| AddWeightsXMLTo(void *parent) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | virtual | 
  | Backward(Tensor_t &gradients_backward, const Tensor_t &activations_backward) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inlinevirtual | 
  | CellBackward(Matrix_t &state_gradients_backward, const Matrix_t &precStateActivations, const Matrix_t &input, Matrix_t &input_gradient, Matrix_t &dF) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | CellForward(const Matrix_t &input, Matrix_t &dF) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | CopyBiases(const std::vector< Matrix_t > &otherBiases) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | CopyParameters(const VGeneralLayer< Arch > &layer) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | CopyWeights(const std::vector< Matrix_t > &otherWeights) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | DoesRememberState() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | DoesReturnSequence() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | fActivationDesc | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fActivationGradients | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fBatchSize | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fBiases | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fBiasGradients | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fCell | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fDepth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fDerivatives | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fDescriptors | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fDx | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fDy | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fF | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fHeight | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fInit | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fInputDepth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fInputHeight | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fInputWidth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fIsTraining | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | Forward(Tensor_t &input, bool isTraining=true) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | virtual | 
  | fOutput | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fRememberState | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fReturnSequence | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fState | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fStateSize | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fTimeSteps | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fWeightGradients | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fWeightGradientsTensor | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fWeightInputGradients | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fWeights | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fWeightsInput | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fWeightsState | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fWeightStateGradients | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fWeightsTensor | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fWidth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fWorkspace | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fX | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | fY | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | private | 
  | GetActivationFunction() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetActivationGradients() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetActivationGradients() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetActivationGradientsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetActivationGradientsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBatchSize() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiases() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiases() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasesAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasesAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasesState() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetBiasesState() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetBiasGradients() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasGradients() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasGradientsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasGradientsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasStateGradients() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetBiasStateGradients() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetCell() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetCell() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetDepth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetDerivatives() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetDerivatives() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetDX() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetDY() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetExtraLayerParameters() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inlinevirtual | 
  | GetHeight() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetInitialization() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetInputDepth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetInputHeight() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetInputSize() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetInputWidth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetOutput() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetOutput() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetOutputAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetOutputAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetState() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetState() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetStateSize() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetTimeSteps() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightGradients() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightGradients() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightGradientsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightGradientsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightGradientsTensor() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightGradientsTensor() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightInputGradients() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightInputGradients() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeights() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeights() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightsInput() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightsInput() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightsState() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightsState() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightStateGradients() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightStateGradients() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightsTensor() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWeightsTensor() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetWidth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetX() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | GetY() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | inline | 
  | HelperDescriptor_t typedef | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | Initialize() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | virtual | 
  | InitState(DNN::EInitialization m=DNN::EInitialization::kZero) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | InitTensors() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | IsTraining() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | LayerDescriptor_t typedef | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | Matrix_t typedef | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | Print() const | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | virtual | 
  | ReadMatrixXML(void *node, const char *name, Matrix_t &matrix) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | ReadWeightsFromXML(void *parent) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | virtual | 
  | ResetTraining() | TMVA::DNN::VGeneralLayer< Architecture_t > | inlinevirtual | 
  | RNNDescriptors_t typedef | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | RNNWorkspace_t typedef | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | Scalar_t typedef | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | SetBatchSize(size_t batchSize) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetDepth(size_t depth) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetDropoutProbability(Scalar_t) | TMVA::DNN::VGeneralLayer< Architecture_t > | inlinevirtual | 
  | SetExtraLayerParameters(const std::vector< Matrix_t > &) | TMVA::DNN::VGeneralLayer< Architecture_t > | inlinevirtual | 
  | SetHeight(size_t height) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetInputDepth(size_t inputDepth) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetInputHeight(size_t inputHeight) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetInputWidth(size_t inputWidth) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetIsTraining(bool isTraining) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetWidth(size_t width) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | TBasicRNNLayer(size_t batchSize, size_t stateSize, size_t inputSize, size_t timeSteps, bool rememberState=false, bool returnSequence=false, DNN::EActivationFunction f=DNN::EActivationFunction::kTanh, bool training=true, DNN::EInitialization fA=DNN::EInitialization::kZero) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | TBasicRNNLayer(const TBasicRNNLayer &) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | Tensor_t typedef | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | TensorDescriptor_t typedef | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | Update(const Scalar_t learningRate) | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | UpdateBiases(const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | UpdateBiasGradients(const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | UpdateWeightGradients(const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | UpdateWeights(const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | VGeneralLayer(size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNSlices, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | VGeneralLayer(size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, std::vector< size_t > WeightsNRows, std::vector< size_t > WeightsNCols, size_t BiasesNSlices, std::vector< size_t > BiasesNRows, std::vector< size_t > BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | VGeneralLayer(VGeneralLayer< Architecture_t > *layer) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | VGeneralLayer(const VGeneralLayer &) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | WeightsDescriptor_t typedef | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > |  | 
  | WriteMatrixToXML(void *node, const char *name, const Matrix_t &matrix) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | WriteTensorToXML(void *node, const char *name, const std::vector< Matrix_t > &tensor) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | ~TBasicRNNLayer() | TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t > | virtual | 
  | ~VGeneralLayer() | TMVA::DNN::VGeneralLayer< Architecture_t > | virtual |