ROOT
master
Reference Guide
Loading...
Searching...
No Matches
GiniIndex.cxx
Go to the documentation of this file.
1
// @(#)root/tmva $Id$
2
// Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss
3
4
/**********************************************************************************
5
* Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6
* Package: TMVA *
7
* Class : TMVA::GiniIndex *
8
* *
9
* *
10
* Description: Implementation of the GiniIndex as separation criterion *
11
* Large Gini Indices (maximum 0.5) mean , that the sample is well *
12
* mixed (same amount of signal and bkg) *
13
* bkg. Small Indices mean, well separated. *
14
* general definition: *
15
* Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2 *
16
* Where: M is a sample of whatever N elements (events) *
17
* that belong to K different classes *
18
* c(k) is the number of elements that belong to class k *
19
* for just Signal and Background classes this boils down to: *
20
* Gini(Sample) = 2s*b/(s+b)^2 *
21
* *
22
* Authors (alphabetical): *
23
* Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
24
* Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
25
* Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
26
* *
27
* Copyright (c) 2005: *
28
* CERN, Switzerland *
29
* U. of Victoria, Canada *
30
* Heidelberg U., Germany *
31
* *
32
* Redistribution and use in source and binary forms, with or without *
33
* modification, are permitted according to the terms listed in LICENSE *
34
* (see tmva/doc/LICENSE) *
35
**********************************************************************************/
36
37
/*! \class TMVA::GiniIndex
38
\ingroup TMVA
39
40
Implementation of the GiniIndex as separation criterion.
41
42
Large Gini Indices (maximum 0.5) mean , that the sample is well mixed (same
43
amount of signal and bkg) bkg.
44
45
Small Indices mean, well separated.
46
47
#### General definition:
48
49
\f[
50
Gini(Sample M) = 1 - (\frac{c(1)}{N})^2 - (\frac{c(2)}{N})^2 .... - (\frac{c(k)}{N})^2
51
\f]
52
53
Where:
54
55
\f$ M \f$ is a sample of whatever \f$ N \f$ elements (events) that belong
56
to \f$ K \f$ different classes.
57
58
\f$ c(k) \f$ is the number of elements that belong to class \f$ k \f$ for just
59
Signal and Background classes this boils down to:
60
61
\f[
62
Gini(Sample) = \frac{2sb}{(s+b)^2}
63
\f]
64
*/
65
66
#include "
TMVA/GiniIndex.h
"
67
68
#include "
Rtypes.h
"
69
70
ClassImp
(
TMVA::GiniIndex
);
71
72
////////////////////////////////////////////////////////////////////////////////
73
/// what we use here is 2*Gini.. as for the later use the factor
74
/// 2 is irrelevant and hence I'd like to save this calculation
75
76
Double_t
TMVA::GiniIndex::GetSeparationIndex
(
const
Double_t
s,
const
Double_t
b
)
77
{
78
if
(s+
b
<= 0)
return
0;
79
if
(s<=0 ||
b
<=0)
return
0;
80
// else return s*b/(s+b)/(s+b);
81
else
return
2*s*
b
/(s+
b
)/(s+
b
);
82
}
83
84
GiniIndex.h
b
#define b(i)
Definition
RSha256.hxx:100
Rtypes.h
ClassImp
#define ClassImp(name)
Definition
Rtypes.h:382
TMVA::GiniIndex
Implementation of the GiniIndex as separation criterion.
Definition
GiniIndex.h:63
TMVA::GiniIndex::GetSeparationIndex
virtual Double_t GetSeparationIndex(const Double_t s, const Double_t b)
what we use here is 2*Gini.
Definition
GiniIndex.cxx:76
double
tmva
tmva
src
GiniIndex.cxx
ROOT master - Reference Guide Generated on Wed Dec 18 2024 10:10:22 (GVA Time) using Doxygen 1.9.8