, sumBkg=0;
879 for (
UInt_t ievt=0; ievt<fEventSample.size(); ievt++) {
880 if ((DataInfo().IsSignal(fEventSample[ievt])) ) {
881 sumSigW += fEventSample[ievt]->GetWeight();
884 sumBkgW += fEventSample[ievt]->GetWeight();
888 if (sumSigW && sumBkgW){
889 Double_t normSig = nevents/((1+fSigToBkgFraction)*sumSigW)*fSigToBkgFraction;
890 Double_t normBkg = nevents/((1+fSigToBkgFraction)*sumBkgW); ;
891 Log() << kDEBUG <<
"\tre-normalise events such that Sig and Bkg have respective sum of weights = "
892 << fSigToBkgFraction <<
Endl;
893 Log() << kDEBUG <<
" \tsig->sig*"<<normSig <<
"ev. bkg->bkg*"<<normBkg <<
"ev." <<
Endl;
894 Log() << kHEADER <<
"#events: (reweighted) sig: "<< sumSigW*normSig <<
" bkg: " << sumBkgW*normBkg <<
Endl;
895 Log() << kINFO <<
"#events: (unweighted) sig: "<< sumSig <<
" bkg: " << sumBkg <<
Endl;
896 for (
Long64_t ievt=0; ievt<nevents; ievt++) {
897 if ((DataInfo().IsSignal(fEventSample[ievt])) ) fEventSample[ievt]->SetBoostWeight(normSig);
898 else fEventSample[ievt]->SetBoostWeight(normBkg);
901 Log() << kINFO <<
"--> could not determine scaling factors as either there are " <<
Endl;
902 Log() << kINFO <<
" no signal events (sumSigW="<<sumSigW<<
") or no bkg ev. (sumBkgW="<<sumBkgW<<
")"<<
Endl;
907 fTrainSample = &fEventSample;
909 GetBaggedSubSample(fEventSample);
910 fTrainSample = &fSubSample;
936 std::vector<const Event*> negEvents;
937 for (
UInt_t iev = 0; iev < fEventSample.size(); iev++){
938 if (fEventSample[iev]->GetWeight() < 0) {
939 totalNegWeights += fEventSample[iev]->GetWeight();
940 negEvents.push_back(fEventSample[iev]);
942 totalPosWeights += fEventSample[iev]->GetWeight();
944 totalWeights += fEventSample[iev]->GetWeight();
946 if (totalNegWeights == 0 ) {
947 Log() << kINFO <<
"no negative event weights found .. no preprocessing necessary" <<
Endl;
950 Log() << kINFO <<
"found a total of " << totalNegWeights <<
" of negative event weights which I am going to try to pair with positive events to annihilate them" <<
Endl;
951 Log() << kINFO <<
"found a total of " << totalPosWeights <<
" of events with positive weights" <<
Endl;
952 Log() << kINFO <<
"--> total sum of weights = " << totalWeights <<
" = " << totalNegWeights+totalPosWeights <<
Endl;
959 for (
Int_t i=0; i<2; i++){
960 invCov = ((*cov)[i]);
962 std::cout <<
"<MethodBDT::PreProcessNeg...> matrix is almost singular with determinant="
964 <<
" did you use the variables that are linear combinations or highly correlated?"
968 std::cout <<
"<MethodBDT::PreProcessNeg...> matrix is singular with determinant="
970 <<
" did you use the variables that are linear combinations?"
979 Log() << kINFO <<
"Found a total of " << totalNegWeights <<
" in negative weights out of " << fEventSample.size() <<
" training events " <<
Endl;
980 Timer timer(negEvents.size(),
"Negative Event paired");
981 for (
UInt_t nev = 0; nev < negEvents.size(); nev++){
983 Double_t weight = negEvents[nev]->GetWeight();
984 UInt_t iClassID = negEvents[nev]->GetClass();
985 invCov = ((*cov)[iClassID]);
991 for (
UInt_t iev = 0; iev < fEventSample.size(); iev++){
992 if (iClassID==fEventSample[iev]->GetClass() && fEventSample[iev]->GetWeight() > 0){
994 for (
UInt_t ivar=0; ivar < GetNvar(); ivar++){
995 for (
UInt_t jvar=0; jvar<GetNvar(); jvar++){
996 dist += (negEvents[nev]->GetValue(ivar)-fEventSample[iev]->GetValue(ivar))*
997 (*invCov)[ivar][jvar]*
998 (negEvents[nev]->GetValue(jvar)-fEventSample[iev]->GetValue(jvar));
1001 if (dist < minDist) { iMin=iev; minDist=dist;}
1007 Double_t newWeight = (negEvents[nev]->GetWeight() + fEventSample[iMin]->GetWeight());
1009 negEvents[nev]->SetBoostWeight( 0 );
1010 fEventSample[iMin]->SetBoostWeight( newWeight/fEventSample[iMin]->GetOriginalWeight() );
1012 negEvents[nev]->SetBoostWeight( newWeight/negEvents[nev]->GetOriginalWeight() );
1013 fEventSample[iMin]->SetBoostWeight( 0 );
1016 }
else Log() << kFATAL <<
"preprocessing didn't find event to pair with the negative weight ... probably a bug" <<
Endl;
1017 weight = negEvents[nev]->GetWeight();
1020 Log() << kINFO <<
"<Negative Event Pairing> took: " << timer.
GetElapsedTime()
1024 totalNegWeights = 0;
1025 totalPosWeights = 0;
1032 std::vector<const Event*> newEventSample;
1034 for (
UInt_t iev = 0; iev < fEventSample.size(); iev++){
1035 if (fEventSample[iev]->GetWeight() < 0) {
1036 totalNegWeights += fEventSample[iev]->GetWeight();
1037 totalWeights += fEventSample[iev]->GetWeight();
1039 totalPosWeights += fEventSample[iev]->GetWeight();
1040 totalWeights += fEventSample[iev]->GetWeight();
1042 if (fEventSample[iev]->GetWeight() > 0) {
1043 newEventSample.push_back(
new Event(*fEventSample[iev]));
1044 if (fEventSample[iev]->GetClass() == fSignalClass){
1045 sigWeight += fEventSample[iev]->GetWeight();
1048 bkgWeight += fEventSample[iev]->GetWeight();
1053 if (totalNegWeights < 0) Log() << kFATAL <<
" compensation of negative event weights with positive ones did not work " << totalNegWeights <<
Endl;
1055 for (
UInt_t i=0; i<fEventSample.size(); i++)
delete fEventSample[i];
1056 fEventSample = newEventSample;
1058 Log() << kINFO <<
" after PreProcessing, the Event sample is left with " << fEventSample.size() <<
" events (unweighted), all with positive weights, adding up to " << totalWeights <<
Endl;
1059 Log() << kINFO <<
" nSig="<<nSig <<
" sigWeight="<<sigWeight <<
" nBkg="<<nBkg <<
" bkgWeight="<<bkgWeight <<
Endl;
1071 std::map<TString,TMVA::Interval*> tuneParameters;
1072 std::map<TString,Double_t> tunedParameters;
1081 tuneParameters.insert(std::pair<TString,Interval*>(
"NTrees",
new Interval(10,1000,5)));
1082 tuneParameters.insert(std::pair<TString,Interval*>(
"MaxDepth",
new Interval(2,4,3)));
1083 tuneParameters.insert(std::pair<TString,Interval*>(
"MinNodeSize",
new LogInterval(1,30,30)));
1088 if (fBoostType==
"AdaBoost"){
1089 tuneParameters.insert(std::pair<TString,Interval*>(
"AdaBoostBeta",
new Interval(.2,1.,5)));
1091 }
else if (fBoostType==
"Grad"){
1092 tuneParameters.insert(std::pair<TString,Interval*>(
"Shrinkage",
new Interval(0.05,0.50,5)));
1094 }
else if (fBoostType==
"Bagging" && fRandomisedTrees){
1097 tuneParameters.insert(std::pair<TString,Interval*>(
"UseNvars",
new Interval(min_var,max_var,4)));
1101 Log()<<kINFO <<
" the following BDT parameters will be tuned on the respective *grid*\n"<<
Endl;
1102 std::map<TString,TMVA::Interval*>::iterator it;
1103 for(it=tuneParameters.begin(); it!= tuneParameters.end(); ++it){
1104 Log() << kWARNING << it->first <<
Endl;
1105 std::ostringstream oss;
1106 (it->second)->
Print(oss);
1112 tunedParameters=optimize.
optimize();
1114 return tunedParameters;
1123 std::map<TString,Double_t>::iterator it;
1124 for(it=tuneParameters.begin(); it!= tuneParameters.end(); ++it){
1125 Log() << kWARNING << it->first <<
" = " << it->second <<
Endl;
1126 if (it->first ==
"MaxDepth" ) SetMaxDepth ((
Int_t)it->second);
1127 else if (it->first ==
"MinNodeSize" ) SetMinNodeSize (it->second);
1128 else if (it->first ==
"NTrees" ) SetNTrees ((
Int_t)it->second);
1129 else if (it->first ==
"NodePurityLimit") SetNodePurityLimit (it->second);
1130 else if (it->first ==
"AdaBoostBeta" ) SetAdaBoostBeta (it->second);
1131 else if (it->first ==
"Shrinkage" ) SetShrinkage (it->second);
1132 else if (it->first ==
"UseNvars" ) SetUseNvars ((
Int_t)it->second);
1133 else if (it->first ==
"BaggedSampleFraction" ) SetBaggedSampleFraction (it->second);
1134 else Log() << kFATAL <<
" SetParameter for " << it->first <<
" not yet implemented " <<
Endl;
1152 Log() << kERROR <<
" Zero Decision Trees demanded... that does not work !! "
1153 <<
" I set it to 1 .. just so that the program does not crash"
1158 if (fInteractive && fInteractive->NotInitialized()){
1159 std::vector<TString> titles = {
"Boost weight",
"Error Fraction"};
1160 fInteractive->Init(titles);
1162 fIPyMaxIter = fNTrees;
1163 fExitFromTraining =
false;
1167 if (IsNormalised()) Log() << kFATAL <<
"\"Normalise\" option cannot be used with BDT; "
1168 <<
"please remove the option from the configuration string, or "
1169 <<
"use \"!Normalise\""
1173 Log() << kINFO <<
"Regression Loss Function: "<< fRegressionLossFunctionBDTG->Name() <<
Endl;
1175 Log() << kINFO <<
"Training "<< fNTrees <<
" Decision Trees ... patience please" <<
Endl;
1177 Log() << kDEBUG <<
"Training with maximal depth = " <<fMaxDepth
1178 <<
", MinNodeEvents=" << fMinNodeEvents
1179 <<
", NTrees="<<fNTrees
1180 <<
", NodePurityLimit="<<fNodePurityLimit
1181 <<
", AdaBoostBeta="<<fAdaBoostBeta
1187 TString hname =
"AdaBooost weight distribution";
1193 if (DoRegression()) {
1197 hname=
"Boost event weights distribution";
1203 TH1* nodesBeforePruningVsTree =
new TH1I(
TString::Format(
"%s_NodesBeforePruning",DataInfo().GetName()).Data(),
"nodes before pruning",fNTrees,0,fNTrees);
1204 TH1* nodesAfterPruningVsTree =
new TH1I(
TString::Format(
"%s_NodesAfterPruning",DataInfo().GetName()).Data(),
"nodes after pruning",fNTrees,0,fNTrees);
1207 if(!DoMulticlass()){
1210 h->SetXTitle(
"boost weight");
1211 results->
Store(
h,
"BoostWeights");
1215 if (fDoBoostMonitor){
1216 TH2* boostMonitor =
new TH2F(
"BoostMonitor",
"ROC Integral Vs iTree",2,0,fNTrees,2,0,1.05);
1218 boostMonitor->
SetYTitle(
"ROC Integral");
1219 results->
Store(boostMonitor,
"BoostMonitor");
1221 boostMonitorGraph->
SetName(
"BoostMonitorGraph");
1222 boostMonitorGraph->
SetTitle(
"ROCIntegralVsNTrees");
1223 results->
Store(boostMonitorGraph,
"BoostMonitorGraph");
1227 h =
new TH1F(
"BoostWeightVsTree",
"Boost weights vs tree",fNTrees,0,fNTrees);
1228 h->SetXTitle(
"#tree");
1229 h->SetYTitle(
"boost weight");
1230 results->
Store(
h,
"BoostWeightsVsTree");
1233 h =
new TH1F(
"ErrFractHist",
"error fraction vs tree number",fNTrees,0,fNTrees);
1234 h->SetXTitle(
"#tree");
1235 h->SetYTitle(
"error fraction");
1236 results->
Store(
h,
"ErrorFrac");
1239 nodesBeforePruningVsTree->
SetXTitle(
"#tree");
1240 nodesBeforePruningVsTree->
SetYTitle(
"#tree nodes");
1241 results->
Store(nodesBeforePruningVsTree);
1244 nodesAfterPruningVsTree->
SetXTitle(
"#tree");
1245 nodesAfterPruningVsTree->
SetYTitle(
"#tree nodes");
1246 results->
Store(nodesAfterPruningVsTree);
1250 fMonitorNtuple=
new TTree(
"MonitorNtuple",
"BDT variables");
1251 fMonitorNtuple->Branch(
"iTree",&fITree,
"iTree/I");
1252 fMonitorNtuple->Branch(
"boostWeight",&fBoostWeight,
"boostWeight/D");
1253 fMonitorNtuple->Branch(
"errorFraction",&fErrorFraction,
"errorFraction/D");
1255 Timer timer( fNTrees, GetName() );
1256 Int_t nNodesBeforePruningCount = 0;
1257 Int_t nNodesAfterPruningCount = 0;
1259 Int_t nNodesBeforePruning = 0;
1260 Int_t nNodesAfterPruning = 0;
1262 if(fBoostType==
"Grad"){
1263 InitGradBoost(fEventSample);
1270 while (itree < fNTrees && continueBoost){
1271 if (fExitFromTraining)
break;
1272 fIPyCurrentIter = itree;
1285 if (fBoostType!=
"Grad"){
1286 Log() << kFATAL <<
"Multiclass is currently only supported by gradient boost. "
1287 <<
"Please change boost option accordingly (BoostType=Grad)." <<
Endl;
1290 UInt_t nClasses = DataInfo().GetNClasses();
1291 for (
UInt_t i=0;i<nClasses;i++){
1295 fForest.push_back(
new DecisionTree( fSepType, fMinNodeSize, fNCuts, &(DataInfo()), i,
1296 fRandomisedTrees, fUseNvars, fUsePoissonNvars, fMaxDepth,
1297 itree*nClasses+i, fNodePurityLimit, itree*nClasses+1));
1298 fForest.back()->SetNVars(GetNvar());
1299 if (fUseFisherCuts) {
1300 fForest.back()->SetUseFisherCuts();
1301 fForest.back()->SetMinLinCorrForFisher(fMinLinCorrForFisher);
1302 fForest.back()->SetUseExclusiveVars(fUseExclusiveVars);
1306 nNodesBeforePruning = fForest.back()->BuildTree(*fTrainSample);
1307 Double_t bw = this->Boost(*fTrainSample, fForest.back(),i);
1309 fBoostWeights.push_back(bw);
1311 fBoostWeights.push_back(0);
1312 Log() << kWARNING <<
"stopped boosting at itree="<<itree <<
Endl;
1321 fRandomisedTrees, fUseNvars, fUsePoissonNvars, fMaxDepth,
1322 itree, fNodePurityLimit, itree);
1324 fForest.push_back(dt);
1325 fForest.back()->SetNVars(GetNvar());
1326 if (fUseFisherCuts) {
1327 fForest.back()->SetUseFisherCuts();
1328 fForest.back()->SetMinLinCorrForFisher(fMinLinCorrForFisher);
1329 fForest.back()->SetUseExclusiveVars(fUseExclusiveVars);
1332 nNodesBeforePruning = fForest.back()->BuildTree(*fTrainSample);
1334 if (fUseYesNoLeaf && !DoRegression() && fBoostType!=
"Grad") {
1335 nNodesBeforePruning = fForest.back()->CleanTree();
1338 nNodesBeforePruningCount += nNodesBeforePruning;
1339 nodesBeforePruningVsTree->
SetBinContent(itree+1,nNodesBeforePruning);
1341 fForest.back()->SetPruneMethod(fPruneMethod);
1342 fForest.back()->SetPruneStrength(fPruneStrength);
1344 std::vector<const Event*> * validationSample = NULL;
1345 if(fAutomatic) validationSample = &fValidationSample;
1346 Double_t bw = this->Boost(*fTrainSample, fForest.back());
1348 fBoostWeights.push_back(bw);
1350 fBoostWeights.push_back(0);
1351 Log() << kWARNING <<
"stopped boosting at itree="<<itree <<
Endl;
1360 if (fUseYesNoLeaf && !DoRegression() && fBoostType!=
"Grad"){
1361 fForest.back()->CleanTree();
1363 nNodesAfterPruning = fForest.back()->GetNNodes();
1364 nNodesAfterPruningCount += nNodesAfterPruning;
1365 nodesAfterPruningVsTree->
SetBinContent(itree+1,nNodesAfterPruning);
1368 fInteractive->AddPoint(itree, fBoostWeight, fErrorFraction);
1371 fMonitorNtuple->Fill();
1372 if (fDoBoostMonitor){
1373 if (! DoRegression() ){
1374 if ( itree==fNTrees-1 || (!(itree%500)) ||
1375 (!(itree%250) && itree <1000)||
1376 (!(itree%100) && itree < 500)||
1377 (!(itree%50) && itree < 250)||
1378 (!(itree%25) && itree < 150)||
1379 (!(itree%10) && itree < 50)||
1380 (!(itree%5) && itree < 20)
1381 ) BoostMonitor(itree);
1389 Log() << kDEBUG <<
"\t<Train> elapsed time: " << timer.
GetElapsedTime()
1392 Log() << kDEBUG <<
"\t<Train> average number of nodes (w/o pruning) : "
1393 << nNodesBeforePruningCount/GetNTrees() <<
Endl;
1396 Log() << kDEBUG <<
"\t<Train> average number of nodes before/after pruning : "
1397 << nNodesBeforePruningCount/GetNTrees() <<
" / "
1398 << nNodesAfterPruningCount/GetNTrees()
1406 Log() << kDEBUG <<
"Now I delete the privat data sample"<<
Endl;
1407 for (
UInt_t i=0; i<fEventSample.size(); i++)
delete fEventSample[i];
1408 for (
UInt_t i=0; i<fValidationSample.size(); i++)
delete fValidationSample[i];
1409 fEventSample.clear();
1410 fValidationSample.clear();
1412 if (!fExitFromTraining) fIPyMaxIter = fIPyCurrentIter;
1423 for (
UInt_t itree=0; itree<nTrees; itree++) {
1428 return 2.0/(1.0+exp(-2.0*
sum))-1;
1436 if (DoMulticlass()) {
1437 UInt_t nClasses = DataInfo().GetNClasses();
1438 Bool_t isLastClass = (cls == nClasses - 1);
1450 std::map<const TMVA::Event *, std::vector<double>> & residuals = this->fResiduals;
1453 auto update_residuals = [&residuals, &lastTree, cls](
const TMVA::Event *
e) {
1457 auto update_residuals_last = [&residuals, &lastTree, cls, nClasses](
const TMVA::Event *
e) {
1460 auto &residualsThisEvent = residuals[
e];
1462 std::vector<Double_t> expCache(nClasses, 0.0);
1463 std::transform(residualsThisEvent.begin(),
1464 residualsThisEvent.begin() + nClasses,
1465 expCache.begin(), [](
Double_t d) { return exp(d); });
1467 Double_t exp_sum = std::accumulate(expCache.begin(),
1468 expCache.begin() + nClasses,
1471 for (
UInt_t i = 0; i < nClasses; i++) {
1472 Double_t p_cls = expCache[i] / exp_sum;
1474 Double_t res = (
e->GetClass() == i) ? (1.0 - p_cls) : (-p_cls);
1481 .
Foreach(update_residuals_last, eventSample);
1484 .
Foreach(update_residuals, eventSample);
1490 std::vector<Double_t> expCache;
1492 expCache.resize(nClasses);
1495 for (
auto e : eventSample) {
1496 fResiduals[
e].at(cls) += fForest.back()->CheckEvent(
e,
kFALSE);
1498 auto &residualsThisEvent = fResiduals[
e];
1499 std::transform(residualsThisEvent.begin(),
1500 residualsThisEvent.begin() + nClasses,
1501 expCache.begin(), [](
Double_t d) { return exp(d); });
1503 Double_t exp_sum = std::accumulate(expCache.begin(),
1504 expCache.begin() + nClasses,
1507 for (
UInt_t i = 0; i < nClasses; i++) {
1508 Double_t p_cls = expCache[i] / exp_sum;
1510 Double_t res = (
e->GetClass() == i) ? (1.0 - p_cls) : (-p_cls);
1517 std::map<const TMVA::Event *, std::vector<double>> & residuals = this->fResiduals;
1520 UInt_t signalClass = DataInfo().GetSignalClassIndex();
1523 auto update_residuals = [&residuals, &lastTree, signalClass](
const TMVA::Event *
e) {
1524 double & residualAt0 = residuals[
e].at(0);
1527 Double_t p_sig = 1.0 / (1.0 + exp(-2.0 * residualAt0));
1528 Double_t res = ((
e->GetClass() == signalClass) ? (1.0 - p_sig) : (-p_sig));
1534 .
Foreach(update_residuals, eventSample);
1536 for (
auto e : eventSample) {
1537 double & residualAt0 = residuals[
e].at(0);
1540 Double_t p_sig = 1.0 / (1.0 + exp(-2.0 * residualAt0));
1541 Double_t res = ((
e->GetClass() == signalClass) ? (1.0 - p_sig) : (-p_sig));
1564 auto f = [
this, &nPartitions](
UInt_t partition = 0) ->
Int_t {
1565 Int_t start = 1.0 * partition / nPartitions * this->fEventSample.size();
1566 Int_t end = (partition + 1.0) / nPartitions * this->fEventSample.size();
1568 for (
Int_t i = start; i < end; ++i) {
1587 fRegressionLossFunctionBDTG->SetTargets(eventSample, fLossFunctionEventInfo);
1601 std::unordered_map<TMVA::DecisionTreeNode*, LeafInfo> leaves;
1602 for (
auto e : eventSample) {
1605 auto &
v = leaves[node];
1606 auto target =
e->GetTarget(cls);
1607 v.sumWeightTarget +=
target * weight;
1610 for (
auto &iLeave : leaves) {
1611 constexpr auto minValue = 1
e-30;
1612 if (iLeave.second.sum2 < minValue) {
1613 iLeave.second.sum2 = minValue;
1615 const Double_t K = DataInfo().GetNClasses();
1616 iLeave.first->SetResponse(fShrinkage * (K - 1) / K * iLeave.second.sumWeightTarget / iLeave.second.sum2);
1621 DoMulticlass() ? UpdateTargets(fEventSample, cls) : UpdateTargets(fEventSample);
1633 std::map<TMVA::DecisionTreeNode*,vector< TMVA::LossFunctionEventInfo > > leaves;
1634 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
1636 (leaves[node]).push_back(fLossFunctionEventInfo[*
e]);
1643 for (std::map<
TMVA::DecisionTreeNode*,vector< TMVA::LossFunctionEventInfo > >::iterator iLeave=leaves.begin();
1644 iLeave!=leaves.end();++iLeave){
1645 Double_t fit = fRegressionLossFunctionBDTG->Fit(iLeave->second);
1646 (iLeave->first)->SetResponse(fShrinkage*fit);
1649 UpdateTargetsRegression(*fTrainSample);
1664 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
1668 fRegressionLossFunctionBDTG->Init(fLossFunctionEventInfo, fBoostWeights);
1669 UpdateTargetsRegression(*fTrainSample,
kTRUE);
1673 else if(DoMulticlass()){
1674 UInt_t nClasses = DataInfo().GetNClasses();
1675 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
1676 for (
UInt_t i=0;i<nClasses;i++){
1678 Double_t r = (*e)->GetClass()==i?(1-1.0/nClasses):(-1.0/nClasses);
1680 fResiduals[*
e].push_back(0);
1685 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
1686 Double_t r = (DataInfo().IsSignal(*
e)?1:0)-0.5;
1688 fResiduals[*
e].push_back(0);
1699 for (
UInt_t ievt=0; ievt<fValidationSample.size(); ievt++) {
1700 Bool_t isSignalType= (dt->
CheckEvent(fValidationSample[ievt]) > fNodePurityLimit ) ? 1 : 0;
1702 if (isSignalType == (DataInfo().IsSignal(fValidationSample[ievt])) ) {
1703 ncorrect += fValidationSample[ievt]->GetWeight();
1706 nfalse += fValidationSample[ievt]->GetWeight();
1710 return ncorrect / (ncorrect + nfalse);
1721 if (fBoostType==
"AdaBoost") returnVal = this->AdaBoost (eventSample, dt);
1722 else if (fBoostType==
"AdaCost") returnVal = this->AdaCost (eventSample, dt);
1723 else if (fBoostType==
"Bagging") returnVal = this->Bagging ( );
1724 else if (fBoostType==
"RegBoost") returnVal = this->RegBoost (eventSample, dt);
1725 else if (fBoostType==
"AdaBoostR2") returnVal = this->AdaBoostR2(eventSample, dt);
1726 else if (fBoostType==
"Grad"){
1728 returnVal = this->GradBoostRegression(eventSample, dt);
1729 else if(DoMulticlass())
1730 returnVal = this->GradBoost (eventSample, dt, cls);
1732 returnVal = this->GradBoost (eventSample, dt);
1735 Log() << kINFO << GetOptions() <<
Endl;
1736 Log() << kFATAL <<
"<Boost> unknown boost option " << fBoostType<<
" called" <<
Endl;
1740 GetBaggedSubSample(fEventSample);
1755 TH1F *tmpS =
new TH1F(
"tmpS",
"", 100 , -1., 1.00001 );
1756 TH1F *tmpB =
new TH1F(
"tmpB",
"", 100 , -1., 1.00001 );
1760 UInt_t signalClassNr = DataInfo().GetClassInfo(
"Signal")->GetNumber();
1770 UInt_t nevents = Data()->GetNTestEvents();
1771 for (
UInt_t iev=0; iev < nevents; iev++){
1772 const Event*
event = GetTestingEvent(iev);
1774 if (event->GetClass() == signalClassNr) {tmp=tmpS;}
1776 tmp->Fill(PrivateGetMvaValue(event),event->GetWeight());
1780 std::vector<TH1F*> hS;
1781 std::vector<TH1F*> hB;
1782 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++){
1783 hS.push_back(
new TH1F(
TString::Format(
"SigVar%dAtTree%d",ivar,iTree).Data(),
TString::Format(
"SigVar%dAtTree%d",ivar,iTree).Data(),100,DataInfo().GetVariableInfo(ivar).GetMin(),DataInfo().GetVariableInfo(ivar).GetMax()));
1784 hB.push_back(
new TH1F(
TString::Format(
"BkgVar%dAtTree%d",ivar,iTree).Data(),
TString::Format(
"BkgVar%dAtTree%d",ivar,iTree).Data(),100,DataInfo().GetVariableInfo(ivar).GetMin(),DataInfo().GetVariableInfo(ivar).GetMax()));
1785 results->
Store(hS.back(),hS.back()->GetTitle());
1786 results->
Store(hB.back(),hB.back()->GetTitle());
1790 for (
UInt_t iev=0; iev < fEventSample.size(); iev++){
1791 if (fEventSample[iev]->GetBoostWeight() > max) max = 1.01*fEventSample[iev]->GetBoostWeight();
1795 results->
Store(tmpBoostWeightsS,tmpBoostWeightsS->
GetTitle());
1796 results->
Store(tmpBoostWeightsB,tmpBoostWeightsB->
GetTitle());
1798 TH1F *tmpBoostWeights;
1799 std::vector<TH1F*> *
h;
1801 for (
UInt_t iev=0; iev < fEventSample.size(); iev++){
1802 if (fEventSample[iev]->GetClass() == signalClassNr) {
1803 tmpBoostWeights=tmpBoostWeightsS;
1806 tmpBoostWeights=tmpBoostWeightsB;
1809 tmpBoostWeights->
Fill(fEventSample[iev]->GetBoostWeight());
1810 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++){
1811 (*h)[ivar]->Fill(fEventSample[iev]->GetValue(ivar),fEventSample[iev]->GetWeight());
1847 Double_t err=0, sumGlobalw=0, sumGlobalwfalse=0, sumGlobalwfalse2=0;
1849 std::vector<Double_t> sumw(DataInfo().GetNClasses(),0);
1852 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
1855 UInt_t iclass=(*e)->GetClass();
1858 if ( DoRegression() ) {
1860 sumGlobalwfalse +=
w * tmpDev;
1861 sumGlobalwfalse2 +=
w * tmpDev*tmpDev;
1862 if (tmpDev > maxDev) maxDev = tmpDev;
1867 if (!(isSignalType == DataInfo().IsSignal(*
e))) {
1868 sumGlobalwfalse+=
w;
1873 if (DataInfo().IsSignal(*
e)) trueType = 1;
1875 sumGlobalwfalse+=
w*trueType*dtoutput;
1880 err = sumGlobalwfalse/sumGlobalw ;
1881 if ( DoRegression() ) {
1883 if (fAdaBoostR2Loss==
"linear"){
1884 err = sumGlobalwfalse/maxDev/sumGlobalw ;
1886 else if (fAdaBoostR2Loss==
"quadratic"){
1887 err = sumGlobalwfalse2/maxDev/maxDev/sumGlobalw ;
1889 else if (fAdaBoostR2Loss==
"exponential"){
1891 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
1894 err +=
w * (1 - exp (-tmpDev/maxDev)) / sumGlobalw;
1899 Log() << kFATAL <<
" you've chosen a Loss type for Adaboost other than linear, quadratic or exponential "
1900 <<
" namely " << fAdaBoostR2Loss <<
"\n"
1901 <<
"and this is not implemented... a typo in the options ??" <<
Endl;
1905 Log() << kDEBUG <<
"BDT AdaBoos wrong/all: " << sumGlobalwfalse <<
"/" << sumGlobalw <<
Endl;
1909 std::vector<Double_t> newSumw(sumw.size(),0);
1912 if (err >= 0.5 && fUseYesNoLeaf) {
1916 Log() << kERROR <<
" YOUR tree has only 1 Node... kind of a funny *tree*. I cannot "
1917 <<
"boost such a thing... if after 1 step the error rate is == 0.5"
1919 <<
"please check why this happens, maybe too many events per node requested ?"
1923 Log() << kERROR <<
" The error rate in the BDT boosting is > 0.5. ("<< err
1924 <<
") That should not happen, please check your code (i.e... the BDT code), I "
1925 <<
" stop boosting here" <<
Endl;
1929 }
else if (err < 0) {
1930 Log() << kERROR <<
" The error rate in the BDT boosting is < 0. That can happen"
1931 <<
" due to improper treatment of negative weights in a Monte Carlo.. (if you have"
1932 <<
" an idea on how to do it in a better way, please let me know (Helge.Voss@cern.ch)"
1933 <<
" for the time being I set it to its absolute value.. just to continue.." <<
Endl;
1937 boostWeight =
TMath::Log((1.-err)/err)*fAdaBoostBeta;
1939 boostWeight =
TMath::Log((1.+err)/(1-err))*fAdaBoostBeta;
1942 Log() << kDEBUG <<
"BDT AdaBoos wrong/all: " << sumGlobalwfalse <<
"/" << sumGlobalw <<
" 1-err/err="<<boostWeight<<
" log.."<<
TMath::Log(boostWeight)<<
Endl;
1947 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
1949 if (fUseYesNoLeaf||DoRegression()){
1950 if ((!( (dt->
CheckEvent(*
e,fUseYesNoLeaf) > fNodePurityLimit ) == DataInfo().IsSignal(*
e))) || DoRegression()) {
1954 if ( (*e)->GetWeight() > 0 ){
1955 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
1957 if (DoRegression()) results->
GetHist(
"BoostWeights")->
Fill(boostfactor);
1959 if ( fInverseBoostNegWeights )(*e)->ScaleBoostWeight( 1. / boostfactor);
1960 else (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
1968 if (DataInfo().IsSignal(*
e)) trueType = 1;
1972 if ( (*e)->GetWeight() > 0 ){
1973 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
1975 if (DoRegression()) results->
GetHist(
"BoostWeights")->
Fill(boostfactor);
1977 if ( fInverseBoostNegWeights )(*e)->ScaleBoostWeight( 1. / boostfactor);
1978 else (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
1981 newSumGlobalw+=(*e)->GetWeight();
1982 newSumw[(*e)->GetClass()] += (*e)->GetWeight();
1988 Log() << kDEBUG <<
"new Nsig="<<newSumw[0]*globalNormWeight <<
" new Nbkg="<<newSumw[1]*globalNormWeight <<
Endl;
1991 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
1995 if (DataInfo().IsSignal(*
e))(*e)->ScaleBoostWeight( globalNormWeight * fSigToBkgFraction );
1996 else (*e)->ScaleBoostWeight( globalNormWeight );
1999 if (!(DoRegression()))results->
GetHist(
"BoostWeights")->
Fill(boostWeight);
2003 fBoostWeight = boostWeight;
2004 fErrorFraction = err;
2030 Double_t err=0, sumGlobalWeights=0, sumGlobalCost=0;
2032 std::vector<Double_t> sumw(DataInfo().GetNClasses(),0);
2034 for (vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
2036 sumGlobalWeights +=
w;
2037 UInt_t iclass=(*e)->GetClass();
2041 if ( DoRegression() ) {
2042 Log() << kFATAL <<
" AdaCost not implemented for regression"<<
Endl;
2047 Bool_t isTrueSignal = DataInfo().IsSignal(*
e);
2048 Bool_t isSelectedSignal = (dtoutput>0);
2049 if (isTrueSignal) trueType = 1;
2053 if (isTrueSignal && isSelectedSignal) cost=Css;
2054 else if (isTrueSignal && !isSelectedSignal) cost=Cts_sb;
2055 else if (!isTrueSignal && isSelectedSignal) cost=Ctb_ss;
2056 else if (!isTrueSignal && !isSelectedSignal) cost=Cbb;
2057 else Log() << kERROR <<
"something went wrong in AdaCost" <<
Endl;
2059 sumGlobalCost+=
w*trueType*dtoutput*cost;
2064 if ( DoRegression() ) {
2065 Log() << kFATAL <<
" AdaCost not implemented for regression"<<
Endl;
2070 sumGlobalCost /= sumGlobalWeights;
2075 vector<Double_t> newSumClassWeights(sumw.size(),0);
2077 Double_t boostWeight =
TMath::Log((1+sumGlobalCost)/(1-sumGlobalCost)) * fAdaBoostBeta;
2081 for (vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
2084 Bool_t isTrueSignal = DataInfo().IsSignal(*
e);
2085 Bool_t isSelectedSignal = (dtoutput>0);
2086 if (isTrueSignal) trueType = 1;
2090 if (isTrueSignal && isSelectedSignal) cost=Css;
2091 else if (isTrueSignal && !isSelectedSignal) cost=Cts_sb;
2092 else if (!isTrueSignal && isSelectedSignal) cost=Ctb_ss;
2093 else if (!isTrueSignal && !isSelectedSignal) cost=Cbb;
2094 else Log() << kERROR <<
"something went wrong in AdaCost" <<
Endl;
2097 if (DoRegression())Log() << kFATAL <<
" AdaCost not implemented for regression"<<
Endl;
2098 if ( (*e)->GetWeight() > 0 ){
2099 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
2101 if (DoRegression())Log() << kFATAL <<
" AdaCost not implemented for regression"<<
Endl;
2103 if ( fInverseBoostNegWeights )(*e)->ScaleBoostWeight( 1. / boostfactor);
2106 newSumGlobalWeights+=(*e)->GetWeight();
2107 newSumClassWeights[(*e)->GetClass()] += (*e)->GetWeight();
2112 Double_t globalNormWeight=
Double_t(eventSample.size())/newSumGlobalWeights;
2113 Log() << kDEBUG <<
"new Nsig="<<newSumClassWeights[0]*globalNormWeight <<
" new Nbkg="<<newSumClassWeights[1]*globalNormWeight <<
Endl;
2116 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
2119 if (DataInfo().IsSignal(*
e))(*e)->ScaleBoostWeight( globalNormWeight * fSigToBkgFraction );
2120 else (*e)->ScaleBoostWeight( globalNormWeight );
2124 if (!(DoRegression()))results->
GetHist(
"BoostWeights")->
Fill(boostWeight);
2128 fBoostWeight = boostWeight;
2129 fErrorFraction = err;
2156 if (!fSubSample.empty()) fSubSample.clear();
2158 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
2159 n = trandom->
PoissonD(fBaggedSampleFraction);
2160 for (
Int_t i=0;i<
n;i++) fSubSample.push_back(*
e);
2194 if ( !DoRegression() ) Log() << kFATAL <<
"Somehow you chose a regression boost method for a classification job" <<
Endl;
2196 Double_t err=0, sumw=0, sumwfalse=0, sumwfalse2=0;
2198 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
2203 sumwfalse +=
w * tmpDev;
2204 sumwfalse2 +=
w * tmpDev*tmpDev;
2205 if (tmpDev > maxDev) maxDev = tmpDev;
2209 if (fAdaBoostR2Loss==
"linear"){
2210 err = sumwfalse/maxDev/sumw ;
2212 else if (fAdaBoostR2Loss==
"quadratic"){
2213 err = sumwfalse2/maxDev/maxDev/sumw ;
2215 else if (fAdaBoostR2Loss==
"exponential"){
2217 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
2220 err +=
w * (1 - exp (-tmpDev/maxDev)) / sumw;
2225 Log() << kFATAL <<
" you've chosen a Loss type for Adaboost other than linear, quadratic or exponential "
2226 <<
" namely " << fAdaBoostR2Loss <<
"\n"
2227 <<
"and this is not implemented... a typo in the options ??" <<
Endl;
2235 Log() << kERROR <<
" YOUR tree has only 1 Node... kind of a funny *tree*. I cannot "
2236 <<
"boost such a thing... if after 1 step the error rate is == 0.5"
2238 <<
"please check why this happens, maybe too many events per node requested ?"
2242 Log() << kERROR <<
" The error rate in the BDT boosting is > 0.5. ("<< err
2243 <<
") That should not happen, but is possible for regression trees, and"
2244 <<
" should trigger a stop for the boosting. please check your code (i.e... the BDT code), I "
2245 <<
" stop boosting " <<
Endl;
2249 }
else if (err < 0) {
2250 Log() << kERROR <<
" The error rate in the BDT boosting is < 0. That can happen"
2251 <<
" due to improper treatment of negative weights in a Monte Carlo.. (if you have"
2252 <<
" an idea on how to do it in a better way, please let me know (Helge.Voss@cern.ch)"
2253 <<
" for the time being I set it to its absolute value.. just to continue.." <<
Endl;
2257 Double_t boostWeight = err / (1.-err);
2262 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
2264 results->
GetHist(
"BoostWeights")->
Fill(boostfactor);
2266 if ( (*e)->GetWeight() > 0 ){
2267 Float_t newBoostWeight = (*e)->GetBoostWeight() * boostfactor;
2268 Float_t newWeight = (*e)->GetWeight() * (*e)->GetBoostWeight() * boostfactor;
2269 if (newWeight == 0) {
2270 Log() << kINFO <<
"Weight= " << (*e)->GetWeight() <<
Endl;
2271 Log() << kINFO <<
"BoostWeight= " << (*e)->GetBoostWeight() <<
Endl;
2272 Log() << kINFO <<
"boostweight="<<boostWeight <<
" err= " <<err <<
Endl;
2273 Log() << kINFO <<
"NewBoostWeight= " << newBoostWeight <<
Endl;
2274 Log() << kINFO <<
"boostfactor= " << boostfactor <<
Endl;
2275 Log() << kINFO <<
"maxDev = " << maxDev <<
Endl;
2277 Log() << kINFO <<
"target = " << (*e)->GetTarget(0) <<
Endl;
2280 (*e)->SetBoostWeight( newBoostWeight );
2283 (*e)->SetBoostWeight( (*e)->GetBoostWeight() / boostfactor);
2285 newSumw+=(*e)->GetWeight();
2289 Double_t normWeight = sumw / newSumw;
2290 for (std::vector<const TMVA::Event*>::const_iterator
e=eventSample.begin();
e!=eventSample.end();++
e) {
2293 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * normWeight );
2300 fBoostWeight = boostWeight;
2301 fErrorFraction = err;
2313 if (fDoPreselection){
2314 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++){
2328 gTools().
AddAttr( wght,
"AnalysisType", fForest.back()->GetAnalysisType() );
2330 for (
UInt_t i=0; i< fForest.size(); i++) {
2331 void* trxml = fForest[i]->AddXMLTo(wght);
2342 for (i=0; i<fForest.size(); i++)
delete fForest[i];
2344 fBoostWeights.clear();
2352 fIsLowBkgCut.resize(GetNvar());
2353 fLowBkgCut.resize(GetNvar());
2354 fIsLowSigCut.resize(GetNvar());
2355 fLowSigCut.resize(GetNvar());
2356 fIsHighBkgCut.resize(GetNvar());
2357 fHighBkgCut.resize(GetNvar());
2358 fIsHighSigCut.resize(GetNvar());
2359 fHighSigCut.resize(GetNvar());
2363 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++){
2365 fIsLowBkgCut[ivar]=tmpBool;
2367 fLowBkgCut[ivar]=tmpDouble;
2369 fIsLowSigCut[ivar]=tmpBool;
2371 fLowSigCut[ivar]=tmpDouble;
2373 fIsHighBkgCut[ivar]=tmpBool;
2375 fHighBkgCut[ivar]=tmpDouble;
2377 fIsHighSigCut[ivar]=tmpBool;
2379 fHighSigCut[ivar]=tmpDouble;
2386 if(
gTools().HasAttr(parent,
"TreeType")) {
2397 fForest.back()->SetTreeID(i++);
2399 fBoostWeights.push_back(boostWeight);
2411 Int_t analysisType(0);
2414 istr >> dummy >> fNTrees;
2415 Log() << kINFO <<
"Read " << fNTrees <<
" Decision trees" <<
Endl;
2417 for (
UInt_t i=0;i<fForest.size();i++)
delete fForest[i];
2419 fBoostWeights.clear();
2422 for (
int i=0;i<fNTrees;i++) {
2423 istr >> dummy >> iTree >> dummy >> boostWeight;
2425 fForest.back()->Print( std::cout );
2426 Log() << kFATAL <<
"Error while reading weight file; mismatch iTree="
2427 << iTree <<
" i=" << i
2428 <<
" dummy " << dummy
2429 <<
" boostweight " << boostWeight
2434 fForest.back()->SetTreeID(i);
2435 fForest.back()->
Read(istr, GetTrainingTMVAVersionCode());
2436 fBoostWeights.push_back(boostWeight);
2443 return this->GetMvaValue( err, errUpper, 0 );
2453 const Event* ev = GetEvent();
2454 if (fDoPreselection) {
2455 Double_t val = ApplyPreselectionCuts(ev);
2458 return PrivateGetMvaValue(ev, err, errUpper, useNTrees);
2470 NoErrorCalc(err, errUpper);
2474 UInt_t nTrees = fForest.size();
2476 if (useNTrees > 0 ) nTrees = useNTrees;
2478 if (fBoostType==
"Grad")
return GetGradBoostMVA(ev,nTrees);
2482 for (
UInt_t itree=0; itree<nTrees; itree++) {
2484 myMVA += fBoostWeights[itree] * fForest[itree]->CheckEvent(ev,fUseYesNoLeaf);
2485 norm += fBoostWeights[itree];
2487 return ( norm > std::numeric_limits<double>::epsilon() ) ? myMVA /= norm : 0 ;
2497 if (fMulticlassReturnVal == NULL) fMulticlassReturnVal =
new std::vector<Float_t>();
2498 fMulticlassReturnVal->clear();
2500 UInt_t nClasses = DataInfo().GetNClasses();
2501 std::vector<Double_t> temp(nClasses);
2502 auto forestSize = fForest.size();
2505 std::vector<TMVA::DecisionTree *> forest = fForest;
2506 auto get_output = [&
e, &forest, &temp, forestSize, nClasses](
UInt_t iClass) {
2507 for (
UInt_t itree = iClass; itree < forestSize; itree += nClasses) {
2508 temp[iClass] += forest[itree]->CheckEvent(
e,
kFALSE);
2518 for (
UInt_t itree = 0; itree < forestSize; ++itree) {
2519 temp[classOfTree] += fForest[itree]->CheckEvent(
e,
kFALSE);
2520 if (++classOfTree == nClasses) classOfTree = 0;
2526 std::transform(temp.begin(), temp.end(), temp.begin(), [](
Double_t d){return exp(d);});
2528 Double_t exp_sum = std::accumulate(temp.begin(), temp.end(), 0.0);
2530 for (
UInt_t i = 0; i < nClasses; i++) {
2531 Double_t p_cls = temp[i] / exp_sum;
2532 (*fMulticlassReturnVal).push_back(p_cls);
2535 return *fMulticlassReturnVal;
2544 if (fRegressionReturnVal == NULL) fRegressionReturnVal =
new std::vector<Float_t>();
2545 fRegressionReturnVal->clear();
2547 const Event * ev = GetEvent();
2552 if (fBoostType==
"AdaBoostR2") {
2563 vector< Double_t > response(fForest.size());
2564 vector< Double_t > weight(fForest.size());
2567 for (
UInt_t itree=0; itree<fForest.size(); itree++) {
2568 response[itree] = fForest[itree]->CheckEvent(ev,
kFALSE);
2569 weight[itree] = fBoostWeights[itree];
2570 totalSumOfWeights += fBoostWeights[itree];
2573 std::vector< std::vector<Double_t> > vtemp;
2574 vtemp.push_back( response );
2575 vtemp.push_back( weight );
2580 while (sumOfWeights <= totalSumOfWeights/2.) {
2581 sumOfWeights += vtemp[1][t];
2595 else if(fBoostType==
"Grad"){
2596 for (
UInt_t itree=0; itree<fForest.size(); itree++) {
2597 myMVA += fForest[itree]->CheckEvent(ev,
kFALSE);
2600 evT->
SetTarget(0, myMVA+fBoostWeights[0] );
2603 for (
UInt_t itree=0; itree<fForest.size(); itree++) {
2605 myMVA += fBoostWeights[itree] * fForest[itree]->CheckEvent(ev,
kFALSE);
2606 norm += fBoostWeights[itree];
2609 evT->
SetTarget(0, ( norm > std::numeric_limits<double>::epsilon() ) ? myMVA /= norm : 0 );
2614 const Event* evT2 = GetTransformationHandler().InverseTransform( evT );
2615 fRegressionReturnVal->push_back( evT2->
GetTarget(0) );
2620 return *fRegressionReturnVal;
2629 Log() << kDEBUG <<
"\tWrite monitoring histograms to file: " << BaseDir()->GetPath() <<
Endl;
2633 fMonitorNtuple->
Write();
2644 fVariableImportance.resize(GetNvar());
2645 for (
UInt_t ivar = 0; ivar < GetNvar(); ivar++) {
2646 fVariableImportance[ivar]=0;
2649 for (
UInt_t itree = 0; itree < GetNTrees(); itree++) {
2650 std::vector<Double_t> relativeImportance(fForest[itree]->GetVariableImportance());
2651 for (
UInt_t i=0; i< relativeImportance.size(); i++) {
2652 fVariableImportance[i] += fBoostWeights[itree] * relativeImportance[i];
2656 for (
UInt_t ivar=0; ivar< fVariableImportance.size(); ivar++){
2657 fVariableImportance[ivar] =
TMath::Sqrt(fVariableImportance[ivar]);
2658 sum += fVariableImportance[ivar];
2660 for (
UInt_t ivar=0; ivar< fVariableImportance.size(); ivar++) fVariableImportance[ivar] /=
sum;
2662 return fVariableImportance;
2672 std::vector<Double_t> relativeImportance = this->GetVariableImportance();
2673 if (ivar < (
UInt_t)relativeImportance.size())
return relativeImportance[ivar];
2674 else Log() << kFATAL <<
"<GetVariableImportance> ivar = " << ivar <<
" is out of range " <<
Endl;
2685 fRanking =
new Ranking( GetName(),
"Variable Importance" );
2686 vector< Double_t> importance(this->GetVariableImportance());
2688 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
2690 fRanking->AddRank(
Rank( GetInputLabel(ivar), importance[ivar] ) );
2704 Log() <<
"Boosted Decision Trees are a collection of individual decision" <<
Endl;
2705 Log() <<
"trees which form a multivariate classifier by (weighted) majority " <<
Endl;
2706 Log() <<
"vote of the individual trees. Consecutive decision trees are " <<
Endl;
2707 Log() <<
"trained using the original training data set with re-weighted " <<
Endl;
2708 Log() <<
"events. By default, the AdaBoost method is employed, which gives " <<
Endl;
2709 Log() <<
"events that were misclassified in the previous tree a larger " <<
Endl;
2710 Log() <<
"weight in the training of the following tree." <<
Endl;
2712 Log() <<
"Decision trees are a sequence of binary splits of the data sample" <<
Endl;
2713 Log() <<
"using a single discriminant variable at a time. A test event " <<
Endl;
2714 Log() <<
"ending up after the sequence of left-right splits in a final " <<
Endl;
2715 Log() <<
"(\"leaf\") node is classified as either signal or background" <<
Endl;
2716 Log() <<
"depending on the majority type of training events in that node." <<
Endl;
2720 Log() <<
"By the nature of the binary splits performed on the individual" <<
Endl;
2721 Log() <<
"variables, decision trees do not deal well with linear correlations" <<
Endl;
2722 Log() <<
"between variables (they need to approximate the linear split in" <<
Endl;
2723 Log() <<
"the two dimensional space by a sequence of splits on the two " <<
Endl;
2724 Log() <<
"variables individually). Hence decorrelation could be useful " <<
Endl;
2725 Log() <<
"to optimise the BDT performance." <<
Endl;
2729 Log() <<
"The two most important parameters in the configuration are the " <<
Endl;
2730 Log() <<
"minimal number of events requested by a leaf node as percentage of the " <<
Endl;
2731 Log() <<
" number of training events (option \"MinNodeSize\" replacing the actual number " <<
Endl;
2732 Log() <<
" of events \"nEventsMin\" as given in earlier versions" <<
Endl;
2733 Log() <<
"If this number is too large, detailed features " <<
Endl;
2734 Log() <<
"in the parameter space are hard to be modelled. If it is too small, " <<
Endl;
2735 Log() <<
"the risk to overtrain rises and boosting seems to be less effective" <<
Endl;
2736 Log() <<
" typical values from our current experience for best performance " <<
Endl;
2737 Log() <<
" are between 0.5(%) and 10(%) " <<
Endl;
2739 Log() <<
"The default minimal number is currently set to " <<
Endl;
2740 Log() <<
" max(20, (N_training_events / N_variables^2 / 10)) " <<
Endl;
2741 Log() <<
"and can be changed by the user." <<
Endl;
2743 Log() <<
"The other crucial parameter, the pruning strength (\"PruneStrength\")," <<
Endl;
2744 Log() <<
"is also related to overtraining. It is a regularisation parameter " <<
Endl;
2745 Log() <<
"that is used when determining after the training which splits " <<
Endl;
2746 Log() <<
"are considered statistically insignificant and are removed. The" <<
Endl;
2747 Log() <<
"user is advised to carefully watch the BDT screen output for" <<
Endl;
2748 Log() <<
"the comparison between efficiencies obtained on the training and" <<
Endl;
2749 Log() <<
"the independent test sample. They should be equal within statistical" <<
Endl;
2750 Log() <<
"errors, in order to minimize statistical fluctuations in different samples." <<
Endl;
2762 fout <<
" std::vector<"<<nodeName<<
"*> fForest; // i.e. root nodes of decision trees" << std::endl;
2763 fout <<
" std::vector<double> fBoostWeights; // the weights applied in the individual boosts" << std::endl;
2764 fout <<
"};" << std::endl << std::endl;
2767 fout <<
"std::vector<double> ReadBDTG::GetMulticlassValues__( const std::vector<double>& inputValues ) const" << std::endl;
2768 fout <<
"{" << std::endl;
2769 fout <<
" uint nClasses = " << DataInfo().GetNClasses() <<
";" << std::endl;
2770 fout <<
" std::vector<double> fMulticlassReturnVal;" << std::endl;
2771 fout <<
" fMulticlassReturnVal.reserve(nClasses);" << std::endl;
2773 fout <<
" std::vector<double> temp(nClasses);" << std::endl;
2774 fout <<
" auto forestSize = fForest.size();" << std::endl;
2775 fout <<
" // trees 0, nClasses, 2*nClasses, ... belong to class 0" << std::endl;
2776 fout <<
" // trees 1, nClasses+1, 2*nClasses+1, ... belong to class 1 and so forth" << std::endl;
2777 fout <<
" uint classOfTree = 0;" << std::endl;
2778 fout <<
" for (uint itree = 0; itree < forestSize; ++itree) {" << std::endl;
2779 fout <<
" BDTGNode *current = fForest[itree];" << std::endl;
2780 fout <<
" while (current->GetNodeType() == 0) { //intermediate node" << std::endl;
2781 fout <<
" if (current->GoesRight(inputValues)) current=(BDTGNode*)current->GetRight();" << std::endl;
2782 fout <<
" else current=(BDTGNode*)current->GetLeft();" << std::endl;
2783 fout <<
" }" << std::endl;
2784 fout <<
" temp[classOfTree] += current->GetResponse();" << std::endl;
2785 fout <<
" if (++classOfTree == nClasses) classOfTree = 0; // cheap modulo" << std::endl;
2786 fout <<
" }" << std::endl;
2788 fout <<
" // we want to calculate sum of exp(temp[j] - temp[i]) for all i,j (i!=j)" << std::endl;
2789 fout <<
" // first calculate exp(), then replace minus with division." << std::endl;
2790 fout <<
" std::transform(temp.begin(), temp.end(), temp.begin(), [](double d){return exp(d);});" << std::endl;
2792 fout <<
" for(uint iClass=0; iClass<nClasses; iClass++){" << std::endl;
2793 fout <<
" double norm = 0.0;" << std::endl;
2794 fout <<
" for(uint j=0;j<nClasses;j++){" << std::endl;
2795 fout <<
" if(iClass!=j)" << std::endl;
2796 fout <<
" norm += temp[j] / temp[iClass];" << std::endl;
2797 fout <<
" }" << std::endl;
2798 fout <<
" fMulticlassReturnVal.push_back(1.0/(1.0+norm));" << std::endl;
2799 fout <<
" }" << std::endl;
2801 fout <<
" return fMulticlassReturnVal;" << std::endl;
2802 fout <<
"}" << std::endl;
2804 fout <<
"double " << className <<
"::GetMvaValue__( const std::vector<double>& inputValues ) const" << std::endl;
2805 fout <<
"{" << std::endl;
2806 fout <<
" double myMVA = 0;" << std::endl;
2807 if (fDoPreselection){
2808 for (
UInt_t ivar = 0; ivar< fIsLowBkgCut.size(); ivar++){
2809 if (fIsLowBkgCut[ivar]){
2810 fout <<
" if (inputValues["<<ivar<<
"] < " << fLowBkgCut[ivar] <<
") return -1; // is background preselection cut" << std::endl;
2812 if (fIsLowSigCut[ivar]){
2813 fout <<
" if (inputValues["<<ivar<<
"] < "<< fLowSigCut[ivar] <<
") return 1; // is signal preselection cut" << std::endl;
2815 if (fIsHighBkgCut[ivar]){
2816 fout <<
" if (inputValues["<<ivar<<
"] > "<<fHighBkgCut[ivar] <<
") return -1; // is background preselection cut" << std::endl;
2818 if (fIsHighSigCut[ivar]){
2819 fout <<
" if (inputValues["<<ivar<<
"] > "<<fHighSigCut[ivar]<<
") return 1; // is signal preselection cut" << std::endl;
2824 if (fBoostType!=
"Grad"){
2825 fout <<
" double norm = 0;" << std::endl;
2827 fout <<
" for (unsigned int itree=0; itree<fForest.size(); itree++){" << std::endl;
2828 fout <<
" "<<nodeName<<
" *current = fForest[itree];" << std::endl;
2829 fout <<
" while (current->GetNodeType() == 0) { //intermediate node" << std::endl;
2830 fout <<
" if (current->GoesRight(inputValues)) current=("<<nodeName<<
"*)current->GetRight();" << std::endl;
2831 fout <<
" else current=("<<nodeName<<
"*)current->GetLeft();" << std::endl;
2832 fout <<
" }" << std::endl;
2833 if (fBoostType==
"Grad"){
2834 fout <<
" myMVA += current->GetResponse();" << std::endl;
2836 if (fUseYesNoLeaf) fout <<
" myMVA += fBoostWeights[itree] * current->GetNodeType();" << std::endl;
2837 else fout <<
" myMVA += fBoostWeights[itree] * current->GetPurity();" << std::endl;
2838 fout <<
" norm += fBoostWeights[itree];" << std::endl;
2840 fout <<
" }" << std::endl;
2841 if (fBoostType==
"Grad"){
2842 fout <<
" return 2.0/(1.0+exp(-2.0*myMVA))-1.0;" << std::endl;
2844 else fout <<
" return myMVA /= norm;" << std::endl;
2845 fout <<
"}" << std::endl << std::endl;
2848 fout <<
"void " << className <<
"::Initialize()" << std::endl;
2849 fout <<
"{" << std::endl;
2850 fout <<
" double inf = std::numeric_limits<double>::infinity();" << std::endl;
2851 fout <<
" double nan = std::numeric_limits<double>::quiet_NaN();" << std::endl;
2853 for (
UInt_t itree=0; itree<GetNTrees(); itree++) {
2854 fout <<
" // itree = " << itree << std::endl;
2855 fout <<
" fBoostWeights.push_back(" << fBoostWeights[itree] <<
");" << std::endl;
2856 fout <<
" fForest.push_back( " << std::endl;
2857 this->MakeClassInstantiateNode((
DecisionTreeNode*)fForest[itree]->GetRoot(), fout, className);
2858 fout <<
" );" << std::endl;
2860 fout <<
" return;" << std::endl;
2861 fout <<
"};" << std::endl;
2863 fout <<
"// Clean up" << std::endl;
2864 fout <<
"inline void " << className <<
"::Clear() " << std::endl;
2865 fout <<
"{" << std::endl;
2866 fout <<
" for (unsigned int itree=0; itree<fForest.size(); itree++) { " << std::endl;
2867 fout <<
" delete fForest[itree]; " << std::endl;
2868 fout <<
" }" << std::endl;
2869 fout <<
"}" << std::endl;
2881 fout <<
"#include <algorithm>" << std::endl;
2882 fout <<
"#include <limits>" << std::endl;
2885 fout <<
"#define NN new "<<nodeName << std::endl;
2888 fout <<
"#ifndef "<<nodeName<<
"__def" << std::endl;
2889 fout <<
"#define "<<nodeName<<
"__def" << std::endl;
2891 fout <<
"class "<<nodeName<<
" {" << std::endl;
2893 fout <<
"public:" << std::endl;
2895 fout <<
" // constructor of an essentially \"empty\" node floating in space" << std::endl;
2896 fout <<
" "<<nodeName<<
" ( "<<nodeName<<
"* left,"<<nodeName<<
"* right," << std::endl;
2897 if (fUseFisherCuts){
2898 fout <<
" int nFisherCoeff," << std::endl;
2899 for (
UInt_t i=0;i<GetNVariables()+1;i++){
2900 fout <<
" double fisherCoeff"<<i<<
"," << std::endl;
2903 fout <<
" int selector, double cutValue, bool cutType, " << std::endl;
2904 fout <<
" int nodeType, double purity, double response ) :" << std::endl;
2905 fout <<
" fLeft ( left )," << std::endl;
2906 fout <<
" fRight ( right )," << std::endl;
2907 if (fUseFisherCuts) fout <<
" fNFisherCoeff ( nFisherCoeff )," << std::endl;
2908 fout <<
" fSelector ( selector )," << std::endl;
2909 fout <<
" fCutValue ( cutValue )," << std::endl;
2910 fout <<
" fCutType ( cutType )," << std::endl;
2911 fout <<
" fNodeType ( nodeType )," << std::endl;
2912 fout <<
" fPurity ( purity )," << std::endl;
2913 fout <<
" fResponse ( response ){" << std::endl;
2914 if (fUseFisherCuts){
2915 for (
UInt_t i=0;i<GetNVariables()+1;i++){
2916 fout <<
" fFisherCoeff.push_back(fisherCoeff"<<i<<
");" << std::endl;
2919 fout <<
" }" << std::endl << std::endl;
2920 fout <<
" virtual ~"<<nodeName<<
"();" << std::endl << std::endl;
2921 fout <<
" // test event if it descends the tree at this node to the right" << std::endl;
2922 fout <<
" virtual bool GoesRight( const std::vector<double>& inputValues ) const;" << std::endl;
2923 fout <<
" "<<nodeName<<
"* GetRight( void ) {return fRight; };" << std::endl << std::endl;
2924 fout <<
" // test event if it descends the tree at this node to the left " << std::endl;
2925 fout <<
" virtual bool GoesLeft ( const std::vector<double>& inputValues ) const;" << std::endl;
2926 fout <<
" "<<nodeName<<
"* GetLeft( void ) { return fLeft; }; " << std::endl << std::endl;
2927 fout <<
" // return S/(S+B) (purity) at this node (from training)" << std::endl << std::endl;
2928 fout <<
" double GetPurity( void ) const { return fPurity; } " << std::endl;
2929 fout <<
" // return the node type" << std::endl;
2930 fout <<
" int GetNodeType( void ) const { return fNodeType; }" << std::endl;
2931 fout <<
" double GetResponse(void) const {return fResponse;}" << std::endl << std::endl;
2932 fout <<
"private:" << std::endl << std::endl;
2933 fout <<
" "<<nodeName<<
"* fLeft; // pointer to the left daughter node" << std::endl;
2934 fout <<
" "<<nodeName<<
"* fRight; // pointer to the right daughter node" << std::endl;
2935 if (fUseFisherCuts){
2936 fout <<
" int fNFisherCoeff; // =0 if this node doesn't use fisher, else =nvar+1 " << std::endl;
2937 fout <<
" std::vector<double> fFisherCoeff; // the fisher coeff (offset at the last element)" << std::endl;
2939 fout <<
" int fSelector; // index of variable used in node selection (decision tree) " << std::endl;
2940 fout <<
" double fCutValue; // cut value applied on this node to discriminate bkg against sig" << std::endl;
2941 fout <<
" bool fCutType; // true: if event variable > cutValue ==> signal , false otherwise" << std::endl;
2942 fout <<
" int fNodeType; // Type of node: -1 == Bkg-leaf, 1 == Signal-leaf, 0 = internal " << std::endl;
2943 fout <<
" double fPurity; // Purity of node from training"<< std::endl;
2944 fout <<
" double fResponse; // Regression response value of node" << std::endl;
2945 fout <<
"}; " << std::endl;
2947 fout <<
"//_______________________________________________________________________" << std::endl;
2948 fout <<
" "<<nodeName<<
"::~"<<nodeName<<
"()" << std::endl;
2949 fout <<
"{" << std::endl;
2950 fout <<
" if (fLeft != NULL) delete fLeft;" << std::endl;
2951 fout <<
" if (fRight != NULL) delete fRight;" << std::endl;
2952 fout <<
"}; " << std::endl;
2954 fout <<
"//_______________________________________________________________________" << std::endl;
2955 fout <<
"bool "<<nodeName<<
"::GoesRight( const std::vector<double>& inputValues ) const" << std::endl;
2956 fout <<
"{" << std::endl;
2957 fout <<
" // test event if it descends the tree at this node to the right" << std::endl;
2958 fout <<
" bool result;" << std::endl;
2959 if (fUseFisherCuts){
2960 fout <<
" if (fNFisherCoeff == 0){" << std::endl;
2961 fout <<
" result = (inputValues[fSelector] >= fCutValue );" << std::endl;
2962 fout <<
" }else{" << std::endl;
2963 fout <<
" double fisher = fFisherCoeff.at(fFisherCoeff.size()-1);" << std::endl;
2964 fout <<
" for (unsigned int ivar=0; ivar<fFisherCoeff.size()-1; ivar++)" << std::endl;
2965 fout <<
" fisher += fFisherCoeff.at(ivar)*inputValues.at(ivar);" << std::endl;
2966 fout <<
" result = fisher > fCutValue;" << std::endl;
2967 fout <<
" }" << std::endl;
2969 fout <<
" result = (inputValues[fSelector] >= fCutValue );" << std::endl;
2971 fout <<
" if (fCutType == true) return result; //the cuts are selecting Signal ;" << std::endl;
2972 fout <<
" else return !result;" << std::endl;
2973 fout <<
"}" << std::endl;
2975 fout <<
"//_______________________________________________________________________" << std::endl;
2976 fout <<
"bool "<<nodeName<<
"::GoesLeft( const std::vector<double>& inputValues ) const" << std::endl;
2977 fout <<
"{" << std::endl;
2978 fout <<
" // test event if it descends the tree at this node to the left" << std::endl;
2979 fout <<
" if (!this->GoesRight(inputValues)) return true;" << std::endl;
2980 fout <<
" else return false;" << std::endl;
2981 fout <<
"}" << std::endl;
2983 fout <<
"#endif" << std::endl;
2993 Log() << kFATAL <<
"MakeClassInstantiateNode: started with undefined node" <<
Endl;
2996 fout <<
"NN("<<std::endl;
2997 if (
n->GetLeft() != NULL){
2998 this->MakeClassInstantiateNode( (
DecisionTreeNode*)
n->GetLeft() , fout, className);
3003 fout <<
", " <<std::endl;
3004 if (
n->GetRight() != NULL){
3005 this->MakeClassInstantiateNode( (
DecisionTreeNode*)
n->GetRight(), fout, className );
3010 fout <<
", " << std::endl
3011 << std::setprecision(6);
3012 if (fUseFisherCuts){
3013 fout <<
n->GetNFisherCoeff() <<
", ";
3014 for (
UInt_t i=0; i< GetNVariables()+1; i++) {
3015 if (
n->GetNFisherCoeff() == 0 ){
3018 fout <<
n->GetFisherCoeff(i) <<
", ";
3022 fout <<
n->GetSelector() <<
", "
3023 <<
n->GetCutValue() <<
", "
3024 <<
n->GetCutType() <<
", "
3025 <<
n->GetNodeType() <<
", "
3026 <<
n->GetPurity() <<
","
3027 <<
n->GetResponse() <<
") ";
3039 std::vector<TMVA::BDTEventWrapper> bdtEventSample;
3041 fIsLowSigCut.assign(GetNvar(),
kFALSE);
3042 fIsLowBkgCut.assign(GetNvar(),
kFALSE);
3043 fIsHighSigCut.assign(GetNvar(),
kFALSE);
3044 fIsHighBkgCut.assign(GetNvar(),
kFALSE);
3046 fLowSigCut.assign(GetNvar(),0.);
3047 fLowBkgCut.assign(GetNvar(),0.);
3048 fHighSigCut.assign(GetNvar(),0.);
3049 fHighBkgCut.assign(GetNvar(),0.);
3054 for( std::vector<const TMVA::Event*>::const_iterator it = eventSample.begin(); it != eventSample.end(); ++it ) {
3055 if (DataInfo().IsSignal(*it)){
3056 nTotS += (*it)->GetWeight();
3059 nTotB += (*it)->GetWeight();
3064 for(
UInt_t ivar = 0; ivar < GetNvar(); ivar++ ) {
3066 std::sort( bdtEventSample.begin(),bdtEventSample.end() );
3068 Double_t bkgWeightCtr = 0.0, sigWeightCtr = 0.0;
3069 std::vector<TMVA::BDTEventWrapper>::iterator it = bdtEventSample.begin(), it_end = bdtEventSample.end();
3070 for( ; it != it_end; ++it ) {
3071 if (DataInfo().IsSignal(**it))
3072 sigWeightCtr += (**it)->GetWeight();
3074 bkgWeightCtr += (**it)->GetWeight();
3076 it->SetCumulativeWeight(
false,bkgWeightCtr);
3077 it->SetCumulativeWeight(
true,sigWeightCtr);
3082 Double_t dVal = (DataInfo().GetVariableInfo(ivar).GetMax() - DataInfo().GetVariableInfo(ivar).GetMin())/100. ;
3083 Double_t nSelS, nSelB, effS=0.05, effB=0.05, rejS=0.05, rejB=0.05;
3084 Double_t tmpEffS, tmpEffB, tmpRejS, tmpRejB;
3089 for(
UInt_t iev = 1; iev < bdtEventSample.size(); iev++) {
3092 nSelS = bdtEventSample[iev].GetCumulativeWeight(
true);
3093 nSelB = bdtEventSample[iev].GetCumulativeWeight(
false);
3095 tmpEffS=nSelS/nTotS;
3096 tmpEffB=nSelB/nTotB;
3099 if (nSelS==0 && tmpEffB>effB) {effB=tmpEffB; fLowBkgCut[ivar] = bdtEventSample[iev].GetVal() - dVal; fIsLowBkgCut[ivar]=
kTRUE;}
3100 else if (nSelB==0 && tmpEffS>effS) {effS=tmpEffS; fLowSigCut[ivar] = bdtEventSample[iev].GetVal() - dVal; fIsLowSigCut[ivar]=
kTRUE;}
3101 else if (nSelB==nTotB && tmpRejS>rejS) {rejS=tmpRejS; fHighSigCut[ivar] = bdtEventSample[iev].GetVal() + dVal; fIsHighSigCut[ivar]=
kTRUE;}
3102 else if (nSelS==nTotS && tmpRejB>rejB) {rejB=tmpRejB; fHighBkgCut[ivar] = bdtEventSample[iev].GetVal() + dVal; fIsHighBkgCut[ivar]=
kTRUE;}
3107 Log() << kDEBUG <<
" \tfound and suggest the following possible pre-selection cuts " <<
Endl;
3108 if (fDoPreselection) Log() << kDEBUG <<
"\tthe training will be done after these cuts... and GetMVA value returns +1, (-1) for a signal (bkg) event that passes these cuts" <<
Endl;
3109 else Log() << kDEBUG <<
"\tas option DoPreselection was not used, these cuts however will not be performed, but the training will see the full sample"<<
Endl;
3110 for (
UInt_t ivar=0; ivar < GetNvar(); ivar++ ) {
3111 if (fIsLowBkgCut[ivar]){
3112 Log() << kDEBUG <<
" \tfound cut: Bkg if var " << ivar <<
" < " << fLowBkgCut[ivar] <<
Endl;
3114 if (fIsLowSigCut[ivar]){
3115 Log() << kDEBUG <<
" \tfound cut: Sig if var " << ivar <<
" < " << fLowSigCut[ivar] <<
Endl;
3117 if (fIsHighBkgCut[ivar]){
3118 Log() << kDEBUG <<
" \tfound cut: Bkg if var " << ivar <<
" > " << fHighBkgCut[ivar] <<
Endl;
3120 if (fIsHighSigCut[ivar]){
3121 Log() << kDEBUG <<
" \tfound cut: Sig if var " << ivar <<
" > " << fHighSigCut[ivar] <<
Endl;
3136 for (
UInt_t ivar=0; ivar < GetNvar(); ivar++ ) {
3137 if (fIsLowBkgCut[ivar]){
3140 if (fIsLowSigCut[ivar]){
3143 if (fIsHighBkgCut[ivar]){
3146 if (fIsHighSigCut[ivar]){
#define REGISTER_METHOD(CLASS)
for example
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
void Print(GNN_Data &d, std::string txt="")
A pseudo container class which is a generator of indices.
A TGraph is an object made of two arrays X and Y with npoints each.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
void SetName(const char *name="") override
Set graph name.
void SetTitle(const char *title="") override
Change (i.e.
virtual void Set(Int_t n)
Set number of points in the graph Existing coordinates are preserved New coordinates above fNpoints a...
1-D histogram with a float per channel (see TH1 documentation)
1-D histogram with an int per channel (see TH1 documentation)
TH1 is the base class of all histogram classes in ROOT.
virtual void SetXTitle(const char *title)
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual void SetYTitle(const char *title)
2-D histogram with a float per channel (see TH1 documentation)
Service class for 2-D histogram classes.
Absolute Deviation BDT Loss Function.
static void SetVarIndex(Int_t iVar)
Executor & GetThreadExecutor()
Get executor class for multi-thread usage In case when MT is not enabled will return a serial executo...
static Config & Instance()
static function: returns TMVA instance
Implementation of the CrossEntropy as separation criterion.
Class that contains all the data information.
static void SetIsTraining(bool on)
Implementation of a Decision Tree.
TMVA::DecisionTreeNode * GetEventNode(const TMVA::Event &e) const
get the pointer to the leaf node where a particular event ends up in... (used in gradient boosting)
static DecisionTree * CreateFromXML(void *node, UInt_t tmva_Version_Code=262657)
re-create a new tree (decision tree or search tree) from XML
Double_t CheckEvent(const TMVA::Event *, Bool_t UseYesNoLeaf=kFALSE) const
the event e is put into the decision tree (starting at the root node) and the output is NodeType (sig...
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
void SetTarget(UInt_t itgt, Float_t value)
set the target value (dimension itgt) to value
Float_t GetTarget(UInt_t itgt) const
void Foreach(Function func, unsigned int nTimes, unsigned nChunks=0)
wrap TExecutor::Foreach
auto Map(F func, unsigned nTimes) -> std::vector< InvokeResult_t< F > >
Wrap TExecutor::Map functions.
unsigned int GetPoolSize() const
Implementation of the GiniIndex With Laplace correction as separation criterion.
Implementation of the GiniIndex as separation criterion.
The TMVA::Interval Class.
Least Squares BDT Loss Function.
The TMVA::Interval Class.
Analysis of Boosted Decision Trees.
void Init(void)
Common initialisation with defaults for the BDT-Method.
static const Int_t fgDebugLevel
debug level determining some printout/control plots etc.
MethodBDT(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
The standard constructor for the "boosted decision trees".
void BoostMonitor(Int_t iTree)
Fills the ROCIntegral vs Itree from the testSample for the monitoring plots during the training .
const std::vector< Float_t > & GetMulticlassValues()
Get the multiclass MVA response for the BDT classifier.
Double_t AdaBoostR2(std::vector< const TMVA::Event * > &, DecisionTree *dt)
Adaption of the AdaBoost to regression problems (see H.Drucker 1997).
Double_t PrivateGetMvaValue(const TMVA::Event *ev, Double_t *err=nullptr, Double_t *errUpper=nullptr, UInt_t useNTrees=0)
Return the MVA value (range [-1;1]) that classifies the event according to the majority vote from the...
void MakeClassSpecific(std::ostream &, const TString &) const
Make ROOT-independent C++ class for classifier response (classifier-specific implementation).
void GetHelpMessage() const
Get help message text.
LossFunctionBDT * fRegressionLossFunctionBDTG
void DeterminePreselectionCuts(const std::vector< const TMVA::Event * > &eventSample)
Find useful preselection cuts that will be applied before and Decision Tree training.
Double_t GradBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt, UInt_t cls=0)
Calculate the desired response value for each region.
const Ranking * CreateRanking()
Compute ranking of input variables.
virtual void SetTuneParameters(std::map< TString, Double_t > tuneParameters)
Set the tuning parameters according to the argument.
Double_t AdaCost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
The AdaCost boosting algorithm takes a simple cost Matrix (currently fixed for all events....
void DeclareOptions()
Define the options (their key words).
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
virtual std::map< TString, Double_t > OptimizeTuningParameters(TString fomType="ROCIntegral", TString fitType="FitGA")
Call the Optimizer with the set of parameters and ranges that are meant to be tuned.
Double_t Boost(std::vector< const TMVA::Event * > &, DecisionTree *dt, UInt_t cls=0)
Apply the boosting algorithm (the algorithm is selecte via the "option" given in the constructor.
Double_t TestTreeQuality(DecisionTree *dt)
Test the tree quality.. in terms of Misclassification.
Double_t Bagging()
Call it boot-strapping, re-sampling or whatever you like, in the end it is nothing else but applying ...
void UpdateTargets(std::vector< const TMVA::Event * > &, UInt_t cls=0)
Calculate residual for all events.
void UpdateTargetsRegression(std::vector< const TMVA::Event * > &, Bool_t first=kFALSE)
Calculate residuals for all events and update targets for next iter.
Double_t GradBoostRegression(std::vector< const TMVA::Event * > &, DecisionTree *dt)
Implementation of M_TreeBoost using any loss function as described by Friedman 1999.
void WriteMonitoringHistosToFile(void) const
Here we could write some histograms created during the processing to the output file.
virtual ~MethodBDT(void)
Destructor.
void AddWeightsXMLTo(void *parent) const
Write weights to XML.
Double_t GetGradBoostMVA(const TMVA::Event *e, UInt_t nTrees)
Returns MVA value: -1 for background, 1 for signal.
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
BDT can handle classification with multiple classes and regression with one regression-target.
Double_t RegBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
A special boosting only for Regression (not implemented).
void InitEventSample()
Initialize the event sample (i.e. reset the boost-weights... etc).
Double_t ApplyPreselectionCuts(const Event *ev)
Apply the preselection cuts before even bothering about any Decision Trees in the GetMVA .
void SetMinNodeSize(Double_t sizeInPercent)
void ProcessOptions()
The option string is decoded, for available options see "DeclareOptions".
void PreProcessNegativeEventWeights()
O.k.
void MakeClassInstantiateNode(DecisionTreeNode *n, std::ostream &fout, const TString &className) const
Recursively descends a tree and writes the node instance to the output stream.
Double_t AdaBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
The AdaBoost implementation.
TTree * fMonitorNtuple
monitoring ntuple
std::vector< Double_t > GetVariableImportance()
Return the relative variable importance, normalized to all variables together having the importance 1...
void InitGradBoost(std::vector< const TMVA::Event * > &)
Initialize targets for first tree.
void Train(void)
BDT training.
void GetBaggedSubSample(std::vector< const TMVA::Event * > &)
Fills fEventSample with fBaggedSampleFraction*NEvents random training events.
const std::vector< Float_t > & GetRegressionValues()
Get the regression value generated by the BDTs.
SeparationBase * fSepType
the separation used in node splitting
void ReadWeightsFromXML(void *parent)
Reads the BDT from the xml file.
void ReadWeightsFromStream(std::istream &istr)
Read the weights (BDT coefficients).
void Reset(void)
Reset the method, as if it had just been instantiated (forget all training etc.).
void MakeClassSpecificHeader(std::ostream &, const TString &) const
Specific class header.
void DeclareCompatibilityOptions()
Options that are used ONLY for the READER to ensure backward compatibility.
Virtual base Class for all MVA method.
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
Implementation of the MisClassificationError as separation criterion.
std::map< TString, Double_t > optimize()
PDF wrapper for histograms; uses user-defined spline interpolation.
Ranking for variables in method (implementation)
Class that is the base-class for a vector of result.
TGraph * GetGraph(const TString &alias) const
void Store(TObject *obj, const char *alias=nullptr)
TH1 * GetHist(const TString &alias) const
Implementation of the SdivSqrtSplusB as separation criterion.
Timing information for training and evaluation of MVA methods.
TString GetElapsedTime(Bool_t Scientific=kTRUE)
returns pretty string with elapsed time
void DrawProgressBar(Int_t, const TString &comment="")
draws progress bar in color or B&W caution:
Singleton class for Global types used by TMVA.
Double_t Determinant() const override
TMatrixTSym< Element > & Invert(Double_t *det=nullptr)
Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of B...
const char * GetTitle() const override
Returns title of object.
virtual Int_t Write(const char *name=nullptr, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
virtual void Delete(Option_t *option="")
Delete this object.
virtual Int_t Read(const char *name)
Read contents of object with specified name from the current directory.
Random number generator class based on M.
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
Double_t Atof() const
Return floating-point value contained in string.
Bool_t IsFloat() const
Returns kTRUE if string contains a floating point or integer number.
TString & ReplaceAll(const TString &s1, const TString &s2)
TString & Append(const char *cs)
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
A TTree represents a columnar dataset.
TSeq< unsigned int > TSeqU
create variable transformations
MsgLogger & Endl(MsgLogger &ml)
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Double_t Exp(Double_t x)
Returns the base-e exponential function of x, which is e raised to the power x.
Int_t FloorNint(Double_t x)
Returns the nearest integer of TMath::Floor(x).
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Double_t Sqrt(Double_t x)
Returns the square root of x.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Int_t CeilNint(Double_t x)
Returns the nearest integer of TMath::Ceil(x).
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
static uint64_t sum(uint64_t i)