@ CERN Program Library

=RINIS.

Short Writeups

Application Software and Databases

Computing and Networks Division

CERN Geneva, Switzerland

Copyright Notice

CERNLIB — CERN Program Library Short writeups
(© Copyright CERN, Geneva 1996

Copyright and any other appropriate legal protection of these computer programs and associated docu-
mentation reserved in al countries of the world.

These programs or documentation may not be reproduced by any method without prior written consent
of the Director-General of CERN or his delegate.

Permission for the usage of any programs described herein is granted apriori to those scientific insti-
tutes associated with the CERN experimental program or with whom CERN has concluded a scientific
collaboration agreement.

CERN wel comes comments concerning the Program Library, but undertakesno obligation for the main-
tenance of the programs, nor responsibility for their correctness, and accepts no liability whatsoever
resulting from the use of its programs.

Reguests for information should be addressed to:

CERN Program Library Office
CERN-CN Division

CH-1211 Geneva 23
Switzerland

Tel. +41 22 767 4951

Fax. +41 22 767 8630

Internet: cernlib@cern.ch

Trademark notice: All trademarks appearing in this guide are acknowledged as such.

Contact Person Jamie Shiers/CN (shiers@cern.ch)
Technical Realizatian ~ Michel Goossens/CN (goossens@cern.ch)

Edition — June 1996

Introduction

The CERN Program Library is a large collection of general-purpose programs maintained and offered in
both source and object code form on the CERN central computers. Most of these programs were devel oped
at CERN and are therefore oriented towards the needs of a physicsresearch laboratory. Nearly all, however,
are of ageneral mathematical or data-handling nature, applicable to a wide range of problems.

Thelibrary isheavily used at CERN and it is distributed in binary or source form to several hundred labora-
toriesand computer centres outside CERN.

Contents and Organization of the Library

Thelibrary contains about 2500 subroutines and compl ete programs which are grouped together by logical

affiliation into little over 450 program packages. 80% of the programs are written in Fortran77 and the
remainder in C and in assembly code, usually with a FORTRAN version also available.

A unique code is assigned to each package. This code consists of one letter and three or four digits, the
letter indicating the category within our classification scheme. A package consists of one or more related
subprograms with one package name and one or more user-callable entry names, all described briefly in a
“Short write-up”, and if necessary, an additional “Long write-up”.

A complete list of program packages with titles and entries sorted by class is given at the beginning of this
manual. Then follow all the short write-ups, whilethe Index at the end of the volume showsthe page number
(as printed near the inner margin) were a package is defined (in boldface) or referenced.

Acknowledgements

K.S. Kolbig has done most of the work for having this manual nicely formated, particularly in the area of
getting the many mathematical formulae correct.

About the documentation

This document has been produced using IATEX! with the cernman class and the cernlib package, devel-
oped at CERN. A printable version of each of the routines described in this manual can be obtained as a
compressed PostScript file from CERN by anonymous ftp. For instance, if you want to transfer the descrip-
tion of routine E112, then you would type the following (commands that you have to type are underlined): 2

ftp asisftp.cern.ch

Trying 128.141.201.136...

Connected to asisOl.cern.ch.

220 asis01 FTP server (Sun0S 4.1) ready.

Name (asisOl:username): anonymous

Password: your_mailaddress

ftp> binary
ftp> cd cernlib/doc/ps.dir/shortwrups.dir

ftp> get ell2.ps.gz

ftp> quit

!Leslie Lamport, IATEX — A Document Preparation Systesecond edition. Addison-Wesley, 1994
2You can of courseissue multiple get commandsin one run. If you do not have the gunzip utility on your machine, you can
get an non-compressed, ready-to-print version by omitting the . gz suffix, i.e. in theexample above, get e112.ps.

1 Front —i

Front —ii

Chapter 1: Catalog of Program Packages and Entries

Elementary Functions

B002 PRMFCT
B100 RBINOM
B101 ATG

B102 ASINH
B105 RPLNML
B300 RSRTNT

Prime Numbers and Prime Factor Decomposition
Binomial Coefficient

Arc Tangent Function

Hyperbolic Arcsine

Value of a Polynomial

Integral of type R(x,va + bx + cz?2)

Equations and Special Functions

€200 RZEROX
€201 RSNLEQ
€202 RMULLZ
€205 RZERO
C207 RRTEQ3
C208 RRTEQ4
C209 CPOLYZ
C210 NZERFZ
C300 ERF
C301 FREQ
€302 GAMMA
C303 GAMMF
C304 ALGAMA
C305 CGAMMA
C306 CLGAMA
C309 CCLBES

€312 BESJO

€313 BESIO

C315 RRIZET
C316 RPSIPG
C317 CPSIPG
C318 RELFUN
€320 CELFUN
€321 CGPLG

€322 RFRSIN
€323 RFERDR
€324 RATANI
€326 RCLAUS

Zero of aFunction of One Real Variable

Numerical Solution of Systems of Nonlinear Equations
Zeros of a Real Polynomial

Zero of aFunction of One Real Variable

Roots of a Cubic Equation

Roots of a Quartic Equation

Zeros of a Complex Polynomial

Number of Zeros of a Complex Function

Error Function and Complementary Error Function
Normal Freguency Function

Gamma Function for Positive Argument

Gamma Function for Real Argument

Logarithm of the Gamma Function

Gamma Function for Complex Argument

Logarithm of the Gamma Function for Complex Argument

Coulomb Wave, Bessel, and Spherical Bessel Functionsfor Complex Argument(s) and
Order

Bessel FunctionsJand Y of Orders Zero and One

Modified Bessel Functions| and K of Orders Zero and One
Riemann Zeta Function

Psi (Digamma) and Polygamma Functions

Psi (Digamma) and Polygamma Functions for Complex Argument
Jacobian Elliptic Functionssn, cn, dn

Jacobian Elliptic Functions sn, cn, dn for Complex Argument
Nielsen’s Generalized Polylogarithm

Fresnel Integrals

Fermi-Dirac Function

Arctangent Integral

Clausen Function

Catalog—1

€327 BSIR4
€328 CWHITM
C330 RASLGF
€331 RFCONC
€332 RDILOG
€334 RGAPNC
C335 CWERF
€336 RSININ
€337 REXPIN
€338 CEXPIN
C339 RDAWSN
€340 BSIR3

C341 BSKA

€342 RSTRHO
€343 BSJA

C344 CBSJA
C345 RBZEJY
C346 RELI1

C347 RELI1C
€348 CELINT
C349 RTHETA

Modified Bessel Functions| and K of Order 1/4, 1/2 and 3/4
Whittaker Function M of Complex Argument and Complex Indices
Legendre and Associated L egendre Functions

Conica Functionsof the First Kind

Dilogarithm Function

Incompl ete Gamma Functions

Complex Error Function

Sine and Cosine Integrals

Exponential Integral

Complex Exponential Integral

Dawson’s Integral

Modified Bessel Functions| and K of Order /3 and 2/3

Modified Bessel FunctionsK of Certain Order

Struve Functions of Orders Zero and One

Bessel FunctionsJand | with Positive Argument and Non-Integer Order
Bessel Functions Jwith Complex Argument and Non-Integer Order
Zeros of Bessel FunctionsJand Y

Elliptic Integrals of First, Second, and Third Kind

Complete Elliptic Integrals of First, Second, and Third Kind
Elliptic Integral for Complex Argument

Jacobian Theta Functions

Integration, Minimization, Non-linear Fitting

D101 SIMPS

D102 RADAPT
D103 GAUSS

D104 RCAUCH
D105 RTRINT
D106 RGSBE6P
D107 RGQUAD
D108 TRAPER
D110 RGMLT

D113 CGAUSS
D114 RIWIAD
D120 RADMUL
D151 DIVON4
D200 RRKSTP
D201 RDEQBS
D202 RDEQMR
D203 RRKNYS

Integration by Simpson’s Rule

Adaptive Gaussian Quadrature

Adaptive Gaussian Quadrature

Cauchy Principal Value Integration

Integration over a Triangle

Gaussian Quadrature with Five- and Six-Point Rules

N-Point Gaussian Quadrature

Trapezoidal Rule Integration with an Estimated Error

Gaussian Quadrature for Multiple Integrals

Adaptive Complex Integration Along a Line Segment

Adaptive Multidimensional Monte-Carlo Integration [Obsolete]
Adaptive Quadrature for Multiple Integrals over NV-Dimensional Rectangular Regions
Multidimensional Integration or Random Number Generation [Obsolete]
First-order Differential Equations (Runge-Kutta)

First-order Differential Equations (Gragg—Bulirsch—Stoer)

First-order Differential Equations (Runge—Kutta—M erson)

Second-order Differential Equations (Runge-Kutta—Nystrom)

Catalog—2

D300 EPDE1 Elliptic Partial Differential Equation

D302 ELPAHY Fast Partial Differential Equation Solver

D401 RDERIV Numerical Differentiation

D501 LEAMAX Constrained Non-Linear Least Squares and Maximum Likelihood Estimation
D503 RMINFC Minimum of a Function of One Variable

D506 MINUIT Function Minimizationand Error Analysis

D510 FUMILI Fitting Chisquare and Likelihood Functions[Obsolete]

D601 RFRDH1 Solutionof aLinear Fredholm Integral Equation of Second Kind
D700 RFT Real Fast Fourier Transform

D702 CFT Complex Fast Fourier Transform

D705 RFSTFT Real Fast Fourier Transform

D706 CFSTFT Complex Fast Fourier Transform

Interpolation, Approximations, Linear Fitting

E100 POLINT Polynomial Interpolation

E102 MAXIZE Maximum and Minimum Elements of Arrays

E103 AMAXMU Largest Absolute Number in Scattered Vector

E104 FINT Multidimensional Linear Interpolation

E105 DIVDIF Function Interpolation

E106 LOCATR Binary Search for Element in Ordered Array

E201 RLSQPM Least Squares Polynomial Fit

E208 LSQ Least Squares Polynomial Fit [Obsolete]

E210 NORBAS Polynomia Splines/ Normalized B-Splines

E211 RCSPLN Cubic Splinesand their Integrals

E222 RCHEBN Solution of Overdetermined Linear System in the Chebychev Norm
E230 TL Constrained and Unconstrained Linear Least Squares Fitting

E250 LFIT Least-Squares Fit to Straight Line

E255 PARLSQ Least-Squares Fit to Parabola [Obsolete]

E406 RCHECF Chebyshev Series Coefficients of a Function

E407 RCHSUM Summation of Chebyshev Series

E408 RCHPWS Conversion of Chebyshev to Power and Power to Chebyshev Series
E409 RTRGSM Summation of Trigonometric Series

Matrices, Vectors and Linear Equations

FOO1 LAPACK Linear AlgebraPackage

FO02 RVADD Elementary Vector Processing

FOO3 RMADD Elementary Matrix Processing

FO04 RMMLT Matrix Multiplication

FO10 RINV Linear Equations, Matrix Inversion

FO11 RFACT Repeated Solution of Linear Equations, Matrix Inversion, Determinant

5 Catalog —3

FO12 RSINV ~ Symmetric Positive-Definite Linear Systems

F105 POLROT Rotate a Three-Dimensional Polar Coordinate System
F110 MXPACK TC Matrix Manipulation Package [Obsolete]

F112 TR Manipulation of Triangular and Symmetric Matrices
F116 DOTI Scalar Product of Two Space-Time Vectors

F117 CROSS Vector Product of Two 3-Vectors

F118 ROT Rotating a 3-Vector

F121 VECMAN Vector Algebra

F122 SCATTER Search Operationson Sparse Vectors

F123 BVSL Bit Vector Manipulation Package

F150 MXDIPR Direct or Tensor Matrix Product

F406 RBEQN Banded Linear Equations

F500 RLHOIN Linear Homogenous Inequalities

Statistical Analysis and Probability

G100 PROB Upper Tail Probability of Chi-Squared Distribution
G101 CHISIN Inverse of Chi-Square Distribution

G102 PROBKL Kolmogorov Distribution

G103 TKOLMO Kolmogorov Test

G104 STUDIS Student'sT-Distributionand ItsInverse

G105 GAUSIN Inverse of Gaussian Distribution

G106 GAMDIS Gamma Distribution

G110 LANDAU Landau Distribution

G115 VAVLOV Approximate Vavilov Distribution and its Inverse
G116 VVILOV Vavilov Density and Distribution Functions
G900 RANF Random Number Generator [Obsolete]

Operation Research Techniques and Management Science
H101 RSMPLX Linear Optimization Using the Simplex Algorithm
H301 ASSNDX Assignment Problem

Input/Output

1101 EPIO EP Standard Format | nput/Output Package
1202 KUIP KUIP - Kit for aUser Interface Package
1302 FFREAD Format-Free Input Processing [Obsolete]

Output and Graphical Data Presentation

J200 VIZPRI Print Large Characters
J403 XBANNER Print Banner Text
J530 BINSIZ Reasonable Intervalsfor Histogram Binning

Catalog -4

Executive Routines

L210 COMIS COMIS- Compilation and Interpretation System
L400 PATCHY Source Code Maintenance

Data Handling

M101 SORTZV Sort One-Dimensional Array

M103 FLPSOR Sort One-Dimensional Array into ltself

M104 SORCHA Sort One-Dimensional Character Array into Itself

M107 SORTR Sort Rowsof a Matrix

M109 SORTRQ Sort Rowsof a Matrix

M215 PSCALE Find Power-of-Ten Scale for Printing

M220 IE3CONV Conversion To and From |EEE Number Format

M400 CHTOI Portable Conversion Between Type CHARACTER and Type INTEGER
M409 UBUNCH Concentrate and Disperse Character Strings [Partially obsolete]
M421 BITBYT Package for Handling Bits and Bytes

M422 PACBYT Handling Packed Vectors of Bytes

M423 INCBYT Increment aByte of aPacked Vector

M426 BLOW Unpack Full Words into Bytes

M427 PKCHAR Pack/Unpack Continuous Byte-strings

M428 LOCBYT Search for Byte-Content

M429 NUMBIT Number of One-Bitsin aWord

M431 IFROMC Convert Between Character String and Packed ASCII Form
M432 CHPACK Utility Routinesfor Character String Parsing and Construction
M433 INDEXX Utility Package for Character Manipulation

M434 VXINV Fast VAX Bytelnversion

M436 BUNCH Pack Bytesinto Full Words

M437 GETBIT Setor RetrieveaBitina String

M438 BTMOVE Move Bit String

M439 GETBYT Set or Retrieve aBit String

M441 BITPAK Handling Bitsand Bytes, Bit Zero the Least Significant
M442 NAMEFD Fortran Emulation of VM/CMS NAMEFIND Command
M501 IUSAME Locating aString of Same Words

M502 UOPTC Decoding Options Characters

M503 UBITS Locate the One-Bitsof aWord or an Array

M507 LENOCC Occupied Length of a Character String

M508 BITPOS Find One-BitsinaString

7 Catalog -5

Debugging, Error Handing

NOO1 KERSET
NOO2 MTLSET
N100 LOCF

N103 IUWEED
N105 TRACEQ
N203 TCDUMP

Error Processing for Sections A-H of KERNLIB [Partially obsolete]
Error Processing for MATHLIB

Address of a Variable

Detect Indefinite and Infinite in an Array

Print Trace-Back

Memory Dump

Service or Housekeeping Programming Aids

Q100 ZEBRA
Q120 HIGZ
Q121 PAW
Q122 SIGMA
Q123 FATMEN
Q124 CSPACK
Q180 HEPDB
Q210 ZBOOK
Q901 INDENT
Q902 FLOP

Dynamic Data Structure and Memory Manager

High Level Interface to Graphics and Zebra

PAW - Physics Analysis Workstation Package

SIGMA - System for Interactive Graphical Mathematical Applications
Distributed File and Tape Management System

Client Server Routines and Utilities

Distributed Database Management System

Dynamic Memory Management [Obsolete]

Indent Fortran Source

FLOP - Fortran Language Oriented Parser

Q904 CONVERT Fortran 77 to Fortran 90 source form conversion tool

Q905 WYLBUR

Wylbur Phoenix - aLine Editor for ASCII Text Files[Obsolete]

Magnet and Beam Design, Electronics

T604 POISCR

Solution of Poisson’sor Laplace's Equation in Two-Dimensional Regions

Quantum Mechanics, Particle Physics

U101 LOREN4
U102 LORENF
U111 RWIG3J
U112 RTCLGN
U501 RDJMNB

Lorentz Transformation

Lorentz Transformations

Wigner 3-j, 6-j, 9-j Symbols; Clebsch-Gordan, Racah W-, Jahn U-Coefficients
Clebsch-Gordan Coefficientsin Rational Form

Beta-Term in Wigner’s D-Function

Random Numbers and General Purpose Utilities

V104 RNDM
V105 NRAN
V113 RANMAR
V114 RANECU
V115 RANLUX
V116 RM48
V120 RNORML

Uniform Random Numbers[Obsolete]

Arrays of Uniform Random Numbers[Obsolete]
Uniform Random Number Generator

Uniform Random Number Generator

Uniform Random Numbers of Guaranteed Quality
Double Precision Uniform Random Numbers
Gaussian-distributed Random Numbers

Catalog—6

V122 CORSET Correlated Gaussian-distributed Random Numbers

V130 RAN3D Random Three-Dimensional Vectors [Obsolete]

V131 RN3DIM Random Three-Dimensional Vectors

V135 RNGAMA Gammaor Chi-Square Random Numbers

V136 RNPSSN Poisson Random Numbers

V137 RNBNML Binomia Random Numbers

V138 RNMNML Multinomial Random Numbers

V149 RNHRAN Random Numbers According to Any Histogram

V150 HISRAN Random Numbers According to Any Histogram [Obsolete]
V151 FUNRAN Random Numbers According to Any Function [Obsolete]
V152 FUNLUX Random Numbers According to Any Function

V202 PERMU Permutations and Combinations

V300 UZERO Preset Parts of an Array

V301 UCOPY Copy an Array

V302 UCOCOP Copy a Scattered Vector

V304 IUCOMP Search aVector for a Given Element

V306 PROXIM Adjustingan Angleto Another Angle

V401 GRAPH Find Compatible Node-Netsin an Incompatibility Graph
V700 RVNSPC Volume of Intersection of a Circular Cylinder with a Sphere

High Energy Physics Simulation, Kinematics, Phase Space

W150 TRSPRT Transport, Second-Order Beam Optics

W151 TURTLE Beam Transport Simulation, Including Decay
W505 FOWL General Monte-Carlo Phase-Space

W515 GENBOD N-Body Monte-Carlo Event Generator

Statistical Data Analysis and Presentation

Y201 IUCHAN Find Histogram-Channel
Y250 HBOOK Statistical Analysisand Histogramming
Y251 HPLOT HPLOT : HBOOK Graphics Interface for Histogram Plotting

Miscellaneous System-Dependent Facilities

Z001 KERNGT Print KERNLIB Version Numbers

Z007 DATIME Job Time and Date

Z009 CALDAT Calendar Date Conversion

Z020 UMON Usage Monitor for VAX/VMS

Z035 ABEND Abnormal Termination of Fortran Programs
Z036 ABUSER Intercept a Fortran Abend on IBM

Z037 VAXAST Routinesto Handle Control-C Interruptson Vax
Z041 QNEXTE Restart of Next Event

9 Catalog—7

Z042 JUMPXN Calling a Subroutine by its Address[Obsolete]
Z044 INTRAC Identify Job asInteractive

Z045 IFBATCH Identify Job as Runningin Batch Mode

Z203 XINOUT Short List Reading and Writing

Z264 IARGC Returns Command Line Arguments

Z265 CINTF Immediate Interface Routinesto the C Library
Z266 WHOAMI Get the Name of the Executing Maodule

Z267 FTOVAX Convert File-nameto and from UNIX Syntax
Z301 VAXTIO VAX Fortran Interface for Reading and Writing’ Foreign’ Tapes
Z303 KAPACK Random Access /O Using Keywords [Obsolete]
Z310 CFIO Handle Fixed-length Records on Unix Streams
Z311 CIO Handle Unix Disk Files

Z313 TMREAD Terminal Dialog Routines

Catalog —8

PRMFCT CERN Program Library B002

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.11.1995
Language : Fortran Revised:

Prime Numbers and Prime Factor Decomposition

Subroutine subprogram PRMFCT

e setsthefirst n < 1229 primenumbersp; =2, po =3, ps = 5, ..., p1229 = 9973 into an array;
o performs the decomposition of a positive number N < 10007 into its prime factors:

N = 291.3%2.5% ... 9Q73~1229,

o performsthe decomposition of thefactorial N'! of apositivenumber N < 10007 intoitsprime factors:

N! = 991.3% . 5% ... Q7321229

Notethat thisallowsin particular to handle quotients of factorials of rather large numbersin an exact way.
Structure:

SUBROUTINE subprogram
User Entry Names: PRMFCT
Files Referenced: Unit 6

Usage:

CALL PRMFCT(MODE,N,NPRIME,NPOWER,M)

MODE = 0 : Setsthefirst n prime numbersinto an array.

N (INTEGER) The number » of prime numbers requested.

NPRIME (INTEGER)One-dimensional array of length > N. Onexit, NPRIME(j),(j = 1,2, ..., N) contains
the j-th prime numbersp;, wherep; =2, po =3, ps =5, ...

NPOWER (INTEGER) One-dimensional array of length > N. Onexit, NPOWER(j),(j = 1,2, ..., N) contains
thevalue 1.
M (INTEGER) Contains, on exit, the number n.

MODE = 1, 2 : Performs the decomposition of NV (MODE = 1) or N'! (MODE = 2) into its prime factors.

N (INTEGER) The number N itself (MODE = 1) or its factorial (MODE = 2) to be decomposed into
prime factors.

NPRIME (INTEGER)One-dimensional array of length > N. Onexit, NPRIME(j),(j = 1,2, ..., M) contains
the j-th prime numbersp;, wherep; = 2, p, =3, ps =5,

NPOWER (INTEGER) One-dimensional array of length > N. Onexit, NPOWER(j),(j = 1,2, ..., M) contains
the power o; corresponding to the prime number p;.

M (INTEGER) Contains, on exit, theindex M < N defined by apy > 0 and o; = 0 for j > M.

11 B002-1

Restrictions:

MODE =0:1 < N < 1229.
MODE = 1 Or MODE = 2 : 2 < N < 10007.

Error handling:

Error B002.1: MODE # 0 and MODE # 1 and MODE # 2.

Error B0O02.2: N out of range.

In both cases, NPRIME(j) and NPOWER(j), (j = 1,2,...,N) are set to zero and a message is written on
Unit 6, unlesssubroutineMTLSET (N0O2) has been called.

[]

B002 -2 12

RBINOM CERN Program Library B100

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.02.1989
Language : Fortran Revised: 15.11.1995

Binomial Coefficient

Function subprograms RBINOM and DBINOM calculate the binomial coefficient

. z(z—1)...(e —k+1)/k! (k>0)
o - .
0 (k< 0)

for real = and integer k. Function subprogram KBINOM calculates the binomial coefficient only for integer
r = n.

On CDC and Cray computers, the double-precision version DBINOM is not available.
Structure:

FUNCTION subprograms

User Entry Names: RBINOM, DBINOM, KBINOM
Obsolete User Entry Names: BINOM = RBINOM
Files Referenced: Unit 6

Usage:
In any arithmetic expression,
RBINOM(X,K), DBINOM(X,K) or KXBINOM(N,K)

has the value of the binomial coefficient. RBINOM is of type REAL, DBINOM is of type DOUBLE PRECISION
and X has the same type as the function name. KBINOM, N andK are of type INTEGER.

Restrictions:

Function subprogram KBINOM can compute only binomial coefficients which lie in the integer range of the
machine.

Accuracy:
Full machine accuracy.
Error handling:

If the result of KBINOM would lie outside the integer range of the machine, KBINOM is set equal to zero and
an error message is printed.

13 B100-1

ATG CERN Program Library B101

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.02.1989
Language : Fortran Revised: 15.03.1993

Arc Tangent Function

Function subprogram ATG calculates, for real argumentsz; and 2, (21, 22) # (0.,0.), an angle o such that
a = arctan(zq/z9) and 0 < a < 27.

Notethat using the Fortran intrinsic function ATAN2 instead of ATG would resultin —7 < o < 7.

Structure:

FUNCTION subprogram
User Entry Names: ATG

Usage:
In any arithmetic expression,

ATG(X1,X2)
hasthevalueof « (inradians). ATG, X1 and X2 are of type REAL.
Notes:

Thisfunction subprogram is equivalent to the statement function
ATG(X1,X2)=ATAN2(X1,X2)+(PI-SIGN(PI,X1))

wherePI = .
®

14 B101-1

ASINH CERN Program Library B102

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised: 15.03.1993

Hyperbolic Arcsine

Function subprograms ASINH and DASINH cal culate the hyperbolic arcsine

arcsinh(z) = In(z + V2?2 4+ 1)

for real argument .
On CDC and Cray computers, the double precision version DASINH is not available

Structure:

FUNCTION subprograms
User Entry Names: ASINH, DASINH

Usage:
In any arithmetic expression,
ASINH(X) or DASINH(X) hasthevalue arcsinh(X),

where ASINH is of type REAL, DASINH is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:
Approximation by truncated Chebyshev series and functional relations.
Accuracy:

ASINH (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DASINH (and ASINH on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press New York, 1975) 66.

15 B102-1

RPLNML CERN Program Library B105

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.12.1994
Language : Fortran Revised:

Value of a Polynomial

Function subprograms RPLNML, DPLNML calcul ate the value of the polynomial
() = ag+ arz + aga® + -+ a, 2"

or
gn(z) = apr™ + a12" 7 Faga"? + - ta,

for real values z, whereas function subprograms CPLNML, WPLNML cal cul ate the value of the polynomial
ra(2) = co+ 1zt o4 e, 2"

or
sp(2) = cpz" 4+ 12" Ve 4 e,

for complex values =.
On CDC and Cray computers, the double-precision versions DPLNML and WPLNML are not available.

Structure:

FUNCTION subprograms
User Entry Names: RPLNML, DPLNML, CPLNML, WPLNML

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),
tPLNML(X,N,A,MODE)

has, in any arithmetic expression, thevalue p,,(z) or ¢, (z);
for t = C (type COMPLEX), t = W (type COMPLEX*16),

tPLNML(Z,N,C,MODE)

has, in any arithmetic expression, the value r,,(z) or s,,(z).

X,Z (type according to t) Arguments = or z, respectively.
N (INTEGER) Degree n of p,, (), ¢, (x) or r,,(2), s, (2).
A,C (type according to t) One-dimensional arrays of dimension (0:d) where d > N, containing the

coefficientsay, or ¢, (k= 0,...,n) inACk) or C(k), respectively.
MODE (INTEGER) Either +1 for p,, (), r,.(z) or =1 for ¢, (), s,(2).

Method:
The Horner scheme is used.
Notes:

A reference with N < 0 or MODE different from +1 or -1 returns the value zero.
®

16 B105-1

RSRTNT CERN Program Library B300

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.03.1993
Language : Fortran Revised:

An integral of type R(x, va 4+ bx + ¢x2)

Subroutine subprograms RSRTNT and DSRTNT cal cul ate, based on indefinite integration, the definite integral

v k
I(k,n;a,b,c;u,v) = / v du ,
v (Va+ bz + ca?)r
fork = —3,-2,-1,0,1,2,3and n = 1, 3, provided that a + bz + c2? > 0 for u < = < v and the limits
u, v are such that the integral converges. In particular, the Cauchy principal value istakenif £ = —1 and

uv < 0.
On CDC and Cray computers, the double-precision version DSRTNT is not provided.

Structure:

SUBROUTINE subprograms

User Entry Names : RSRTNT, DSRTNT

Files Referenced : Unit 6

External References: MTLMTR (N0O2), ABEND (Z035)

Usage:
For t =R (typeREAL), t = D (type DOUBLE PRECISION),
CALL tSRTNT(X,N,A,B,C,U,V,RES,LRL)

K (INTEGER) Power k of .
N (INTEGER) Power n of va + bz + ca?.

A,B,C (typeaccordingtot) Coefficientsa, b, c.

u,v (type according to t) Limitsof integration u, v.

RES (type according to t) Contains, on exit, the value I provided LRL = .TRUE., the value zero other-
wise.

LRL (LOGICAL) Contains, on exit, the value . TRUE. if theintegral existsin the sense described above,

thevalue .FALSE. otherwise.

Restrictions:
1. |A]+|B]+[c| #o. 2. |K|<3 N=1orN=3.
Error handling:

Error B300.1: Restriction 1 isnot satisfied. Error B300.2: Restriction 2 is not satisfied.
In both cases, RES is set equal to zero and LRL is set equal to .FALSE., and a message is written on Unit
6, unless subroutine MTLSET (N002) has been called.

References:

1. |.S. Gradshteyn and .M. Ryzhik, Table of integrals, series, and products, (Academic Press, New York
1980) Sect. 2.26

17 B300-1

RZEROX CERN Program Library C200

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.05.1990
Language : Fortran Revised:01.12.1994

Zero of a Function of One Real Variable
Function subprograms RZEROX and DZEROX compute, to an attempted specified accuracy, a zero zq of a
real-valued function f(z) lyingin agiveninterval [«, b], where f(a) * f(b) < 0.

On computers other than CDC or Cray, only the double precision version DZEROX isavailable. On CDC and
Cray computers, only the single-precision version RZEROX is available.

Structure:

FUNCTION subprograms

User Entry Names: RZEROX, DZEROX

Obsolete User Entry Names: ZEROX = RZEROX

Files Referenced: Unit 6

External References: User-supplied FUNCTION subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),
tZEROX (A,B,EPS,MAXF,F,MODE)

has, in any arithmetic expression, the value .

A,B (type according to t) On entry, A and B must specify the end points of the search interval. Un-
changed on exit.

EPS (type according to t) On entry, EPS must be equal to the accuracy parameter (see Accuracy).
Unchanged on exit.

MAXF (INTEGER) On entry, MAXF must be equal to the maximum permitted number of referencesto the
functionF within the iteration loop. Unchanged on exit.

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

MODE (INTEGER) On entry, MODE = 1 or MODE = 2 defines the algorithm for finding =, (see Method
and Noteg.

Method:

Two algorithims are incorporated in this subprogram. These are described in Ref. 1 as “Algorithm M”
(MODE = 1) and “Algorithm R” (MODE = 2). Both are mixtures of linear interpolation, rational interpolation
and bisection.

Accuracy:

These subprograms try to compute two numbers x and z; lying in theinterval [«, b] such that
1 f(zo)f(z1) <0
2. [f(zo)| < [f(21)]
3. |zo — 1| < 2% EPSx (1 4 |x0])

If successful, the value of z isassigned to the function name.

18 C200-1

Notes:

1. MODE = 1 should be used for fairly simple functions whose evaluation is cheap in comparison with
the calculations performed in one iteration step of RZEROX or DZEROX.

2. MODE = 2 should be used for more expensive functions. Convergence should be faster than for
MODE = 1, but the evaluation steps are more expensive.

3. For functionswhich have apole near the exact zero, MODE = 1 isrecommended because of the special
character of the interpolation formulawhich is used.

Error handling:

1. F(A) * F(B) > 0. Thefunction valueis set equal to zero.
2. MODE hasavalue other than 1 or 2. The functionvaueis set equal to zero.

3. The number of references to F exceeds MAXF. The function value is set equal to the last computed
value of z (see Accuracy)

For each error amessage is printed.
Source:
The subprogram is based on Algol programs described in Ref. 1.

References:

1. J.C.P. Busand T.J. Dekker, Two efficient al gorithmswith garanteed convergence for finding a zero of
afunction, ACM Trans. Math. Software 1 (1975) 330—345.

C200-2 19

RSNLEQ CERN Program Library C201

Author(s) : J.J. Moré, M.Y. Cosnard Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 01.06.1989
Language : Fortran Revised:01.12.1994

Numerical Solution of Systems of Nonlinear Equations

Subroutine subprograms RSNLEQ and DSNLEQ compute a vector z;, (¢ = 1,2, ..., n), which approximates
an exact solution 27 of the system of n nonlinear equationswith n unknowns

Fi(z1,...,2,) =0, (i=1,2,...,n).

These subroutinesincorporate two convergence test, making use of arguments FTOL and XTOL respectively.
If 2;, (i =1,2,...,n), denotesthe result of the current iteration, and z’ the result of the previousiteration,
the calculationis terminated if either of the following testsis successful:

Test1: max |F;(zq,...,2,)| <FIOL,
Test2: max |z; — ;| < XTOL * max |z,

where the maxima are takenover 1 < ¢ < n.

On computers other than CDC and Cray, only the double-precision version DSNLEQ is available. On CDC
and Cray computers, only the single-precision version RSNLEQ is available.

Structure:

SUBROUTINE subprograms

User Entry Names : RSNLEQ, DSNLEQ

Obsolete User Entry Names : SNLEQ = RSNLEQ
FilesReferenced : Unit 6

External References: User-supplied SUBROUTINE subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tSNLEQ(N,X,F,FTOL,XTOL,MAXF,IPRT,INFO,SUB,W)

(INTEGER) Number » of equations and variables.

(type according to t) One-dimensional array of length > N. On entry, X(1), (1 = 1,...,N), must
contain an estimate to a solution z* of the system of equations. On exit, X(i) containsthe final
estimateto z7.

F (type according to t) One-dimensional array of length > N. On exit, F(i), (i=1,...,N), con-
tainsthe final value of the residual F; (X(1),...,X(N)).

FTOL (type according to t) Accuracy parameter for Test 1.
XTOL (type according to t) Accuracy parameter for Test 2.

MAXF (INTEGER) Maximum permitted number of iterations, where each iterationinvolvesN callsto the
user-supplied subroutine SUB. The recommended value for MAXF iS50+ (N+3).

IPRT (INTEGER) If IPRT = 0 no intermediate results are printed.
If IPRT = 1 thevaluesof i and X(i), (1 = 1,2,...,n), are printed after each iteration.

INFO (INTEGER) On exit, the value of INFO showsthe reason why execution wasterminated asfollows:
0 Unacceptable input arguments (N < 1 or FTOL < 0 or XTOL < 0).

20 C201-1

Test 1 issuccessful.

Test 2 issuccessful.

Test 1 and Test 2 are both successful.

Number of iterationsis > MAXF.

Approximate (finite difference) Jacobian matrix is singular

Iterations are not making good progress.

Iterations are diverging.

Iterations are converging, but either (i) XTOL istoo small, or (ii) convergence is very slow
because the Jacobian is nearly singular near = or because the variables z; are badly scaled.
SUB Name of auser-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.

W (type according to t) Array containing at least N* (N+3) elements required as working-space.

O ~N O U W N

The user-supplied SUBROUTINE subprogram SUB should be of the form
SUBROUTINE SUB(N,X,F,K)
DIMENSION X(*),F(*)

Statements which set F(K) equal to the value of Fx(X(1), ..., X(N)) without changing any other
element of array F.

RETURN
END

whereX and F are of typet.

Subroutine SUB should not change the value of the argument X unless the user wants to terminate the exe-
cution of tSNLEQ, in which case K should be set equal to a negative integer, whose value will be copied into
argument INFO of tSNLEQ before exit.

Method:

A modification of Brent's method as described in Ref. 1.
Error handling:

See description of argument INFO.

Notes:

1. Whenever possiblethe equations F; = 0 should be numbered in order of increasing nonlinearity.

2. These subroutines do not use any techniques which attempt to obtain global convergence. Conver-
gence may therefore fail to occur if theinitial estimate istoo far from an exact solution.

Source:
This subroutine has been adapted from the Fortran program published in Ref. 2.
References:

1. JJ. Moréand M.Y. Cosnard, Numerical solution of nonlinear equations, ACM Trans. Math. Software
5 (1979) 64-85.

2. JJ. Moré and M.Y. Cosnard, Algorithm 554 BRENTM, A FORTRAN subroutine for the numerical
solution of systems of nonlinear equations, Collected Algorithmsfrom CACM (1980).

C201-2 21

RMULLZ CERN Program Library C202

Author(s) : H.-H. Umstétter Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 07.06.1992
Language : Fortran Revised:

Zeros of a Real Polynomial

Subroutine subprogram RMULLZ and DMULLZ compute the zeros of the polynomial
P(z) = apz" +a12" ' +.. . +a,_12+a,

of degree n with real coefficients a;, and a # 0.

On computers other than CDC or Cray, only the double-precision version DMULLZ isavailable. On CDC and
Cray computers, only the single-precision version RMULLZ is available.

Structure:

SUBROUTINE subprograms

User Entry Names : RMULLZ, DMULLZ

Files Referenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035)

Usage:
For t =R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tMULLZ(A,N,MAXIT,Z)

A (type according to t) One-dimensional array of dimension (0:d), where d > N, containing the
coefficientsay, (k=0,1,...,n).

N (INTEGER) The degree n.

MAXIT (INTEGER) The maximum number of iterations permitted.

Z (COMPLEX for t = R, COMPLEX*16 for t = D) One-dimensional array of length > N. On exit, Z(1)

contains an approximation to the zero z;, listed in roughly decreasing order of |z;|.

Method:

The method of Muller (see Ref. 1) isused. Thisisbased on iterated inverse quadratic interpol ation followed
by deflation to remove each zero as found.

Accuracy:

For well-conditioned polynomials (i.e. polynomials whose zeros are not unduly sensitive to small errors
in the coefficients), the relative error of a computed zero of multiplicity m is of order 10=%/™ where d
is the machine precision expressed in decimal digits. For m > 1, the m approximations to the single
multiple zero are uniformly distributed on a small circle of radius of order 10~/ around the exact zero.
Therefore, if the polynomia is well-conditioned, the true value of the multiple zero will be close to the
centre (zx41 + - .. + zktm) /m Of thiscircle.

Error handling:

Error C202.1: ag = 0.

Error C202.2: The number of iterations exceeds MAXIT.

In both cases, a message is written on Unit 6, unless subroutine MTLSET (N0O2) has been called. If the
number of iterations exceeds MAXIT, those zeros which have not been found are set to 102°.

22 C202-1

Notes:

For difficult cases which lead to too many iterations the following transformations may be applied, singly
or together, to obtain a better-conditioned polynomial :

1. Reverse the order of the coefficientsto obtain a polynomial whose zeros are z;~ L

2. If thezeros z; are clustered, or are too unsymmetrically positioned with respect to the origin, compute
by synthetic division (see Ref. 3) the coefficients of the polynomia whose argumentisw = z — Z,
where Z = —a;/(nao) is the arithmetic mean of the zeros. The mean of the zeros of this new
polynomial is situated at the origin, which is where the subprogram starts searching. Then, provided
|w;| < |z] for most 7, z; = w; + Z will be more accurate zeros.

References:
1. D.E. Muller, A method for solving algebraic equations using an automatic computer, MTAC (later
renamed Math. Comp.) 10 (1956) 208-215.

2. JW. Daniel, Correcting approximations to multiple roots of polynomials, Numer. Math. 9 (1966)
99-102.

3. F.B. Hildebrand, Introduction to numerical analysis, McGraw-Hill, New York (1956), Section 10.9.

C202-2 23

RZERO CERN Program Library C205

Author(s) : T. Pomentale Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 20.04.1970
Language : Fortran Revised:15.03.1993

Zero of a Function of One Real Variable

Subroutine subprograms RZERO and DZERO compute, to an attempted specified accuracy, a zero of a real-
valued function f(z) lyinginagiveninterval [a, b], where f(a) * f(b) < 0.
On CDC and Cray computers, the double-precision version DZERD is not available.

Structure:

SUBROUTINE subprograms

User Entry Names: RZERO, DZERQ

FilesReferenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tZERO(A,B,X0,R,EPS,MAXF,F)

A,B (type according to t) On entry, A and B must specify the end-points of the search interval. Un-
changed on exit.

X0 (type according to t) On exit, X0 isthe computed approximation to azero z of thefunction f(z).

R (type according to t) On exit, the value of R is such that X0 —z o < R, unlessan error conditionis

detected (see Error Handling).

EPS (type according to t) On entry, EPS must be equal to the accuracy parameter (see Accuracy).
Unchanged on exit.

MAXF (INTEGER) On entry, MAXF must be equal to the maximum permitted number of references to the
functionF within the iteration loop. Unchanged on exit.

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program.

The user-supplied function subprogram F must be of the form FUNCTION F(X,I) andmustsetF(X) = f(X).
The INTEGER argument I isset by RZERO before each reference to F asfollows:

I =1 First reference.
I = 2 Subsequent references.
I = 3 Final reference, before anormal (R > 0) exit.

Method:

A mixed strategy is used, based on the Muller method of parabolic interpolation supplemented by bisection.

24 C205-1

Accuracy:

Theroutine triesto compute a value X0 such that
|X0 — 29| < (14 X0) % EPS.

If this accuracy is obtained with fewer than MAXF references to the function F within the iteration loop, the
subroutine exitswith R positive.

Error handling:

Error C205.1: F(A,1) «F(B, 1) > 0. X0 isset equal to zero and R is set equal to —2|B — 4|.
Error C205.2: The number of callsto F exceeds MAXF. X0 isset equal to zero and R isset to —|B — A[/2.

A messageiswrittenonUnit 6, unlesssubroutine MTLSET (N002) has been called.
[J

C205-2 25

RRTEQ3 CERN Program Library Cc207

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.01.1988
Language : Fortran Revised:01.12.1994

Roots of a Cubic Equation

Subroutine subprograms RRTEQ3 and DRTEQ3 compute the three roots of
P Fratfse+t=0 (%)

for real coefficientsr, s, t.

On computers other than CDC or Cray, only the double-precision version DRTEQ3 isavailable. On CDC and
Cray computers, only the single-precision version RRTEQ3 is available.

Structure:

SUBROUTINE subprograms
User Entry Names: RRTEQ3, DRTEQ3
Obsolete User Entry Names: RTEQ3 = RRTEQ3

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tRTEQ3(R,S,T,X,D)

R,S,T (typeaccordingto t) Coefficientsr, s, ¢ in (x).
(type according to t) One-dimensional array of length > 3. On exit, X is set as described below.

(type according to t) On exit, D is set to the value of the discriminant of ():

> 0 : Onereal root X(1) and two complex conjugaterootsX(2) + iX(3), X(2) — iX(3);
= 0: Threerea rootsX(1), X(2), X(3), whereat least X(2) = X(3);

< 0 : Threedistinct real rootsX (1), X(2), X(3).

Method:

The classical method of Tartaglia-Vieta is used. In certain cases, the solutions are improved by Newton
iteration.

Accuracy:

Depends on the coefficients r, s, t. The values of X(1), X(2), X(3) and of D may be inaccurate if |D| is
very small, even in the case of “exact” coefficients.
[]

26 Cc207-1

RRTEQ4 CERN Program Library C208

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.01.1988
Language : Fortran Revised:01.12.1994

Roots of a Quartic Equation

Subroutine subprograms RRTEQ4 and DRTEQ4 compute the four roots of
2+ ar® + b +ex+d=0 (%)

for real coefficientsa, b, ¢, d.

On computers other than CDC or Cray, only the double-precision version DRTEQ4 isavailable. On CDC and
Cray computers, only the single-precision version RRTEQ4 is available.

Structure:

SUBROUTINE subprograms

User Entry Names: RRTEQ4, DRTEQ4

Obsolete User Entry Names: RTEQ4 = RRTEQ4
External References: RRTEQ3 (C207), DRTEQ3 (C207)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tRTEQ4(A,B,C,D,Z,DC,MT)

A,B,C,D (typeaccordingtot) Coefficientsa, b, c,din (k).

Z (COMPLEX for t = R, COMPLEX*16 for t = D) One-dimensional array of length > 4. On exit,
Z containstheroots of (x).

DC (type according to t) On exit, DC is set to the value of the discriminant of the cubic resolvent
of (x).
MT (INTEGER) On exit, MT specifies the type of the roots:

= 1 : Fourreal rootsinZ(1),...,Z(4);
= 2 : Two pairs of complex conjugateroots, one pair in Z(1),Z2(2), theotherin Z(3),2(4);
= 3 : Tworea rootsin Z(1),Z2(2), and one pair of complex conjugate rootsin Z(3),Z(4).

Method:

The equation is solved by the classical procedure, i.e., by solving its cubic resolvent and by combining the
square roots of these solutionsappropriately.

Accuracy:

Depends on the coefficients a, b, ¢, d. The valuesof Z(1), ... ,Z(4) and of DC may be inaccurate if |DC| is
very small. MT may be uncertain in such cases.
[]

27 Cc208-1

CPOLYZ CERN Program Library C209

Author(s) : T. Pomentale Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 07.06.1992
Language : Fortran Revised:

Zeros of a Complex Polynomial
Subroutine subprograms CPOLYZ and WPOLYZ compute the zeros of the polynominal
P(z) = 0" + e Ntz oy

of degree n with complex coefficients ¢, and ¢o # 0.

On computers other than CDC or Cray, only the double-precision version WPOLYZ isavailable. On CDC and
Cray computers, only the single-precisionversion CPOLYZ is available.

Structure:

SUBROUTINE subprograms

User Entry Names: CPOLYZ, WPOLYZ

Files Referenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035)

Usage:
For t = C (type COMPLEX), t = W (type COMPLEX*16),

CALL tPOLYZ(C,N,MAXIT,Z,R)

C (type according to t) One-dimensional array of dimension (0:4), where d > N, containing the
coefficientsc, (k=10,1,...,n).

N (INTEGER) The degree n.

MAXIT (INTEGER) The maximum number of iterations permitted.

Z (type according to t) One-dimensional array of length > N. Onentry, Z(1), ... , Z(N) must contain

starting approximationsfor the zeros z;. If no starting approximationsare available, the Z(1) should
be set to zero. On exit, Z(1) contains an approximation to the zero z;.

R (REAL for t = C, DOUBLE PRECISION for t = W) One-dimensional array of dimension > N. On
exit, R(1),...,R(N) contain an estimated radius r; of a circle centered at Z(i) within which the
true zero z; isexpected to lie.

Notes:

Note that, because of accumulation of rounding errors, unreliable results can be obtained for large » even
for well-conditioned polynomials.

Error handling:

Error C209.1: ¢ = 0.

Error C209.2: The number of iterations exceeds MAXIT.

Error C209.3: An estimated radius r; cannot be computed for a certain value of <.

In all cases, amessageiswritten onUnit 6, unlesssubroutine MTLSET (N002) has been called.

References:

1. T. Pomentale, Homotopy iterative methods for polynomial equations, J. Inst. Maths. Applics. 13
(1974) 201-213.

28 C209-1

NZERFZ CERN Program Library C210

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:

Number of Zeros of a Complex Function

Function subprogram NZERFZ calculates the number of zeros of a complex function f(z) inside a closed
polygon in the complex z-plane. f(z) must be analytic inside this polygon.

Structure:

FUNCTION subprogram

User Entry Names: NZERFZ

FilesReferenced : Unit 6

External References: MTLMTR (N0O2), ABEND (Z035), User-supplied FUNCTION subprogram

Usage:
In any arithmetic expression,
NZERFZ(F,ZP,N)
has avalue equal to the number of zeros inside the defined polygon.

F Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the calling program. This
subprogram must set F(z) = f(Z).

yAY One-dimensional array of length > N containing the vertices of the polygon in the z-plane.
N Number of vertices.

F, ZP and Z (in F) are of type COMPLEX* 16 on computers other than CDC or Cray, and of type COMPLEX on
CDC and Cray computers.

Method:

The logarithmic residual (winding number) of f(z) isfound by integrating f'(z)/ f(z) numerically along
the edges of the polygon.

Notes:

No zero or singularity of f(z) should lie on or too near the polygon. The edges of the polygon should not
cross each other. Numerically unstable functions (e.g. polynomialsof high degree) can result in unreliable
valuesor in timing problems.

Error handling:

Error C210.1: Theintegrationisnot successful. This often indicatesthat the polygon passes through or too
near to a zero or singularity. The function value is set to zero, and a message iswrittenon Unit 6, unless
subroutine MTLSET (N0O2) has been called.

29 C210-1

ERF CERN Program Library C300

Author(s) : G.A. Erskine Library: MATHLIB or Fortran Compiler Library
Submitter: K.S. Kolbig Submitted: 20.04.1970
Language : Fortran Revised: 07.06.1992

Error Function and Complementary Error Function

Function subprograms ERF, ERFC and DERF, DERFC compute the error and complementary error functions

erf(z) = %/0 e dt, erfc(z) = %/ e dt,

defined for all values of the real argument z.
On CDC and Cray computers, the double-precision versionsDERF and DERFC are not available.

Structure:

FUNCTION subprograms
User Entry Names: ERF, ERFC, DERF, DERFC

Usage:
In any arithmetic expression,

ERF (X) or DERF(X) hasthevalue erf(X),
ERFC(X) or DERFC(X) hasthevalue erfc(X),

where ERF, ERFC, are of typeREAL, DERF, DERFC, are of type DOUBLE PRECISION, and X hasthe sametype
as the function name.

Method:
Computation by rational Chebyshev approximation.
Accuracy:

The system-supplied versions (see Noteg have full machine accuracy. The CERN-supplied versions of
ERF and ERFC have full single-precision accuracy (dightly lesson CDC and Cray computers). The CERN-
supplied versions of DERF and DERFC have an accuracy of 15 significant digits.

Notes:

On some computers, one or both of these functionsisavailable in the system-supplied Fortran mathematical
library. In this case the system-supplied version will be loaded instead of the CERN version.

References:

1. W.J. Cody, Rational Chebyshev approximationsfor the error function, Math. Comp. 22 (1969) 631—
637.

30 C300-1

FREQ CERN Program Library C301

Author(s) : G.A. Erskine Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 07.06.1992
Language : Fortran Revised:

Normal Frequency Function

Function subprograms FREQ and DFREQ compute the normal frequency function

1 X
freq(z) = E/ e_%tz}dt7

defined for all values of the real argument z.
On CDC and Cray computers, the double-precision version DFREQ is not available.

Structure:

FUNCTION subprograms
User Entry Names: FREQ, DFREQ

Usage:
In any arithmetic expression,
FREQ(X) or DFREQ(X) hasthevalue freq(X),

where FREQ isof type REAL, DFREQ is of type DOUBLE PRECISION, and X hasthe same type asthe function
name.

Method:
Computation by rational Chebyshev approximation for the error function, using the formula

%+%erf(x/\/§) (z > 0),

et = { Lerfe (jal/v2) (x < 0).

Accuracy:

FREQ hasfull single-precision accuracy (slightly lesson CDC and Cray computers). DFREQ has an accuracy
of 15 significant digits.

References:

1. W.J. Cody, Rational Chebyshev approximationsfor the error function, Math. Comp. 22 (1969) 631—
637.

31 C301-1

GAMMA CERN Program Library C302

Author(s) : K.S. Kolbig Library: MATHLIB or Fortran Computer Library
Submitter: Submitted: 07.06.1992
Language : Fortran Revised: 15.03.1993

Gamma Function for Positive Argument

Function subprograms GAMMA, DGAMMA and QGAMMA calculate the gamma function

['(z) = /000 et dt (x> 0)

for real argument = > 0.

The quadruple-precision version QGAMMA is available only on computers which support a REAL* 16 Fortran
datatype.

Structure:

FUNCTION subprograms

User Entry Names: GAMMA, DGAMMA, QGAMMA

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
GAMMA(X), DGAMMA(X) or QGAMMA(X) hasthevalue [I'(X),

where GAMMA is of type REAL, DGAMMA is of type DOUBLE PRECISION, QGAMMA isof type REAL*16, and X
has the same type as the function name.

Method:
Approximation by truncated Chebyshev series and functional relations.
Accuracy:

The system-supplied version (see Note9g has full machine accuracy. The CERN version of GAMMA (except
on CDC and Cray computers) has full single-precision accuracy. The CERN version of DGAMMA, QGAMMA
(and of GAMMA, DGAMMA on CDC and Cray computers) have an accuracy which is approximately one digit
less than machine precision.

Error handling:

Error €302.1: X < 0. The function value is set equal to zero, and a message iswritten on Unit 6 unless
subroutine MTLSET (N0O2) has been called.

Notes:

If the function GAMMA or DGAMMA is available in the system-supplied Fortran mathematical library, the
system-supplied function will be loaded instead of the CERN version.

References:

1. Y.L. Luke, Mathematical functionsand their approximations, (Academic Press, New York 1975) 4.

32 C302-1

GAMMF CERN Program Library C303

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06 1992
Language : Fortran Revised:

Gamma Function for Real Argument

Function subprograms GAMMF and DGAMMF cal culate the gamma function

I(z) = /OOO A (2> 0), T(e) = U (x < 0)

I'(1 — 2) sinwa

for real argument z = —n, (n =0,1,2,---).
On CDC and Cray computers, the double-precision version DGAMMF is not available.

Structure:

FUNCTION subprograms

User Entry Names: GAMMF, DGAMMF

Files Referenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035)

Usage:
In any arithmetic expression,
GAMMF(X) or DGAMMF(X) hasthevalue I'(X),

where GAMMF is of type REAL, DGAMMF is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:
Approximation by truncated Chebyshev series and functional relations.
Accuracy:

GAMMF (except on CDC and Cray computers) has full single-precision accuracy. DGAMMF (and of GAMMF on
CDC and Cray computers) has an accuracy which is approximately one digit less than machine precision.

Error handling:

Error c303.1: X = —n, (n = 0,1, 2,---). Thefunction valueis set equal to zero, and a message is written
onUnit 6, unlesssubroutine MTLSET (N002) has been called.
References:

1. Y.L. Luke, Mathematical functionsand their approximations, (Academic Press, New York 1975) 4.

33 C303-1

ALGAMA CERN Program Library C304

Author(s) : K.S. Kolbig Library: MATHLIB or Fortran Compiler Library
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:15.03.1993

Logarithm of the Gamma Function

Function subprograms ALGAMA, DLGAMA and QLGAMA compute the logarithm of the gamma function
Inl'(z) = ln/ e 'l dt (z > 0)
0

for real argument = > 0.

The quadruple-precision version QLGAMA is available only on computers which support a REAL* 16 Fortran
datatype.

Structure:

FUNCTION subprograms

User Entry Names: ALGAMA, DLGAMA, QLGAMA

Obsolete User Entry Names: ALOGAM = ALGAMA, DLOGAM = DLGAMA
Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
ALGAMA(X), DLGAMA or QLGAMA(X) hasthevaue Inl'(X),

where ALGAMA is of type REAL, DLGAMA isof type DOUBLE PRECISION, QLGAMA isof typeREAL*16, and X
has the same type as the function name.

Method:
Rational approximations.
Accuracy:

The system-supplied version (see Noteg has full machine accuracy. The CERN-supplied version of ALGAMA
(except on CDC and Cray computers) has full single-precision accuracy. For most values of the argument
X, the CERN-supplied versions of DLGAMA, QLGAMA (and of ALGAMA, DLGAMA on CDC and Cray computers)
have an accuracy of approximately one significant digit less than the machine precision.

Error handling:

Error C304.1: X < 0. The function value is set equal to zero, and a message is written on on Unit 6,
unless subroutineMTLSET (N002) has been called.

Notes:

If the function ALGAMA or DLGAMA is available in the system-supplied Fortran mathematical library, the
system-supplied function will be loaded instead of the CERN version.

References:

1. W.J. Cody and K.E. Hillstrom, Chebyshev approximations for the natural logarithm of the gamma
function, Math. Comp. 21 (1967) 198-203.

2. JF. Hart et a., Computer approximations (John Wiley Sons, New York 1968) 287.

34 C304-1

CGAMMA CERN Program Library C305

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 02.05.1966
Language : Fortran Revised: 15.03.1993

Gamma Function for Complex Argument

Function subprograms CGAMMA and WGAMMA calculate the gamma function
r(s) = / ldt (Re: > 0)
0

for complex arguments z = —n, (n =0,1,2,---).

The double-precision version WGAMMA is available only on computers which support a COMPLEX* 16 Fortran
datatype.

Structure:

FUNCTION subprograms

User Entry Names: CGAMMA, WGAMMA

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
CGAMMA(Z) or WGAMMA(Z) hasthevaue [I'(Z),

where CGAMMA is of type COMPLEX, WGAMMA is of type COMPLEX* 16, and Z has the same type asthe function
name.

Method:
The method is described in Ref. 1.
Accuracy:

CGAMMA (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument Z, WGAMMA (and CGAMMA on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error €305.1: Z = —n, (n = 0,1, 2,---). Thefunction valueis set equal to zero, and a message is written
onUnit 6, unlesssubroutine MTLSET (N002) has been called.

References:

1. Y.L. Luke, The special functions and their approximations, v.lI, (Academic Press, New York 1969)
304-305

35 C305-1

CLGAMA CERN Program Library C306

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.03.1994
Language : Fortran Revised:

Logarithm of the Gamma Function for Complex Argument
Function subprograms CLGAMA and WLGAMA calcul ate the logarithm of the gamma function
Inl(z) = ln/ et dt (Re z > 0)
0

for complex z # —n, (n = 0,1,2,...). Theimaginary part Im In ['(z) is calculated in such away that it is
continuousfor | arg z| < 7, i.e. itisnot taken mod 27.

The double-precision version WLGAMA is available only on computers which support a COMPLEX* 16 Fortran
datatype.

Structure:

FUNCTION subprograms

User Entry Names: CLGAMA, WLGAMA

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
CLGAMA(Z) or WLGAMA(Z) hasthevalue Inl'(Z),

where CLGAMA isof type COMPLEX, WLGAMA is of type COMPLEX* 16, and Z has the same type asthe function
name.

Method:
The method is described in Ref. 1.
Accuracy:

CLGAMA (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, WLGAMA (and CLGAMA on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Error handling:

Error 306.1: Z = —n, (n = 0,1, 2,---). Thefunction valueis set equal to zero, and a message is written
onUnit 6, unlesssubroutine MTLSET (N002) has been called.

References:

1. K.S. Kolbig, Programs for computing the logarithm of the gamma function, and the digamma func-
tion, for complex argument, Computer Phys. Comm. 4 (1972) 221-226.

36 C306-1

CCLBES CERN Program Library C309

Author(s) : 1.J. Thompson, A.R. Barnett Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 15.01.1988
Language : Fortran Revised:15.11.1995

Coulomb Wave, Bessel, and Spherical Bessel Functions for Complex Argument(s) and
Order

Subroutine subprograms CCLBES and WCLBES calculate any one of the foll owing sequences of functions:

1. Regular and irregular Coulomb wave functions F ., (n, z), Gayn (1, 2)
and their first derivativeswith respect to z, I\ | (1, 2), G\, (7, 2),
or simple combination of these;

2. Spherical Bessel functions jy4,(2), ya4n(2)
and their first derivativeswith respect to z, j1 . (2), ¥\, (%),
or simple combination of these (spherical Hankel functions);

3. Bessel functions J 1, (2), Yatn(2)
and their first derivatives with respect to z, J_ (2), Yy, (%),
or simple combination of these (Hankel functions);

4. Modified Bessel functions 4,,(2), K4 (2)

and their first derivativeswith respect to z, I (2), K\ (2);

for complex arguments 7, z, complex order A,and» = 0,1, ..., N.

The double-precision version WCLBES is available only on computers which support a COMPLEX* 16 Fortran
datatype.

Structure:

SUBROUTINE subprograms

User Entry Names: CCLBES, WCLBES

Internal Entry Names: C309R1, C309R2, C309R3, C309R4, C309R5, C309R6, C309R7, C309R8
Files Referenced: Unit 6

External References: CLGAMA (C306), WLGAMA (C306), CPSIPG (C317), WPSIPG (C317)

Usage:

For t = C (type COMPLEX), t = W (type COMPLEX*16),

CALL tCLBES(Z,ETA,ZLMIN,NL,F,G,FP,GP,SIG,KFN,MODE,JFAIL,JPR)

Z (type according to t) Argument z = 0.

ETA (type according to t) Argument » (ignored if KFN > 0).

ZLMIN (type according to t) Order A,,;,, of thefirst function in the computed sequence.

NL (INTEGER) Specifies the order A,,;, + NL of the last function in the computed sequence.
(NL > 0).

F,G,FP,GP (typeaccordingtot) One-dimensional arrayswith dimension (0:d) whered isineach case
> NL + 1. On exit, each of F(n) ,G(n) ,FP(n) ,GP(n) may contain the value of afunction
of order A,.;,, + n, or itsfirst order derivative, (n = 0, 1,...,NL), as specified jointly by
KFN and | MODE|.

37 C309-1

SIG

KFN

MODE

JFAIL

JPR

(type according to t) One-dimensional array with dimension (0:4), whered > NL + 1. On
exit, provided KFN = 0, SIG(n) contains the Coulomb phase shift o(7) for A = A, +
n,(n=0,1,...,NL).

(INTEGER) Specifies, in conjunction with the absolute value of MODE, the type of functions
which are stored.

(INTEGER) The absolute value of MODE specifies, in conjunction with KFN, the type of func-
tion which are stored, and also specifies which of the arrays F,G,FP,GP are in fact set to
meaningful values. The sign of MODE specifies whether or not the functions are multiplied
by ascaling factor.

(INTEGER) On exit, JFAIL is set to zero if no error condition is detected. Otherwise JFAIL
is set as described under Error handling .

(INTEGER)
= 0 : Suppress printing of error messages.
= 1 : Print error messages.

The type of function which is stored in array F depends only on KFN, while the type of function which is
stored in array G depends both on XKFN and on |MODE|. Arrays FP and GP (if set) contain the first order
derivativeswith respect to = of the functionsinF and G, respectively. Using the abbreviations(: = /—1)

By —FA(%Z)v GA EGA(U72)7 Hit EG/\:tiF/\,
I =0(2), yn =uyal(2), h(;’?) =y Ly,
I =J\(2), Yi=Y(), H"=J1iv,

I, _I/\(Z)7 I(/\EI(/\(Z),

the choice of function isgiven by the following table:

Array | |MODE] KFN

—lor0| 1 2 3
F al values Py A J I,
G 1,2,3,4 Gy Y Yy | Ky

1,12 | #F (B0 HED] -

21,22 | Hy |AP|HP| -

If KFN=0 the phase shifts o (#) are stored in array SIG. Otherwise SIG isnot set.
Which of arraysF,G,FP,GP are in fact set isdetermined by |MODE| according to the following table:

I[MODE| | F | ¢ | FP | GP
1,11,21 | set | set | set | set
2,12,22 | set | set | - -

3 set | - |set| -
4 set| - | - | -

In both the tables above, a dash indicates that the corresponding array does not contain meaningful values
on exit. These arrays are, however, used internally as working space, and must therefore be dimensioned
correctly. The sign of MODE specifies whether or not the functions are to be multiplied by a scaling factor,
depending only on z, which will bring their values closer to unity when |z| is large, or 7 is small and
|A| < |z|. The same scaling factor is applied to the first order derivativesin FP or GP as is applied to the
functionsinF or G, respectively.

C309-2 38

MODE > 0 : No scaling factor.
MODE < O:LetS =Im(z)if KFN < 3,5 = Re(z) if KFN = 3; then the scaling factorsfor F and G are

(=1SNAF.J,J, 1}

G: exp(=[S)){G,y, Y}
exp(S) {HT, 1V HO K}
exp(=S) {H~,h?), HP)},

F: exp

Method:

The method is described in the References.
Restrictions:

See Ref. 1, in particular Sect. 4.
Accuracy:

The absolute values of the results are usually accurate to within two or three decimal digits of the machine
precision. For details of exceptions see Ref. 1, Sect. 4.

Error handling:

If an error condition is detected, JFAIL is set to one of the following values and a message is printed if
JPR = 1.

>0 An arithmetic error occurred during the final recursion. Correct results are available up to and
including subscript value NL-JFAIL-1.

-1 One of the continued fraction calculations failed or there was an arithmetic error before any results
could be calculated.

—2 Argument out of range.

-3 One or more functions corresponding to A,,,;, could not be calculated. Some values corresponding
to A > A, may be correct.

—4 Excessiveinternal cancellation probably renders the result meaningless.

Source:

Thisprogram package isamodified version of the CPC Program Library package COULCC (see Ref. 1). The
changes are formal, not computational .

References:

1. 1.J. Thompson and A.R. Barnett, COULCC: A continued-fraction algorithm for Coulomb functions
of complex order with complex arguments, Comput. Phys. Comm. 36 (1985) 363-372.

2. 1.J. Thompson and A.R. Barnett, Coulomb and Bessel functions of complex arguments and order, J.
Comput. Phys. 64 (1986) 490-5009.

Long Write-up:

A copy of Ref. 1 isavailableinthe Program Library Office.

39 C309-3

BESJO CERN Program Library C312

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 18.10.1967
Language : Fortran Revised: 15.03.1993

Bessel Functions J and Y of Orders Zero and One

Function subprograms BESJO, BESJ1, BESYO, BESY1 and DBESJO, DBESJ1, DBESYO, DBESY1 calculate the
Bessel functions
Jo(x), Ji(2), Yo(z), Y1(z)

for real arguments z, where > 0 for Yy () and Y3 ().
On CDC and Cray computers, the double-precision versionsDBESJO etc. are not available.

Structure:

FUNCTION subprograms

User Entry Names: BESJ0O, BESJ1, BESYO, BESY1, DBESJO, DBESJ1, DBESYO, DBESY1
Files Referenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035)

Usage:
In any arithmetic expression,

BESJO(X) or DBESJO(X) hasthevalue Jo(
BESJ1(X) or DBESJ1(X) hasthevalue Jl(
BESYO(X) or DBESYO(X) hasthevalue Y;(X
BESY1(X) or DBESY1(X) hasthevalue Y;(X),

where BESJO etc. are of type REAL, DBESJO etc. are of type DOUBLE PRECISION, and X has the same type
as the function name.

Method:
Approximation by truncated Chebyshev series.
Accuracy:

BESJO etc. (except on CDC and Cray computers) have full single-precisionaccuracy. For most values of the
argument X, DBESJO etc. (and BESJO etc. on CDC and Cray computers) have an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error €312.1: X < 0 for Yy(z) or Y;(z). The function value is set equal to zero, and a message is written
onUnit 6 unlesssubroutineMTLSET (NOO2) has been called.

References:

1. Y.L. Luke, Mathematical functionsand their approximations (Academic Press, New York 1975) 322—
324.

40 C312-1

BESIO CERN Program Library C313

Author(s) : K.S. Kolbig
Submitter:
Language : Fortran

Library: MATHLIB
Submitted: 07.12.1970
Revised: 15.03.1993

Modified Bessel Functions | and K of Orders Zero and One

Function subprograms BESI0, BESI1, BESKO, BESK1 and DBESIO, DBESI1, DBESKO, DBESK1 calculate the
modified Bessel functions

Io($)7 Il ($)7 I(()($)7 I(l ($)
for real arguments z, where z > 0 for Ky(z) and K¢ (z).
On CDC and Cray computers, the double-precision versionsDBESIO etc. are not available.

Structure:

FUNCTION subprograms
User Entry Names. BESIO, BESI1, BESKO, BESK1, EBESIO, EBESI1, EBESKO, EBESKI,

DBESIO, DBESI1, DBESKO, DBESK1, DEBSIO, DEBSI1, DEBSKO, DEBSK1
FilesReferenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035)
Usage:

In any arithmetic expression,

BESIO(X) or DBESIO(X) hasthevalue Iy(X),

BESI1(X) or DBESI1(X) hasthevalue I;(X),

BESKO(X) or DBESKO(X) hasthevalue K((X),

BESK1(X) or DBESK1(X) hasthevalue K;(X),
EBESIO(X) or DEBSIO(X) hasthevalue exp(—|X|) * Io(X),
EBESI1(X) or DEBSI1(X) hasthevalue exp(—|X|)* I1(X),
EBESKO(X) or DEBSKO(X) hasthevalue exp(|X|) * Ko(X),
EBESK1(X) or DEBSK1(X) hasthevalue exp(|X]) * K(X),

where BESIO etc. are of type REAL, DBESIO etc. are of type DOUBLE PRECISION, and X has the same type
as the function name.

Method:

Approximation by rational functions (I for || < 8, K for 1 < 2 < 5), by an agorithm based on power
series (K for 0 < = < 1), or else by truncated Chebyshev series.

Accuracy:

BESIO etc. (except on CDC and Cray computers) have full single-precisionaccuracy. For most values of the
argument X, DBESIO etc. (and BESIO etc. on CDC and Cray computers) have an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error €313.1: X < 0 for Ko(z) or K;(z). Thefunction valueis set equal to zero, and amessage is written
onUnit 6 unlesssubroutineMTLSET (NOO2) has been called.

41 C313-1

References:

1. Y.L. Luke, Mathematical functionsand their approximations (Academic Press, New York 1975) 329,
331, 363, 366.

2. N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comp.
Phys. 19 (1975) 324-337.

C313-2 42

RRIZET CERN Program Library C315

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:

Riemann Zeta Function

Function subprograms RRIZET and DRIZET calculate the Riemann zeta function

o] tx—l

((x) = > k" = r(lx)/o ——dt (2 >1)

k=1

for real arguments = = 1, where (() is defined by analytic continuationfor z < 1. For 2 = 1, {(z) hasa
pole of order one.

On CDC and Cray computers, the double-precision version DRIZET is not available.
Structure:

FUNCTION subprograms

User Entry Names: RRIZET, DRIZET

Files Referenced: Unit 6

External References: GAMMA (C302), DGAMMA (C302), MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
RRIZET(X) or DRIZET(X)

hasthevalue((X) if X < 1,and {(X) — 1 if X > 1, whereRRIZET isof typeREAL, DRIZET isof type DOUBLE
PRECISION, and where X hasthe same type as the function name.

Method:
Rational Chebyshev approximation. For = < ; the reflection formulafor ¢ (x) isused.
Accuracy:

RRIZET (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DRIZET (and RRIZET on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error ¢315.1: X = 1. The function value is set to zero, and a message is written on Unit 6, unless
subroutine MTLSET (N0O2) has been called.

References:

1. W.J. Cody, K.E. Hillstrom, and H.C. Thather, Jr., Chebyshev approximationsfor the
Riemann zeta function, Math. Comp. 25(1971) 537-547.

43 C315-1

RPSIPG CERN Program Library C316

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:

Psi (Digamma) and Polygamma Functions

Function subprogramsRPSIPG and DPSIPG calcul ate either thelogarithmic derivative of the gammafunction
(the psi, or digamma, function)

dlnT
v(@) = $0() = T
or one of the other polygamma functions
dk dk-l—l
YW () = 2ok V@) = oy (@)

for real argumentsz = —n,(n=10,1,2,...)andk =0,1,2,...,6.

Note that the Euler constant C = —1(1) = 0.57721 ... (also denoted by ~) and the Catalan constant
G = L (¢'(3) — %) =0.91596 ... can becalculated by using this subprogram.

On CDC and Cray computers, the double-precision version DPSIPG is not available.

Structure:

FUNCTION subprograms

User Entry Names: RPSIPG, DPSIPG

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
RPSIPG(X,K) or DPSIPG(X,K) hasthevaue v(®(x),

where RPSIPG is of type REAL, DPSIPG isof type DOUBLE PRECISION, and where X has the same type as
the function name. K isof type INTEGER.

Method:

Rational Chebyshev approximation (¢ = 0), approximation by truncated Chebyshev series (¢ > 0), and
functional relations.

Accuracy:

RPSIPG (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DPSIPG (and RPSIPG on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error C316.1: K < 0 0orK > 6.

Error €316.2: X=—n,(n=0,1,2,...).

In both cases, the function value is set to zero, and a message is written on Unit 6, unless subroutine
MTLSET (NOO2) has been called.

References:

1. W.J. Cody, A.J. Strecock and H.C. Thather, Jr., Chebyshev approximationsfor the psi function, Math.
Comp. 27 (1973) 123-127.

2. Y.L. Luke, Mathematical functionsand their approximations (Academic Press, New York, 1975) 5-6.

a4 C316-1

CPSIPG CERN Program Library C317

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.11.1995
Language : Fortran Revised:

Psi (Digamma) and Polygamma Functions for Complex Argument

Function subprograms CPSIPG and WPSIPG cal cul ate either thelogarithmic derivative of the gammafunction
(the psi, or digamma, function)

bo) = w05 = AIC)
or one of the other polygamma functions
dk dk-l—l

for complex arguments z # —n, (n =0,1,2,...)andk =0, 1, 2,3, 4.
The double-precision version WPSIPG is available only on computers which support a COMPLEX* 16 Fortran
datatype.

Structure:

FUNCTION subprograms

User Entry Names: CPSIPG, WPSIPG

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
CPSIPG(Z,K) or WPSIPG(Z,K) hasthevalue 1®)(z),

where CPSIPG is of type COMPLEX, WPSIPG is of type COMPLEX*16, and where Z has the same type as the
function name. K isof type INTEGER.

Method:
The method for (=) described in Ref. 1 isadapted accordingly.
Accuracy:

CPSIPG (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument Z, WPSIPG (and CPSIPG on CDC and Cray computers) has an accuracy of approximately two
significant digit less than the machine precision.

Error handling:

Error C317.1: K < 0 0orK > 4.

Error €317.2: X=—-n,(n=0,1,2,...).

In both cases, the function value is set to zero, and a message is written on Unit 6, unless subroutine
MTLSET (NOO2) has been called.

References:

1. K.S. Kolbig, Programs for computing the logarithm of the gamma function, and the digamma func-
tion, for complex arguments, Computer Phys. Comm. 4 (1972) 221-226.

45 C317-1

RELFUN CERN Program Library C318

Author(s) : K.S. Kalbig, H.-H. Umstéatter Library: MATHLIB
Submitter: Submitted: 30.01.1980
Language : Fortran Revised:01.12.1994

Jacobian Elliptic Functions sn, cn, dn

Function subprograms RELFUN and DELFUN calculate, for real argument = and real modulus k&, the Jacobian
elipticfunctionssn(z, k), cn(z, k) and dn(z, k). Thefunctionsn(z, k) istheinverse of the ellipticintegral
of thefirst kind and is defined implicitly by

— /Sn(x'k) du (K < 1)
N [) -

Thefunctionscn(z, k) and dn(z, k) are defined by
sn?(z, k) +en®(z, k) =1, k*sn?(z, k) +dn?(z,k) =1, cn(0,k) =dn(0,k) = 1.
This definition can be extended for &2 > 1 (Ref. 2) by means of
sn(z, k) = kysn(kz, k1), cn(z, k) =dn(ke, k1), dn(z, k) =cn(kz, k),
where ky = 1/k. For k = 0 and k? = 1 these functions are elementary:
sn(z,0) =sinz, cn(z,0)=cosz, dn(z,0)=1,

sn(z,+1) =tanhz, cn(z,+1)=dn(z,+1)=sechz.

Note that for k% # 1 the Jacobian elliptic functions are periodic (with respect to «) with period 4K (k) if
k* < 1and 4k1K(ky) if k2 > 1, where K(k) isthe complete elliptic integral of the first kind.

On CDC and Cray computers, the double-precision version DELFUN is not available.
Structure:

SUBROUTINE subprograms
User Entry Names: RELFUN, DELFUN
Obsolete User Entry Names: ELFUN = RELFUN

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tELFUN(X,AK2,SN,CN,DN)

X (type according to t) The argument z.

AK2 (typeaccordingto t) Thevalue of k? (the square of the modulus).
SN (type according to t) On exit, SN = sn(X, k).

CN (type according to t) On exit, CN = cn(X, k).

DN (type according to t) On exit, DN = dn(X, k).

46 C318-1

Method:

The sequence of the Gaussian arithmetic-geometric mean is used together with the Gauss transformation
and, where appropriate, the Jacobi imaginary transformation. For values AK2 > 1, the reciprocal modulus
transformation is performed. For details see References

Accuracy:

RELFUN (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, DELFUN (and RELFUN on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Restrictions:

lz| < 3K(k) (0 < k? < 1), || < 3k:1K(ky) (k* > 1), where K(z) is the complete elliptic integral of the
first kind. (See entriesRELIKC and DELIKC in RELI1C (C347)).

References:

1. M. Abramowitz and I.A. Stegun, ed., Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, Sections 16.12 and 17.6, 9th printing with corrections, (Dover, New York
1972).

2. H.E. Salzer, Quick calculation of Jacobian elliptic functions, Comm. ACM 5 (1962) 399.

3. L.V. King, On the dirct numerical calculation of elliptic functions and integrals, Cambridge Univ.
Press (1924) 32.

4. D.J. Hofsommer and R.P. van de Riet, On the numerical calculation of elliptic integrals of the first
and second kind and the elliptic functions of Jacobi, Numer. Math. 5 (1963) 291-302.

5. PF. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed.,
Springer-Verlag Berlin (1971).

C318-2 47

CELFUN CERN Program Library C320

Author(s) : H.-H. Umstétter Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 30.01.1980
Language : Fortran Revised: 07.06.1992

Jacobian Elliptic Functions sn, cn, dn for Complex Argument

Function subprograms CELFUN and WELFUN calculate, for complex argument =z and real modulus k, the
Jacobian ellipticfunctionssn(z, k), cn(z, k) and dn(z, k). Thefunctionsn(z, k) istheinverse of theelliptic
integral of the first kind and is defined implicitly by

— /Sn(z'k) dw (< 1)
o V(= w?) (1 = k2w?) -

Thefunctionsen(z, k) and dn(z, k) are defined by

sn?(z, k) +en?(z,k) = 1, k?sn?(z, k) +dn?(z,k) =1, cn(0,k) = dn(0,k) = 1.
For k = 0 and k? = 1 these functions are elementary:
sn(z,0) =sinz, c¢n(z,0)=cosz, dn(z,0)=1,

sn(z,£1) = tanhz, cn(z,+1) =dn(z,£1) = sechz.

Note that the Jacobian elliptic functions are doubly-periodic in the z-plane. For details see the relevant
treatises or handbooks.

The double-precision version WELFUN is available only on computers which support a COMPLEX* 16 Fortran
data type.

Structure:

SUBROUTINE subprograms
User Entry Names: CELFUN, WELFUN
External References: MTLMTR (N0O2), ABEND (Z035)

Usage:

For t = C (type COMPLEX), t = W (type COMPLEX*16),

CALL tELFUN(Z,AK2,SN,CN,DN)

Z (type according to t) The argument z.

AK2 (REAL for t = C, DOUBLE PRECISION for t = W) Thevalueof k2 (the square of the modulus).
SN (type according to t) On exit, SN = sn(Z, k).

CN (type according to t) On exit, CN = cn(Z, k).

DN (type according to t) On exit, DN = dn(Z, k).

Method:

The Jacobian élliptic functionswith complex argument =z = z + iy are computed from their representations
in terms of Jacobian elliptic functions with real arguments = or y (Ref. 1, formula 125.01). See aso the
Short Write-up for ELFUN (C318).

48 C320-1

Accuracy:

CELFUN (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, WELFUN (and CELFUN on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Restrictions:

|Re z| < 3K(k), |Tm z| < 3K(K') where &’ = v/1 — k? is the complementary modulus, and K(z) is the
complete ellipticintegral of thefirst kind. (See entriesRELIKC and DELIKC in RELI1C (C347)).

Error handling:

Error ¢320.1: |AK2| > 1. The function value is set equal to zero, and a message is written on Unit 6,
unless subroutineMTLSET (N002) has been called.

References:

1. PF. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed.,
Springer-Verlag Berlin (1971).

C320-2 49

CGPLG CERN Program Library C321

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 12.09.1985
Language : Fortran Revised: 15.03.1993

Nielsen’s Generalized Polylogarithm

Function subprograms CGPLG and WGPLG cal cul ate the complex-valued generalized polylogarithm function

(_1)n+m—1 ! —11,n—1 m
- . . 0

for real arguments = and integer » and m satisfyingl < n <4, 1 < m <4, n+ m < 5;i.e, one of the
functionSSLl, 5172, 5271, 5173, 5272, 5371, 5174, 5273, 5372, 5471. If z S 1, Sn,m ($) isreal, and thelmaglnary
part is set equal to zero.

The double-precision version WGPLG is available only on computers which support a COMPLEX* 16 Fortran
datatype.

Structure:

FUNCTION subprograms

User Entry Names: CGPLG, WGPLG

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
CGPLG(N,M,X) or WGPLG(N,M,X) hasthevalue Syu(X),

where CGPLG is of type COMPLEX, WGPLG is of type COMPLEX*16, X is of type REAL for CGPLG and of type
DOUBLE PRECISION for WGPLG, and where N and M are of type INTEGER.

Method:

The method is described in Ref. 1. Note that the imaginary part of the function defined as 5, ., (z) in Ref.
1 has the opposite sign to the imaginary part of the function defined by (*). See Ref. 2.

Accuracy:

CGPLG (except on CDC and Cray computers) has full single-precisionaccuracy. For most values of the argu-
ment X, WGPLG (and CGPLG on CDC and Cray computers) has an accuracy of approximately two significant
digitsless than the machine precision. The loss of accuracy is greater when X isvery closeto 1.

Error handling:

Error€321.1: N, M< 1 orN,M >4 or N+ M > 5. Thefunctionvaueis set equal to zero, and amessage is
writtenonUnit 6, unlesssubroutine MTLSET (N0O2) has been called.

References:

1. K.S. Kolbig, JA. Mignaco and E. Remiddi, On Nielsen's generalized polylogarithms and their nu-
merical calculation, BIT 10(1970) 38—71.

2. K.S. Kolbig, Nielsen’s generalized polylogarithms, SIAM J. Math. Anal. 17 (1986) 1232-1258.

50 C321-1

RFRSIN CERN Program Library C322

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.05.1987
Language : Fortran Revised:01.12.1994

Fresnel Integrals

Function subprograms RFRSIN, RFRCOS and DFRSIN, DFRCOS calculate the Fresnel integrals

sint

S(z) = /jwdt (z > 0), S(—z) = =5(x),

Cla) = /j Cf/sgdt (@>0), Cl-z) = -Cl(a),

for real arguments z.
On CDC and Cray computers, the double-precision versionsDFRSIN, DFRCOS are not available.

Structure:

FUNCTION subprograms
User Entry Names: RFRSIN, RFRCOS, DFRSIN, DFRCOS
Obsolete User Entry Names: FRSIN = RFRSIN, FRCOS = RFRCOS

Usage:
In any arithmetic expression,

RFRSIN(X) or DFRSIN(X) hasthevalue S(X),
RFRCOS(X) or DFRCOS(X) hasthevaue C'(X),

where RFRSIN, RFRCOS are of type REAL, DFRSIN, DFRCOS are of type DOUBLE PRECISION, and X hasthe
same type as the function name.

Method:
Approximation by truncated Chebyshev series.
Accuracy:

RFRSIN and RFRCOS (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument X, DFRSIN and DFRCOS (and RFRSIN and RFRCOS on CDC and Cray computers) have
an accuracy of approximately one significant digit less than the machine precision.

References:

1. Y.L. Luke, The special functions and their approximations, v. I, (Academic Press New York, 1969)
328-329.

51 C322-1

RFERDR CERN Program Library C323

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.05.1987
Language : Fortran Revised:01.12.1994

Fermi-Dirac Function

Function subprograms RFERDR and DFERDR calcul ate the Fermi-Dirac function

o0 tk/?
Fi(z) = /
0

14 et—2 di

for real argument z, and & = —1, 1, 3.
On CDC and Cray computers, the double-precision version DFERDR is not available.

Structure:

FUNCTION subprograms

User Entry Names: RFERDR, DFERDR

Obsolete User Entry Names: FERDR = RFERDR
External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
RFERDR(X,K) or DFERDR(X,K) hasthevalue [Ik(X),

where RFERDR is of type REAL, DFERDR is of type DOUBLE PRECISION, and X has the same type as the
functionname. K (INTEGER) =-1,0r 1 or 3.

Method:
Rational approximation.
Accuracy:

RFERDR (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DFERDR (and RFERDR on CDC and Cray computers) has, for X > 0, an accuracy of 7-10 digits
and for X < 0, an accuracy of 10 to 14 digits.

Error handling:

Error €323.1: K # —1,1, 3. The function value is set equal to zero, and a message iswritten on Unit 6,
unless subroutineMTLSET (N002) has been called.

References:

1. W.J. Cody and H.C. Thacher,Jr., Rational approximations for Fermi-Dirac integrals of order —1/2,
1/2 and 3/2, Math. Comp. 21 (1967) 30-40.

52 C323-1

RATANI CERN Program Library C324

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.05.1987
Language : Fortran Revised:01.12.1994

Arctangent integral

Function subprograms RATANTI and DATANTI calculate the arctangent integral

Ti2($) :/ arctantdt
0 t

for real argument .
On CDC and Cray computers, the double-precision version DATANT is not available.

Structure:

FUNCTION subprograms
User Entry Names: RATANT, DATANT
Obsolete User Entry Names: ATANI = RATANI

Usage:
In any arithmetic expression,
RATANI(X) or DATANI(X) hasthevalue Tiy(X),

where RATANTI is of type REAL, DATANT is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:
Approximation by truncated Chebyshev series and functional relations.
Accuracy:

RATANT (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DATANT (and RATANI on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press New York, 1975) 67.

53 C324-1

RCLAUS CERN Program Library C326

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.12.1994
Language : Fortran Revised:

Clausen Function

Function subprograms RCLAUS and DCLAUS calculate the Clausen function
Cly(z) = — / In
0
for real arguments z.

On CDC and Cray computers, the double-precision version DCLAUS is not available.

o0 .
sin kz

k?
k=1

t
QSin—‘ dt =
2

Structure:

FUNCTION subprograms
User Entry Names: RCLAUS, DCLAUS

Usage:
In any arithmetic expression,
RCLAUS(X) or DCLAUS(X) hasthevaue Cly(X),

where RCLAUS is of type REAL, DCLAUS is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:

For 0 < z < 7, the function is approximated by truncated Chebyshev series. For = outside this range, the
relationsCly (7 + 2) = —Clz(7 —) and Cly(2n7 £ @) = £Cly(2) are used.

Accuracy:

RCLAUS (except on CDC and Cray computers) has full single-precisionaccuracy intheinterval 0 < = < 2x.
For most values of the argument X € [0, 2x], DCLAUS (and RCLAUS on CDC and Cray computers) has an
accuracy of approximately one significant digit less than the machine precision. Accuracy is lost near the
zero of Cly(z) at « = = and for large values of |z|.

References:

1. K.S. Kolbig, Chebyshev coefficients for the Clausen function Cl;(z), J. Comput. Appl. Math. 64
(1995) 295-297.

54 C326-1

BSIR4 CERN Program Library C327

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.05.1987
Language : Fortran Revised: 15.03.1993

Modified Bessel Functions | and K of Order 1/4, 1/2 and 3/4

Function subprograms BSIR4, BSKR4 and DBSIR4, DBSKR4 calculate the modified Bessel functions
Il//4(x) and 1(11/4($)

for real argumentsz > 0 and v = —3, -2, —1,1,2,3. Thevalue x = 0 is permitted for the functions I if
v > 0. Note that the functions K are even with respect to v.

On CDC and Cray computers, the double-precision versionsDBSIR4 etc. are not available.
Structure:

FUNCTION subprograms

User Entry Names: BSIR4, BSKR4,EBSIR4, EBSKR4, DBSIR4, DBSKR4, DEBIR4, DEBKR4
Files Referenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035)

Usage:
In any arithmetic expression,

BSIR4(X,NU) or DBSIR4(X,NU) hasthevaue Iyy/4(X),

BSKR4 (X,NU) or DBSKR4(X,NU) hasthevalue Kyy4(X),
EBSIR4(X,NU) or DEBIR4(X,NU) hasthevalue exp(—X) x Iyy/4(X),
EBSKR4(X,NU) or DEBKR4(X,NU) hasthevalue exp(X)* Kyy/4(X),

where BSIR4 etc. are of the type REAL, DBSIR4 efc. are of the type DOUBLE PRECISION, and X has the
same type as the function name. NU is of type INTEGER and must have one of thevalues-3,-2,-1,1,2,3.

Method:

Approximation by rational functions (I for || < 8, K for 1 < 2 < 5), by an agorithm based on power
series (K for 0 < 2 < 1), or else by truncated Chebyshev series. The cases || = 2 are elementary.

Accuracy:

BSIR4 etc. (except on CDC and Cray computers) have full single-precisionaccuracy. For most values of the
argument X, DBSIR4 etc. (and BSIR4 etc. on CDC and Cray computers) have an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error €327.1: X < 0, or X < 0, respectively, or NU # -3,-2,-1,1,2,3. Thefunction valueis set equal
to zero, and amessage iswritten on Unit 6, unless subroutineMTLSET (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 350,
357, 363, 366.

2. N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comp.
Phys. 19 (1975) 324-337.

55 C327-1

CWHITM CERN Program Library C328

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.01.1988
Language : Fortran Revised: 15.03.1993

Whittaker Function M of Complex Argument and Complex Indices

Function subprograms CWHITM and WWHITM compute the Whittacker function
L, 1y 1
M, . (z) = e 2722 “M(§+u—m,1+2u,z)

for complex arguments = and complex indices «, i, where M (a, b, z) is Kummer’s function (See Ref. 1).
The z-planeis cut dong the negative real axis.

The double-precision version WWHITHM is available only on computers which support a COMPLEX* 16 Fortran
datatype.

Structure:

FUNCTION subprograms

User Entry Names: CWHITM, WWHITM

Files Referenced: Unit 6

External References: CLGAMA (C306), WLGAMA (C306), CCLBES (C309), WCLBES (C309),

MTLMTR (NOO2), ABEND (Z035)
Usage:

In any arithmetic expression,
CWHITM(Z ,KA,MU) or WWHITM(Z,KA,MU) hasthevaue Mgywuy(Z),

whereKA = x and MU = u. CWHITM is of type COMPLEX, WWHITM isof type COMPLEX*16, and Z, KA and MU
have the same type as the function name.

Method:

For u— x + % or p+ K + % equal to a negative integer, M, ,(z) reduces to a polynomial in z. For other
values, a regular Coulomb wave function Fy (v, p) is computed by using subprogram CCLBES (C309) in
conjunction with functional relations.

Restrictions:
,u;é—%,—%,...;RezZOiflmz:O.
Accuracy:

CWHITM (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, WWHITM (and CWHITM on CDC and Cray computers) has an accuracy of approximately two to
three decimal digits|essthan the machine precision.

Error handling:

Error€328.1: Z=X+ iYwithX < 0andY = 0.

Error €328.2: 2+« MU=—n, (n=1,2,...).

In both cases, the function valueis set equal to zero, and a message iswrittenonUnit 6, unless subroutine
MTLSET (N0O2) has been called. An error message is also writtenon Unit 6 if theinternal call to CCLBES
or WCLBES returns JFAIL = ((see Short write-up for CCLBES (C309)).

56 C328-1

References:

1. M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions, Chapter 13, Confluent
Hypergeometric Functions, 9th printing with corrections, (Dover, New York 1972).

2. L.J. Sater, Confluent hypergeometric functions, (University Press, Cambridge 1960)

C328-2 57

RASLGF CERN Program Library C330

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.05.1987
Language : Fortran Revised:01.12.1994

Legendre and Associated Legendre Functions

Subroutine subprograms RASLGF and DASLGF calculate, for agiven real argument z, (-1 < z < 1),anda
given integer value of the order m, a sequence of either unnormalized or normalized Legendre (m = 0) or
Associated Legendre (m = 0) functionsof degreen = 0, 1,2, ..., N, defined by

Pi) = (=" R) (mz0) (1)
I e (m<0) (1)
i) = \/2";122;3%:%)
respectively, where -
Puo) = Pla) = g ey

is the Legendre polynominal of degree ». Note that some authors use an additional factor (—1)™ in the
definition (1).
On CDC and Cray computers, the double-precision version DASLGF is not available.

Structure:

SUBROUTINE subprograms

User Entry Names: RASLGF, DASLGF

Obsolete User Entry Names: ASLGF = RASLGF
Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tASLGF(MODE,X,M,NL,P)

MODE (INTEGER) = 1 : Unnormalized functions (1),
= 2 : Normalized functions (2).

X (type according to t) The argument z.

M (INTEGER) Theorder m (upper index) of all functionsin the computed sequence. It ispermissible
for M to be negative.

NL (INTEGER) Specifies the degree IV of thelast function in the computed sequences.

P (type according to t) One-dimensional array of dimension (0:d) whered > NL.

Onexit, P(n), (n=0,1,...,NL), contains P (X) or P (X) as specified by MODE. (See Notes.

Method:

Thefunctions P (z) are for m > 0 calculated by means of the standard recurrence relation.

58 C330-1

Restrictions:

1 -1 <X< 1.

2. MODE = 1 or 2.

3. 1fM=0:0 < NL < 100:
ifM£0:|M <27and0 < NL < 55 — [M|; (0 < NL < 33 — |M| on VAX/VMS).

Accuracy:

RASLGF (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DASLGF (and RASLGF on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Notes:
In accordance with the definitions,P(n) = 0 forn=0,1,---, M| — 1.
Error handling:

Error €330.1: |X| > 1.

Error C330.2: MODE # 1 and MODE # 2.

Error 330.3: M and NL incompatible.

In all cases, amessage iswrittenon Unit 6, unlesssubroutine MTLSET (N0O2) has been called. Theinitial
contents of array P (n) isleft unchanged.

[]

C330-2 59

RFCONC CERN Program Library C331

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.02.1989
Language : Fortran Revised:01.12.1994

Conical Functions of the First Kind

Function subprograms RFCONC and DFCONC calculate the (real valued) conical function of the first kind
PT%_HT ($>

forreal > —1,7 > 0,andm = 0, 1, where P () isthe Legendre (or spherical) function of thefirst kind
and:=+/—1.

On CDC and Cray computers, the double-precision version DFCONC is not available.
Structure:

FUNCTION subprograms

User Entry Names: RFCONC, DFCONC

Obsolete User Entry Names: FCONC = RFCONC

Files Referenced: Unit 6

External References: CGAMMA (C305), WGAMMA (C305), CLGAMA (C306), WLGAMA (C306),

BESJO (C312), DBESJO (C312), BESJ1 (C312), DBESJ1 (C312),
BESIO (C313), DBESIO (C313), BESI1 (C313), DBESI1 (C313),
RELIKC (C347), DELIKC (C347), RELIEC (C347), DELIEC (C347),
MTLMTR (NOO2), ABEND (Z035)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),
tFCONC (X, TAU,M)}

. : : . u
has, in any arithmetic expression, the value P%H*TAU(X).

X (type according to t) Variable x.

TAU (type according to t) The imaginary part of theindex, 7.
M (INTEGER) Order m. (M = 0 or M = 1).

Method:

Either (i) series expansions based on the Gaussian hypergeometric function and evaluated by direct summa-
tion or from rational approximations, or (ii) asymptotic expressionsin terms of Bessel functions. For 7 = 0
the conical functions (for m = 0, 1) can be expressed in terms of complete elliptic integrals. For details see
Ref. 1.

Restrictions:

X > —1,TAU > 0,M =0 or 1.

60 C331-1

Accuracy:

RFCONC (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DFCONC (and RFCONC on CDC and Cray computers), an accuracy of not lessthan 10 significant
digitsis usualy obtained. If = and 7 are not too large the accuracy increases to about 12-13 significant
digits.

Error handling:

Errorc331.1: X< —10orTAU< OOrM# 0andM # 1.

Error €331.2: Problems of convergence for a hypergeometric function.

In both cases, the function valueis set equal to zero, and a message iswrittenonUnit 6, unless subroutine
MTLSET (NOO2) has been called.

Notes:

This program is an (only formally) modified version of the CPC Program Library Package FCONIC (see
Ref. 1).

References:

1. K.S. Kolbig, A program for computing the conical functions of the first kind Py, Lir(z) form =0
and m = 1, Computer Phys. Comm. 23 (1981) 51-61.

2. M.l. Zhurinaand L.N. Karmazina, Tables and formulae for the spherical functions P7172+¢7(Z)1 (Perg-
amon Press, Oxford 1966).

C331-2 61

RDILOG CERN Program Library C332

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 19.10.1966
Language : Fortran Revised:01.12.1994

Dilogarithm Function

Function subprograms RDILOG and DDILOG calculate the dilogarithm function

Liy(z) = _/ Mdt
0

t

for real arguments x.
On CDC and Cray computers, the double-precision version DDILOG is not available.

Structure:

FUNCTION subprograms
User Entry Names: RDILOG, DDILOG
Obsolete User Entry Names: DILOG = RDILOG

Usage:
In any arithmetic expression,
RDILOG(X) or DDILOG(X) hasthevalue Liy(X),

where RDILOG is of type REAL, DDILOG is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:
Approximation by truncated Chebyshev series and functional relations.
Accuracy:

RDILOG (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DDILOG (and RDILOG on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975) 67.

62 C332-1

RGAPNC CERN Program Library C334

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.05.1990
Language : Fortran Revised:01.12.1994

Incomplete Gamma Functions

Function subprograms RGAPNC, DGAPNC and RGAGNC, DGAGNC cal cul ate the incomplete gamma function

1 /x —t a1
— e Tt dt a>0
P(a,z) = I'(a) Jo ()
7 e_x wa M (a < 0)
[(a+1) -7

and the complementary incomplete gamma function

1 - —t ja—1
F(a)/x Eld (0> 0)

o0
e’ w_“/ ettt (a <0),
xT

Gla,z) =

respectively, for real arguments = > 0 and a. M (a, b,) is Kummer's function (see Ref. 3).
On CDC and Cray computers, the double-precision versionsDGAPNC and DGAGNC are not available.

Structure:

FUNCTION subprograms

Uses Entry Names: RGAPNC, RGAGNC, DGAPNC, DGAGNC

Obsolete User Entry Names: GAPNC = RGAPNC, GAGNC = RGAGNC

Files Referenced: Unit 6

External References: ALGAMA (C304), DLGAMA (C304), MTLMTR (N002), ABEND (Z035)

Usage:
In any arithmetic expression,

RGAPNC(A,X) or DGAPNC(A,X) hasthevalue P(A,X),
RGAGNC(A,X) or DGAGNC(A,X) hasthevaue G/(4,X),

where RGAPNC and RGAGNC are of type REAL, DGAPNC and DGAGNC are of type DOUBLE PRECISION, A and
X have the same type as the function name.

Method:
The method is described in Ref. 1.
Accuracy:

RGAPNC and RGAGNC (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the arguments, DGAPNC, DGAGNC (and RGAPNC, RGAGNC on CDC and Cray computers) have an
accuracy of approximately two significant digitsless than the machine precision.

Restrictions:
For P(a,z): Either (i) X > 0, or (i) X =0and A > 0.
For G/(a,): Either (i) X > 0, or (i) X =0and A # 0.

63 C334-1

Error handling:

Error €334.1: X < 0.

Error C334.2: For RGAPNC and DGAPNC: A < 0 and X — O; for RGAGNC and DGAGNC: A = X = 0.

Error C334.3: Problems with convergence (unlikely).

In all cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N0O02) has been called.

Notes:

When speed is more important than accuracy, e.g. for applications in statistics, use GAMDIS (G106) for
computing P(a,). Note, however, that in this case the arguments A and X must be interchanged.

Source:
The subprograms are based on a Fortran program for the incompl ete gamma functions published in Ref. 2.
References:
1. W. Gautschi, A computational procedure for incomplete gamma functions, ACM Trans. Math. Soft-
ware 5 (1979) 466-481.
2. W. Gautschi, Algorithm 542, Incomplete gamma functions, Collected Algorithmsfrom CACM (1979).

3. M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions, Chapter 13, Confluent
Hypergeometric Functions, 9th printing with corrections, (Dover, New York 1972).

C334-2 64

CWERF CERN Program Library C335

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.12.1970
Language : Fortran Revised: 15.03.1993

Complex Error Function

Function subprograms CWERF and WWERF cal culate the complex error function
(2) = e [1+ 2 / ’ t2dt] ~#[1 = erf (—iz)] = e erfe (—iz)
wiz) = € — e = € —erf (— = -
VT Jo

for complex arguments z, where: = /—1.

The double-precision version WWERF is available only on computers which support a COMPLEX*16 Fortran
datatype.

Structure:

FUNCTION subprograms
User Entry Names: CWERF, WWERF

Usage:
In any arithmetic expression,
CWERF(Z) or WWERF(Z) hasthevalue w(Z),

where CWERF is of type COMPLEX, WWERF is of type COMPLEX*16, and Z has the same type as the function
name.

Method:
The method is described in Ref. 2.
Accuracy:

CWERF (except on CDC and Cray computers) has full single-precisionaccuracy. For most values of the argu-
ment Z, WWERF (and CWERF on CDC and Cray computers) has an accuracy of approximately two significant
digitsless than the machine precision.

Notes:
This subprogram is a modified version of the algorithm presented in Ref. 1.

References:

1. W. Gautschi, Algorithm 363, Complex Error Function, Collected Algorithms from CACM (1969).

2. W. Gautschi, Efficient Computation of the Complex Error Function, SIAM J. Numer. Anal. 7 (1970)
187-198.

3. K.S. Kolbig, Certification of Algorithm 363 Complex Error Function, Comm. ACM 15 (1972) 465—
466.

65 C335-1

RSININ CERN Program Library C336

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.12.1970
Language : Fortran Revised:01.12.1994

Sine and Cosine Integrals

Function subprogramsRSININ, RCOSIN and DSININ, DCOSIN calculate the sineand cosine integrals

. T sint
Si(z) = L
0 1
Teost—1

Ci(z) = 7—|—1n|x|—|—/0 fdt (x #0)

for real arguments z, wherey = 0.57721 ... isEuler’'s constant.
On CDC and Cray computers, the double-precision versionsDSININ and DCOSIN are not available.

Structure:

FUNCTION subprograms

User Entry Names: RSININ, RCOSIN, DSININ, DCOSIN

Obsolete User Entry Names: SININT = RSININ, COSINT = RCOSIN
Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,

RSININ(X) or DSININ(X) hasthevaue Si(X),
RCOSIN(X) or DCOSIN(X) hasthevaue Ci(X),

where RSININ and RCOSIN are of type REAL, DSININ and DCOSIN are of type DOUBLE PRECISION, and X
has the same type as the function name.

Method:
Approximation by truncated Chebyshev series.
Accuracy:

RSININ and RCOSIN (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument X, DSININ, DCOSIN (and RSININ, RCOSIN on CDC and Cray computers) have an
accuracy of approximately one significant digit less than the machine precision.

Error handling:

Error €336.1: X = 0 for RCOSIN or DCOSIN. The function value is set equal to zero, and a message is
writtenonUnit 6, unlesssubroutine MTLSET (N0O2) has been called.

References:

1. Y.L. Luke, The special functions and their approximations, v.IlI, (Academic Press, New York 1969)
325-326

66 C336-1

REXPIN CERN Program Library C337

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.12.1970
Language : Fortran Revised: 15.03.1993

Exponential Integral

Function subprograms REXPIN and DEXPIN calculate the exponentia integral

o] e—t
for real argumentsx. For » < 0, thereal part of the principal value of the integral istaken.
On CDC and Cray computers, the double-precision versionsDEXPIN and DEXPIE are not available.
Structure:

FUNCTION subprograms

User Entry Names: REXPIN, REXPIE, DEXPIN, DEXPIE
Obsolete User Entry Names: EXPINT = REXPIN

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,

REXPIN(X) or DEXPIN(X) hasthevalue [(X),
REXPIE(X) or DEXPIE(X) hasthevalue €* E;(X),

where REXPIN and REXPIE are of type REAL, DEXPIN and DEXPIE are of type DOUBLE PRECISION, and X
has the same type as the function name.

Method:
Polynomial and rational approximations.
Accuracy:

REXPIN and REXPIE (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument X, DEXPIN, DEXPIE (and REXPIN, REXPIE on CDC and Cray computers) have an
accuracy of approximately one significant digit lessthan the machine precision.

Error handling:

Error €337.1: X = 0. The function value is set equal to zero, and a message iswritten on Unit 6, unless
subroutine MTLSET (N0O2) has been called.

References:
1. W.J. Cody and H.C. Thatcher,Jr., Rational Chebyshev approximations for the exponential integral
F1(z), Math. Comp. 22 (1968) 641-649.

2. W.J. Cody and H.C. Thatcher,Jr., Chebyshev approximationsfor the exponential integral Ei(x), Math.
Comp. 23(1969) 289-303.

67 C337-1

CEXPIN CERN Program Library C338

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.05.1990
Language : Fortran Revised: 15.03.1993

Exponential Integral for Complex Argument

Function subprograms CEXPIN and WEXPIN calculate the the exponential integral

E(z) = /OZ 71— ey dt

for complex arguments =.
The double-precision version WEXPIN is available only on computers which support a COMPLEX* 16 Fortran
data type.

Structure:

FUNCTION subprograms

Use Entry Names : CEXPIN, WEXPIN
Filesreferenced : Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
CEXPIN(Z) or WEXPIN(Z) hasthevalue FE(Z),

where CEXPIN isof type COMPLEX, WEXPIN isof type COMPLEX*16, and Z has the same type asthe function
name.

Method:

Padé approximants are used to compute /(=) = F(x + iy) in the following (partly overlapping) regions of
the z-plane:

(i) G-+ Gy <1 (z>-5),
(i) (E@+12)+ (Hy)? >1 (2 > -12),
(iii) (597 >1 (¢ <—12).

In the remaining region, consisting mainly of a strip along the negative real axis, F/(z) is computed by
numerical integration (which is very much slower than the evaluation of the Padé approximations).

Accuracy:

CEXPIN (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument Z, WEXPIN (and CEXPIN on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Error handling:

Error €338.1: Numerical integration not successful (unlikely). The function value is set equal to zero, and
amessage iswrittenonUnit 6, unlesssubroutineMTLSET (N0OO2) has been called.

References:

1. Y.L. Luke, the special functions and their approximations, v. |1, (Academic Press, New York 1969)
198-199, 402-416.

68 C338-1

RDAWSN CERN Program Library C339

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.12.1970
Language : Fortran Revised:01.12.1994

Dawson'’s Integral

Function subprograms RDAWSN and DDAWSN cal cul ate the Dawson integral

for real arguments z.
On CDC and Cray computers, the double-precision version DDAWSN is not available.

Structure:

FUNCTION subprograms
User Entry Names: RDAWSN, DDAWSN
Obsolete User Entry Names: DAWSON = RDAWSN

Usage:
In any arithmetic expression,
RDAWSN(X) or DDAWSN(X) hasthevalue F(X),

where RDAWSN is of type REAL, DDAWSN is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:
Rational approximation.
Accuracy:

RDAWSN (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DDAWSN (and RDAWSN on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. W.J. Cody, K.A. Paciorek and H.C. Thacher,Jr., Chebyshev approximations for Dawson’s integral,
Math. Comp. 24 (1970) 171-178.

69 C339-1

BSIR3 CERN Program Library C340

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.12.1970
Language : Fortran Revised: 15.03.1993

Modified Bessel Functions | and K of Order 1/3 and 2/3

Function subprograms BSIR3, BSKR3 and DBSIR3, DBSKR3 calculate the modified Bessel functions
Il//-?)(x) and I(Yu/S(x)

for real argumentsz > 0 and v = —2, —1, 1, 2. Thevalue = 0 ispermitted for the functions I if v > 0.
Note that the functions K are even with respect to v.

On CDC and Cray computers, the double-precision versionsDBSIR3 etc. are not available.
Structure:

FUNCTION subprograms

User Entry Names: BSIR3, BSKR3, EBSIR3, EBSKR3, DBSIR3, DBSKR3, DEBIR3, DEBKR3
Files Referenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035)

Usage:
In any arithmetic expression,

BSIR3(X,NU) or DBSIR3(X,NU) hasthevaue Iyy3(X),
BSKR3(X,NU) or DBSKR3(X,NU) hasthevalue Kyy/3(X),
EBSIR3(X,NU) or DEBIR3(X,NU) hasthevalue exp(—X) x Iyy/3(X),
EBSKR3(X,NU) or DEBKR3(X,NU) hasthevalue exp(X)* Kyys(X),

where BSIR3 etc. are of the type REAL, DBSIR3 efc. are of the type DOUBLE PRECISION, and X has the
sametype as the function name. NU (INTEGER) hasoneof thevalues-2,-1,1,2.

Method:

Approximation by rational functions (I for || < 8, K for 1 < 2 < 5), by an agorithm based on power
series (K for 0 < x < 1), or else by truncated Chebyshev series.

Accuracy:

BSIR3 etc. (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DBSIR3 etc. (and BSIR3 etc. on CDC and Cray computers) has an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error €340.1: X < 0 or X < O, repectively, or NU # —2, —1,1, 2.
The function value is set equal to zero, and a message is written on Unit 6, unless subroutine MTLSET
(N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 352,
355, 363, 366.

2. N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comp.
Phys. 19 (1975) 324-337.

70 C340-1

BSKA CERN Program Library C341

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.10.1994
Language : Fortran Revised:

Modified Bessel Functions K of Certain Order

Subroutine subprograms BSKA and DBSKA cal culate the sequence of modified Bessel functions

Koyn(2)

for real argument = > 0 andachosena € {0, 1, £, 1, 2 2},

On CDC and Cray computers, the double-precision versionsDBSKA and DEBKA are not available.
Structure:

SUBROUTINE subprograms

User Entry Names: BSKA, EBSKA, DBSKA,DEBKA

Files Referenced: Unit 6

External References: BESKO (C313), BESK1 (C313), EBESKO (C313), EBESK1 (C313),

DBESKO (C313), DBESK1 (C313), DEBSKO (C313), DEBSK1 (C313),
BSKR4 (C327), EBSKR4 (C327), DBSKR4 (C327), DEBKR4 (C327),
BSKR3 (C340), EBSKR3 (C340), DBSKR3 (C340), DEBKR3 (C340),
MTLMTR (NOO2), ABEND (Z035)

Usage:
Single-precision version:

CALL BSKA(X,IA,JA,NL,B) or CALL EBSKA(X,IA,JA,NL,B)

X (REAL) Argument z.
IA,JA (INTEGER) Numerator ¢ and denominator j of ¢« = ¢/j. Only the pairs

(IA,J8) = (0,1), (1,2), (1,3), (1,4), (2,3), (3,4)

are permitted. For example, IA = 2 and JA = 3 correspondsto ¢ = 2/3.

NL (INTEGER) Specifies the order a + NL of the last Bessel function in the computed sequence.

B (REAL) One-dimensiona array with dimension (0:d) whered > NL.
On exit, B(n), (n=10,1,2,...,NL), contains /,n,(X) for BSKA, exp(X)+K,4n(X) for EBSKA,
respectively.

Double-precision version:
CALL DBSKA(X,IA,JA,NL,B) or CALL DEBKA(X,IA,JA,NL,B)
where X and B are of type DOUBLE PRECISION.

Method:
The well-known recurrence relation for modified Bessel functionsis used.
Restrictions:

X > 0, NL < 100. Only the pairs (I4,JA) given above are permitted.

71 C341-1

Error handling:

Error €341.1: X < 0.
Error C341.2: Pair (IA, JA) not permitted.

Error ¢341.3: NL > 100.
In all cases, amessage iswrittenon Unit 6, unlesssubroutine MTLSET (N0O2) has been called. Theinitial

contents of array B isleft unchanged.
[]

C341-2 72

RSTRHO CERN Program Library C342

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.11.1971
Language : Fortran Revised:01.12.1994

Struve Functions of Orders Zero and One

Function subprograms RSTRHO, RSTRH1 and DSTRHO, DSTRH1 calculate the Struve functions

ITTRVRRR S o VG0
H,(z) = (52)"F ;F(k—k%)F(k‘l'n"‘%)

for real argumentsx andn = 0, 1.
On CDC and Cray computers, the double-precision versionsDSTRHO, DSTRH1 are not available.

Structure:

FUNCTION subprograms

User Entry Names: RSTRHO, RSTRH1, DSTRHO, DSTRH1

Obsolete User Entry Names: STRHO = RSTRHO, STRH1 = RSTRH1

External References: BESJO (C312), DBESJ0 (C312), BESYO (C312), DBESYO (C312)

Usage:

In any arithmetic expression,

RSTRHO(X) or DSTRHO(X) hasthevalue Hy(X),
RSTRH1(X) or DSTRH1(X) hasthevalue H,(X),

where RSTRHO, RSTRH1 are of type REAL, DSTRHO, DSTRH1 are of type DOUBLE PRECISION, and X hasthe
same type as the function name.

Method:
Approximation by truncated Chebyshev series.
Accuracy:

RSTRHO and RSTRH1 (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument X, DSTRHO, DSTRH1 (and RSTRHO, RSTRH1 on CDC and Cray computers) have an
accuracy of approximately one significant digit lessthan the machine precision.

References:

1. Y.L. Luke, The special functions and their approximations, v.Il (Academic Press, New York 1969)
370-371.

73 C342-1

BSJA CERN Program Library C343

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 24.01.1986
Language : Fortran Revised: 15.03.1993

Bessel Functions J and | with Positive Argument and Non-Integer Order

Subroutine subprograms BSJA, BSTA, DBSJA, DBSTA and QBSJA, QBSIA calculate the sequences of Bessel
functions

Ja—l—n(x)v Ja—n(x)v Ia—l—n(w) or Ia—n($)7
forrea argumentz > 0,0 <a < l,andn =0,1,2,..., N.
The quadruple-precision versions QBSJA and QBSIA are available only on computers which support a
REAL*16 Fortran datatype.
Structure:

SUBROUTINE subprograms

User Entry Names: BSJA, BSTA, DBSJA, DBSTA, QBSJA, QBSIA

Files Referenced: Unit 6

External References: GAMMA (C302), DGAMMA (C302), QGAMMA (C302), MTLMTR (N0O2), ABEND (Z035)

Usage:

Single-precision version:

CALL BSJA(X,A,NL,ND,B) or CALL BSIA(X,A,NL,ND,B)

X (REAL) Argument z.
A (REAL) Order « of thefirst Bessel function in the computed sequence.

NL (INTEGER) Specifies the order a« + NL of the last Bessal function in the computed sequence. It is
permissible for NL to be negative.

ND (INTEGER) Requested number of correct significant decimal digits.
B (REAL) One-dimensional array with dimension (0:d) whered > |NL|.
Onexit, B(n), (n =0,1,2,...,|NL|), contains J,4x (X), Jo—n(X), Iotn(X) Or I, (X), theplussign
of the subscript being taken if NL > 0, the minus signif NL < 0.
Double-precision version:
CALL DBSJA(X,A,NL,ND,B) or CALL DBSIA(X,A,NL,ND,B)
whereX, A and B are of type DOUBLE PRECISION.
Quadruple-precision version:
CALL QBSJA(X,A,NL,ND,B) or CALL QBSIA(X,A,NL,ND,B)
whereX, A and B are of type REAL*16.

Method:

For NL > 0, the method of computationisavariant of Miller’s backwards recurrence algorithm (see Ref. 1).
The requested accuracy is obtained, when possible, by ajudicious choice of theinitial value of the recursion
index, together with at least one repetition of the recursion with thisindex increased by 5. For NL < 0, only
the first two functionsin the sequence are computed in this way. The remaining functions are computed by
the standard Bessel function recurrence relation.

74 C343-1

Restrictions:
X>0, 0<A<1, |NL| < 100.
Accuracy:

If X isclose to a zero of one of the functions./, 4, (), the accuracy of that particular function will be less
than ND significant digits. There may also bealossof accuracy in any of the computed functionsif A isclose
toOor 1, and in other special situations.

Error handling:

Error €343.1: X < 0.

Error C343.2: A < Oo0rA > 1.

Error 343.3: |NL| > 100.

Error ¢343. 4: Difficulties of convergence. Try smaller |ND|.

In all cases, amessage iswritten on Unit 6, unless subroutine MTLSET (N0O2) has been called. If Error 1
to 3 occurs, the initia contents of array B isleft unchanged. If the requested accuracy cannot be obtained
after the initial recursion index has been increased fifty times (Error 4), the contentsof array B is undefined.

Source:
The subprogram is based on Algol procedures described in Ref. 1.

References:

1. W. Gautschi, Algorithm 236, Bessel functions of the first kind, Collected Algorithms from CACM
(1972)

C343-2 75

CBSJA CERN Program Library C344

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 24.01.1986
Language : Fortran Revised: 15.03.1993

Bessel Functions J with Complex Argument and Non-Integer Order
Subroutine subprograms CBSJA, WBSJA and WQBSJA calculate a sequence of Bessel functions

Jatn(2),
for complex arguments z, 0 < ¢ < 1,andn =0,1,2,..., N.

The quadruple-precision version WQBSJA is available only on computers which support a COMPLEX*32 For-
tran datatype.

Structure:

SUBROUTINE subprograms

User Entry Names: CBSJA, WBSJA, WQBSJA

Files Referenced: Unit 6

External References: GAMMA (C302), DGAMMA (C302), QGAMMA (C302), MTLMTR (N0O2), ABEND (Z035)

Usage:
Single-precision version:
CALL CBSJA(Z,A,NL,ND,CB)

(COMPLEX) Argument z.
A (REAL) Order « of thefirst Bessel function in the computed sequence.
NL (INTEGER) Specifiesthe order a + NL of the last Bessel function in the computed sequence.
ND (INTEGER) Requested number of correct significant decimal digits.
CB (COMPLEX) One-dimensional array with dimension (0:d) whered > NL.

Onexit, CB(n), (n=10,1,2,...,NL), contains .J,+n(Z).
Double-precision version:

CALL WBSJA(Z,A,NL,ND,CB)

where A is of type DOUBLE PRECISION, Z and CB are of type COMPLEX*16.
On computers whose Fortran compiler does not support COMPLEX*16 arithmetic (e.g. CDC and Cray) the
storage conventionsfor Z and CB are as follows:

Z (DOUBLE PRECISION) Array of declared dimension (2) containingReZ inZ(1) andImZinZ(2).

CB (DOUBLE PRECISION) Two-dimensional array with dimensions (2,0:d) whered > NL. On exit,
CB(1,n) containsRe .J,4,(Z) and CB(2,n) containsim J,1n(Z), (n=0,1,2,...,NL).

Quadruple-precision version:

CALL WQBSJA(Z,A,NL,ND,CB)
where A isof type REAL*16, Z and CB are of type COMPLEX*32.
Method:

The method is an extension to complex arguments of a variant of Miller’s backwards recurrence algorithm
(see Ref. 1). Therequested accuracy is obtained, when possible, by ajudiciouschoice of theinitial value of
the recursion index, together with at least one repetition of the recursion with thisindex increased by 5.

Restrictions:
ImZ+#0ifRez <0, 0<A<1, 0<NL< 100.

76 C344-1

Accuracy:

If Z doesnot lieon thereal axis, the requested accuracy is usually obtained. There may be aloss of accuracy
if AisclosetoOor 1, and in other special situations.

Error handling:

Errorc344.1:Z=X+iYwithX < 0andY = 0.

Error C344.2: A < Oo0rA > 1.

Error C344.3: NL < 0 or NL > 100.

Error €344 .4: Difficulties of convergence. Try smaller |ND|.

In all cases, amessage iswritten on Unit 6, unless subroutine MTLSET (N0O2) has been called. If Error 1
to 3 occurs, the initial contents of array CB isleft unchanged. If the requested accuracy cannot be obtained
after theinitial recursionindex has been increased fifty times (Error 4), the contentsof array CB is undefined.

Source:
The subprogram is based on Algol procedures described in Ref. 1.

References:

1. W. Gautschi, Algorithm 236: Bessel functions of the first kind, Collected Algorithms from CACM
(1965)

C344 -2 77

RBZEJY CERN Program Library C345

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.08.1989
Language : Fortran Revised:01.12.1994

Zeros of Bessel FunctionsJand Y

Subroutine subprograms RBZEJY and DBZEJY calculate, for rea order a« > 0, thefirst N > 0 zeros

Jayns Yans jz;,nv y(/l,n (n =1,2,... 7]\7)

of the Bessel functions J, (), Y, (z), J.(z), Y/(x), respectively. The prime denotes the derivative of the
function with respect to x.

On CDC and Cray computers, the double-precision version DBZEJY is not available.
Structure:

SUBROUTINE subprograms

User Entry Names: RBZEJY, DBZEJY

Obsolete User Entry Names: BZEJY = RBZEJY
Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tBZEJY(A,N,MODE,REL,X)

A (type according to t) Order «.

N (INTEGER) Number N of zeros wanted.

MODE (INTEGER) defines the function for which the zeros are to be calcul ated:

1 zerosof J,(z),
2 zerosof Y, (z),
3 zerosof J! (z),
4 zerosof Y/(z).

REL (type according to t) The requested relative accuracy.

X (type according to t) One-dimensional array of length ¥ at least. On exit, X(n), (n = 1,2, ..., N)
containsthefirst N positive (in the case A = 0 and MODE = 3, non-negative) zeros of the function
defined by MODE.

Method:

Initial approximationsto the zeros are computed from asymptotic expansions. These values are improved by
higher-order Newton iteration making use of the differential equation for the Bessel functions. (For details
see Ref. 1).

Error handling:
Error C345.1: A < 0. A message iswrittenonUnit 6, unless subroutine MTLSET (N002) has been called.
The contents of X isleft unchanged. I < 0 acts as do nothing.

78 C345-1

Source:
The subroutineis based on Algol procedures published in the References.
References:
1. N.M. Temme, An algorithmwith Algol60 program for the computation of the zeros of ordinary Bessel
functions and those of their derivatives, J. Comput. Phys. 32 (1979) 270-279.

2. N.M. Temme, On the numerical evaluation of the ordinary Bessel function of the second kind, J.
Comput. Phys. 21 (1976) 343-350.

C345-2 79

RELI1 CERN Program Library C346

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:

Elliptic Integrals of First, Second, and Third Kind

Function subprogramsRELI1, RELI2, RELI3 and DELI1, DELI2, DELI3 calculate, for real argument z, the
ellipticintegrals of thefirst, second and third kind, respectively.

On CDC and Cray computers, the double-precision versionsDELI1, DELI2 and DELI3 are not available.
Mainly for reasons of numerical stability, the algorithms are based on the following definitions:
First kind:

Piet) = [& (K > 0),
0 Jur e+
Second kind:
Pae o) = [at b € (2> 0).
O (14€2)y/(1L+ €1+ k7€)
Third kind:
FS(kalvp) = ! —I_gz d§ (klz > 0, p$2 # _1)'

I (14)/ (L +€) (1 + k2e?)

Notethat Fy (¢, k') = Fa(x, k', 1,1) = Fs(a, k', 1). For p < 0, theintegral F5 is defined by its principal
value.

For the integral of the second kind, a special entry-mode argument is provided which allows F 3 (z, k', a, b)
to be calculated when &/? < 0, i.e. when & isimaginary.

Other common definitions of the elliptic integrals and their relations to ¥, Fs, F3 are listed here for
convenience (k2 + k'* = 1):

First kind:
¢ dy /
F(k,¢) = /0 m = Fy(tan¢, k') (lo| <= /2, |k < 1),
- o v d77 _ 2
Foh) = [St = R VIAR) W< <,
Second kind:

1)

E(k,¢) = / J1 - k2 sin? g di = Fa(tand, K, 1K) (16l < /2, [k] < 1),
0

N v — k22

Ey, k) = /0 \/ 1_77727 dn = Fy (y/vl—y27k’717k’2) (lyl <1, k] <1).

80 C346-1

Third kind:

¢ do
/0 (14 hsin?)y/1 — kZsin? ¢

H(¢7h7k) = = FS(tan¢7k/7h+1)

(lol <7 /2, [k[< 1),

-~ . v dn _ 2 Lt
My, h k) = /0 T Ta - Fg(y/\/l y,k,h+1)

— %) (1 = k2n?)
(lyl <1, [k] < 1),

Structure:

FUNCTION subprograms

User Entry Names: RELI1, RELI2, RELI3, DELI1, DELI2, DELI3

Files Referenced: Unit 6

External References: ASINH (B102), DASINH (B102), MTLMTR (NOO2), ABEND (Z035)

Usage:

In any arithmetic expression, with AKP = &/,

RELI1(X,AKP) or DELI1(X,AKP) hasthevalue F;(X, k'),
RELI2(X,AKP,A,B,MODE) or DELI2(X,AKP,A,B,MODE) hasthevaue F;y(X,k" A,B),
RELI3(X,AKP,P) or DELI3(X,AKP,P) hasthevalue F5(X, k', P),

whereRELI1, RELI2, RELI3 areof typeREAL, whereDELI1, DELI2, DELI3 are of typeDOUBLE PRECISION,
and X, AKP, A, B and P have the same type as the function name. MODE is of type INTEGER.

The notation k" indicates that, when calling RELI2 or DELI2, the parameters AKP and MODE must be set as
follows:

If &’* > 0: MODE = +1 and AKP = &/,

if &’* < 0: MODE = —1 and AKP = Im k' = —ik’ (redl).

Method:

Theevauationof F; and F, isbased onthe Landen transformation, that of F 3 on the Bartky transformation.
F, for k'* < 0 iscalculated by using a transformation of the arguments. See Ref. 1 and 2 for details.

Accuracy:

The REAL functions (except on CDC and Cray computers) have full single-precision accuracy. The REAL
functions on CDC and Cray, and the DOUBLE PRECISION functions on al computers have an accuracy
approximately two significant digits |ess than the machine precision.

Restrictions:

1. RELI2andDELI2: AKP*X**2 < 1ifMODE — —1.
2. RELI2 andDELI2: MODE = +1or —1.
3. RELI3 andDELI3: P*Xx*2 #* —1.

Error handling:

Error C346.1: Restriction 1 is not satisfied.

Error C346.2: Restriction 2 is not satisfied.

Error C346.3: Restriction 3 is not satisfied.

In all cases, the function value is set equal to zero, and a message iswritten on Unit 6, unless subroutine
MTLSET (NOO2) has been called.

C346-2 81

Source:
The subprograms are based on the Algol 60 proceduresell, el2in Ref. 1 and el3in Ref. 2.

References:

1. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965)
78-90.

2. R. Bulirsch, Numerical calculation of éliptic integrals and eliptic functions I11, Numer. Math. 13
(1969) 305-315.

82 C346-3

RELI1C CERN Program Library C347

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:

Complete Elliptic Integrals of First, Second, and Third Kind

Function subprograms RELI1C, RELI2C, RELI3C and DELI1C, DELI2C, DELI3C calculate the complete
ellipticintegrals of thefirst, second and third kind, respectively.

Function subprograms RELIGC and DELIGC calculate a general complete ellipticintegral.

Function subprograms RELIKC, RELIEC and DELIKC, DELIEC calculate the complete ellipticintegrals K (k)
and E(k).

On CDC and Cray computers, the double-precision versionsDELI1C etc. are not available.

Mainly for reasons of numerical stability, the algorithms are based on the following definitions:

First kind:

Pk = [& (K > 0).
0 Juret e
Second kind:
F3(,a,b) = /Oo 0+ be & (K> 0).
O (14)y/(1+)1+ k)
Third kind:

, o] 1_|_€2
F5(K.p) =
’ [;<r+m%¢u+5%u+w%%

¢ (K? >0, p#0).

Notethat F5 (k") = F5(k',1,1) = F5(k', 1). For p < 0, theintegral F isdefined by its principal value.
The general integral:

/oo a+ b€2

O (L4 pE) (14 €)1+ k2e2)

G(K' p,a,b) = d§

(K* > 0).

/”/2a6082¢—|—bsin2¢ do
0 cos? ¢ + psin? ¢ Vcos? ¢+ k% sin? ¢

For p < 0, thisintegral is defined by its principal value. See Notesfor specia cases.
The functions K(k) and E(k):

/2 i
_ L 2
ki = [e (<,

o
B(k) = /0 S ksl gds (k< 1),

83 C347-1

Other common definitions of the complete elliptic integrals and their relationsto F' 7, F3, F3 are listed here
for convenience (k2 + k'* = 1):

First kind:
Flk,7/2) = K(k) = Fi(K) (k<)
Pk = /1 di) (k<)
’ o V(1 — (1 - k2p?) ' '
Second kind;
E(k,x/2) = B(k) = F3(k',LE*) (k[<1),
~ 1 _ .22
Bk = [([5Ea = B0LEY (k<.
0 11—
Third kind:
/2 i
r/2nh) = | = Fi(k, A1) (k< 1),
0o (14 hsin?)4/1 — kZsin®¢
(1, h k) = /1 di = Fi(k',h+1) (k<1
o o (14 hmn2) /(T =) (1= k22 e '
Structure:

FUNCTION subprograms

User Entry Names: RELI1C, RELI2C, RELI3C, RELIGC, RELIKC, RELIEC
DELI1C, DELI2C, DELI3C, DELIGC, DELIKC, DELIEC

Obsolete User Entry Names: ELLICK = RELIKC, ELLICE = RELIEC,

DELLIK = DELIKC, DELLIE = DELIEC
Files Referenced: Unit 6
External References: MTLMTR (N0O2), ABEND (Z035)

Usage:

In any arithmetic expression, with AK = % and AKP = &/,

RELI1C(AKP) or DELI1C(AKP) hasthevalue F;
RELI2C(AKP,A,B) or DELI2C(AKP,A,B) hasthevalue F3
RELI3C(AKP,AK2,P) or DELI3C(AKP,AK2,P) hasthevalue Fj
RELIGC(AKP,P,A,B) or DELIGC(AKP,P,A,B) hasthevaue G(k’,P,A,B),
RELIKC(AK) or DELIKC(AK) hasthevalue K(k),
RELIEC(AK) or DELIEC(AK) hasthevalue E(k),

where RELI1C etc are of type REAL, DELI1C etc are of type DOUBLE PRECISION, and AKP, AK, AK2, A, B
and P have the same type as the function name.

The redundant parameter AK2 in RELI3C and DELI3C permits improved accuracy when %% is small, i.e.
k' ~ 1. Inthis case, AK2 = k? should be calculated using higher-precision arithmetic and then truncated
before calling the subprogram.

C347-2 84

Method:

Theevaluationof F7, F3, F7; isbased on the Landen transformation, that of G on the Bartky transformation.
For details, see Ref. 1-3. For K(k) and E(k) Chebyshev approximationsare used (see Ref. 4).

Accuracy:

The REAL functions (except on CDC and Cray computers) have full single-precision accuracy. The REAL
functions on CDC and Cray, and the DOUBLE PRECISION functions on al computers have an accuracy
approximately two significant digits|essthan the machine precision.

Restrictions:

RELI1C and DELI1C: AKP # 0.
RELI2C and DELI2C: AKP # O or AKP = 0 and B = 0.
RELI3C and DELI3C: AKP*P # 0.
RELIGC and DELIGC: AKP # 0.
RELIKC and DELIKC: |AK| < 1,

bk wbdpE

RELIEC and DELIEC: |AK| < 1.

Error handling:

Error C347.1:
Error C347.2:
Error C347.3:
Error C347.4:
Error C347.5:

Restriction 1 is not satisfied.
Restriction 2 is not satisfied.
Restriction 3 is not satisfied.
Restriction 4 is not satisfied.
Restriction 5 is not satisfied.

In al cases, the function valueis set equal to zero, and a message iswritten on Unit 6, unless subroutine
MTLSET (N002) has been called.

Notes:
Every linear combination of the three special complete elliptic integrals K(k), E(k), [1(h, k) may be ex-
pressed interms of G (&, p, a, b):
AK(k) + pE(k) = G(K, 1, A+, A+ k')
AK(F) + ull(h, k) = G, h+ 1A+ u A(h+ 1) + p)
Special examples are
K(k) = G(K,1,1,1),

(
E(k) = G(¥,1,1,K%
(K(k) — E(k))/k* = G(K,1,0,1),
(K(k) — EPE(k)/k* = G(K,1,1,0),
M(h,k) = Gk, h+1,1,1),
(K (k) — T (h, k))/h Gk, h+1,0,1),

If ab > 0 then G will evaluate any linear combination of K (%), E(k), I1(k, k) without cancellation (such as
would occur, for example, if (K(k)—E(k))/k* were to be computed from values of K (k) and E(k) which
had been computed separately.

Other functions which can be represented by G are the Jacobian Zeta function Z(®, k) and the Heuman
Lambda function Aq(®, k) (see Ref. 5):

in ¢ P
Z@.k) = BTEEETGH 00,V (1= ot 4 K s)
2
Ao(®, k) = — qsinq)G(k’,q,l,klz) (g =1+ k*tan? ®).
T

(Quoted from Ref. 3, slightly modified)

85 C347-3

Source:

The subprogramsfor F7, F’ are based on the Algol60 procedures cell, cel2in Ref. 1, thosefor F; on cel3
in Ref. 2, and thosefor G on celin Ref. 3.

References:

1. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965)
78-90.

2. R. Bulirsch, Numerical calculation of eliptic integrals and elliptic functions Il, Numer. Math. 7
(1965) 353-354.

3. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions 111, Numer. Math. 13
(1969) 305-315.

4. W.J. Cody, Chebyshev approximationsfor the complete ellipticintegrals K and F/, Math. Comp. 19
(1965) 105-112.

5. PF. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed.,
Springer-Verlag Berlin (1971) 33-37.

C347-4 86

CELINT CERN Program Library C348

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:

Elliptic Integral for Complex Argument

Function subprograms CELINT and WELINT calculate, for complex argument z = z + ¢y and real comple-
mentary modulus £’ a general ellipticintegral of the second kind:

) _ /z a‘|‘bC2
O (14 ¢/ (L4)1+ 22)

F(z, K a,b ¢ (K” >0, Re(z) > 0),

which contains the elliptic integrals of the first and second kind as special cases:

= F(z,k,1,1),

V[&
e = Jarens e

N g [1+k2¢ '
Fi(z, k) = /0 Trof\ Tt = F(z, Kk, 1,k7).

The double-precision version WELINT is available only on computers which support a COMPLEX* 16 Fortran
data type.

Structure:

FUNCTION subprograms

User Entry Names: CELINT, WELINT

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:

In any arithmetic expression, with AKP = &/,
CELINT(Z,AKP,A,B) or WELINT(Z,AKP,A,B) hasthevalue F(Z,’ A,B),

where CELINT is of type COMPLEX, WELINT is of type COMPLEX*16, Z is of the same type as the function
name, and AKP, A, B are of type REAL for CELINT and of type DOUBLE PRECISION for WELINT.

Method:

The evaluation of F is based on the Gauss transformation. For details, in particular for the conformal
mapping provided by F', see Ref. 1.

Accuracy:

CELINT (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, WELINT (and CELINT on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:
Error C348.1: Re Z < 0. The function value is set equal to zero, and a message is written on Unit 6,
unless subroutineMTLSET (N002) has been called.

87 C348-1

Notes:

For other forms of the ellipticintegrals see the write-up for RELI1 (C346).
Source:

The subprogram is based on the Algol 60 procedure elco2givenin Ref. 1.
References:

1. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965)
78-90.

C348-2 88

RTHETA CERN Program Library C349

Author(s) : G.A. Erskine Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 07.06.1992
Language : Fortran Revised:

Jacobian Theta Functions

Function subprograms RTHETA and DTHETA cal cul ate the Jacobian theta functions

do(z,q) = 1+ 22(—1)”(]”2 cos2nrwe,
h(z,q) = QZ)"q (nt3 sm(2n—|—)ma
Po(x,q) = QZ(] +5)" cos (2n+ 1)rx

I3(z,q) = 1+ QZ qn2 cos 2nw e,

n=1
194($7Q) = 190($7(])7
for real arguments z and 0 < ¢ < 1. ¥, (z 4 1,1) and ¥3(z, 1) are undefined if = is an integer; otherwise
Dp(x,1) =0,k =1,2,3,4.

Note that several conflicting definitions of these functionsoccur in the literature. In particular, the argument
in the trigonometric terms is often defined to be « instead of 7x.

On CDC and Cray computers, the double-precision version DTHETA is not available.
Structure:

FUNCTION subprogram

User Entry Names: RTHETA, DTHETA

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:

In any arithmetic expression,
RTHETA(K,X,Q) or DTHETA(K,X,Q) hasthevaue 9(X,Q),

where RTHETA is of type REAL, DTHETA is of type DOUBLE PRECISION, X and Q are of the same type asthe
function name, and K is of type INTEGER.

Method:

Ift(0<t< %) differsfrom = or —z by an integer, it follows from the periodicity and symmetry properties
of thefunctionsthat ¥, (z, ¢) = £91(¢, ¢) and 9s(z, ¢) = 9s(¢, ¢). Inaregion for which the approximation
issufficiently accurate, ¥, is set equal to thefirst (n = 0) term of the transformed series

it) = 200/ 23 (1) N sinh (20 4 1),

n=0

89 C349-1

and 95 isset equa to thefirst two (i.e. n < 1) terms of
d3(t,q) = (/\/77)1/26_M2 (1 + QZe_A”Z) cosh Qn/\t) ,
n=1

where A = 72/| In ¢|. Otherwise the trigonometric seriesfor 94 (¢, ¢) and J5(¢, ¢) are used.
For all z, ¥ and ¢, are computed from ¥y (z, ¢) = ¥3(3 — |2],), 92(x, q) = 91 (5 — |z|, q).

Restrictions:

1. 0<Q<1.

2. K=0,1,23,4

3. IfQ=1andk =1, X— must not be an integer.
If Q = 1 andX = 2, X must not be an integer.

Error handling:

Error C349.1: Restriction 1 is not satisfied.

Error C349.2: Restriction 2 is not satisfied.

Error C349.3: Restriction 3 is not satisfied.

In all cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (NOO2) has been called.

Accuracy:

For DTHETA (and for RTHETA on CDC and Cray compulters), the error when Q islessthan approximately 0.9
does not exceed two decimal digitsin the last place. For larger values of Q (provided the computed result is
non-zero), the error is at worst comparable in magnitude to the mathematical error which would be caused
by one-bit rounding errorsin the arguments X and Q.

On computers ather than CDC and Cray, non-zero values of RTHETA have full machine accuracy.
Notes:

Successive references using the same value of Q are executed faster than those in which Q changes.

Many functional relations, including relations between the theta functions and the Jacobian €lliptic func-
tions, are given in Refs. 1-4.

References:

1. W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and theorems for the special functions of math-
ematical physics, Springer-Verlag Berlin (1966) 371-377.

2. F. Tolke, Praktische Funktionenlehre, Bd. 11, Springer-Verlag Berlin (1966) 1-38.

3. PF. Byrdand M.D. Friedman, Handbook of ellipticintegralsfor engineersand scientists, 2nd Edition,
Springer-Verlag Berlin (1971) 315-320.

4. E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th Edition, Cambridge University
Press, Cambridge (1946) Chapter 21.

C349-2 20

SIMPS CERN Program Library D101

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.01.1988
Language : Fortran Revised: 15.03.1993

Integration by Simpson’s Rule

Function subprograms SIMPS and DSIMPS use Simpson’s rule to compute an approximate value of the
integral

B
I = / f(a)dz.
A
On CDC or Cray computers, the double-precision version DSIMPS is not available.
Structure:

FUNCTION subprograms

User Entry Names: SIMPS, DSIMPS

Files Referenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035)

Usage:
In any arithmetic expression,
SIMPS(F,A,B,N) or DSIMPS(F,A,B,N)

has the approximate value of the integral I, where SIMPS is of type REAL and DSIMPS is of type DOUBLE
PRECISION, andF, A, B have the same type as the function name. N isof type INTEGER.

F One-dimensional array with dimension (0:d), whered > N, containing thevalueof f(z) atN+1
equally-spaced pointsz;, (i = 0,1, ... ,N), withzg = A and zy = B.

A,B End-pointsof integration interval.

N Asdefined above. N must be positive and even.

Error handling:

ErrorD101.1: N < 0 or N odd. Thefunction valueis set equal to zero, and a message iswrittenonUnit 6,
unless subroutineMTLSET (N002) has been called.
[]

a1 D101-1

RADAPT CERN Program Library D102

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 01.12.1994
Language : Fortran Revised:

Adaptive Gaussian Quadrature

Subroutine subprograms RADAPT and DADAPT calculate, to an attempted specified accuracy, the value of the

integral
b
I = / f(z)da

by adaptive subdivision of the interval («a, b), calculating the integrals over the subintervals using RGS56P
and DGS56P (D106).

On CDC and Cray computers, the double-precision version DADAPT is not available.
Structure:

SUBROUTINE subprograms
User Entry Names: RADAPT, DADAPT
External References: RGS56P (D106), DGS56P (D106), user-supplied FUNCTION subprogram.

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tADAPT(F,A,B,NSEG,RELTOL,ABSTOL,RES,ERR)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in
the calling program. This subprogram must set F(X) = f(X).

A,B (type according to t) End-points of integration interval. Note that B may be less than A.

NSEG (INTEGER) Specifies how the adaptation isto be done:

= 0 : usethe subdivisionsas determined in the previous call to tADAPT,
= 1 : fully automatic, adapt until tolerance attained,
=n > 1:first splitinterval into n equal segments, then adapt as necessary to attain tolerance.

RELTOL (typeaccording to t) Specified relativetolerance.
ABSTOL (typeaccording to t) Specified absolutetolerance.

The calculation comes to an end if either RELTOL or ABSTOL is satisfied, or the number of
segments exceeds 100. Either RELTOL or ABSTOL can be set to zero, in which case only the

other is used.
RES (type according to t) The calculated approximationfor 1.
ERR (type according to t) An estimated absolute uncertainty on this approximation.

Method:

The automatic adaption is done as follows: At each step, the total integral is estimated as the sum of the
integrals over the subdivisions, and the squared uncertainty is estimated as the sum of the squares of the
uncertainties over al subdivisions. If this uncertainty is too big (failing both the absolute and relative
tolerance criteria) then the subinterval with the largest absolute uncertainty is divided in half.

92 D102-1

Accuracy:

The true accuracy isusually very close to the uncertainty returned by the subroutine, sometimesit is much
better, but very seldom worse. Even on functions with (integrable) singularities, the results are usually

reliable, aslong asthesingularity is“wideenough” to be detected in the early stages, which can be controlled
by the value of NSEG.

D102 -2 93

GAUSS CERN Program Library D103

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 02.05.1966
Language : Fortran Revised: 15.03.1993

Adaptive Gaussian Quadrature

Function subprograms GAUSS, DGAUSS and QGAUSS compute, to an attempted specified accuracy, the value
of theintegral

I= /AB F(z)da.

The quadruple-precision version QGAUSS is available only on computers which support a REAL* 16 Fortran
datatype.

Structure:

FUNCTION subprograms

User Entry Names: GAUSS, DGAUSS, QGAUSS

FilesReferenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:
In any arithmetic expression,
GAUSS(F,A,B,EPS), DGAUSS(F,A,B,EPS) or QGAUSS(F,A,B,EPS)

has the approximate value of theintegral /.

F Name of auser-supplied FUNCTION subprogram, declared EXTERNAL in the calling program. This
subprogram must set F(X) = f(X).

A,B End-pointsof integrationinterval. Note that B may be lessthan A.

EPS Accuracy parameter (see Accuracy).

GAUSS is of type REAL, DGAUSS is of type DOUBLE PRECISION, QGAUSS is of type REAL*16, and the argu-
mentsF, A, B, EPS and X (inF) have the same type as the function name.

Method:
For any interval [, b] we define gs(a, b) and ¢g14(a, b) to be the 8-point and 16-point Gaussian quadrature

approximationsto
b
/ f(z)da

_ |gl6(av b) - 98(a7 b)|
r(a,b) = T nata b

and define

Then, with G = GAUSS or DGAUSS,

b
G=> ge(wio1, i),
=1

94 D103-1

where, starting with 2o = A and finishing with 2, = B, thesubdivisionpointsz; (i = 1,2, ...) aregiven
by
T, =xi—1 + A(B —x;-1),
1

with A equal to the first member of the sequence 1,1, 1, ... for which r(z;_, ;) < EPS. If, at any stage

in the process of subdivision, the ratio
o . |

B—-A

isso small that 1 + 0.005¢ is indistinguishable from 1 to machine accuracy, an error exit occurs with the
function value set equal to zero.

q:

Accuracy:

Unless there is severe cancellation of positive and negative values of f(z) over the interval [A, B], the
argument EPS may be considered as specifying a bound on the relativeerror of 7 inthecase |/| > 1, and
a bound on the absoluteerror in the case |I| < 1. More precisely, if k is the number of sub-intervals
contributing to the approximation (see Method), and if

B
Iabs = /A |f($)|d$,

then the relation
|G = 1|

Iabs + k

will nearly awaysbe true, provided the routine terminates without printing an error message. For functions
f having no singularitiesin the closed interval [A, B] the accuracy will usually be much higher than this.

< EPS

Error handling:

Error D103.1: The requested accuracy cannot be obtained (see Method). The function value is set equal
to zero, and amessage iswritten on Unit 6 unless subroutineMTLSET (N002) has been called.

Notes:

Values of the function f(z) at the interval end-points A and B are not required. The subprogram may
therefore be used when these values are undefined.
[]

D103 -2 95

RCAUCH CERN Program Library D104

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 10.08.1967
Language : Fortran Revised:01.12.1994

Cauchy Principal Value Integration

Function subprograms RCAUCH and DCAUCH compute the Cauchy principal valueintegral

I = P/ABf(ac)dx

where f hasasingularity inside or outside the interval [A, B] such that the Cauchy principal value exists.
On computers other than CDC or Cray, only the double-precision version DCAUCH isavailable. On CDC and
Cray computers, only the single-precision version RCAUCH is available.

Structure:

FUNCTION subprograms

User Entry Names: RCAUCH, DCAUCH

Obsolete User Entry Names: CAUCHY = RCAUCH

FilesReferencend: Unit 6

External References: GAUSS (D103), DGAUSS (D103), MTLMTR (N002),
ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),
tCAUCH(F,A,B,S,EPS)

has, in any arithmetic expression, the approximate value of theintegral 7.

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

A,B (type according to t) End-pointsof the integration interval. Note that B may be less than A.

S (type according to t) The absissaof the singularity.

EPS (type according to t) Accuracy parameter (see under Accuracy inthein short write-up for GAUSS
(D103)).

Method:

The method described in Ref. 1 is used for decomposition of the integral. The resulting integrals are
computed by GAUSS (D103).

Accuracy:
See short write-up for GAUSS (D103).
Error handling:

ErrorD104.1: S=Ao0r S =B.

Error D104 . 2: The requested accuracy cannot be obtained (see short write-up for GAUSS (D103)).

The function value is set equal to zero, and a message is written on Unit 6, unless subroutine MTLSET
(N002) has been called.

References:

1. I.M. Longman, On the numerical evaluation of Cauchy principal values of integrals, MTAC (later
renamed Math. Comp.) 12 (1958) 205-207.

96 D104-1

RTRINT CERN Program Library D105

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 02.05.1966
Language : Fortran Revised:01.12.1994

Integration over a Triangle

Function subprogramsRTRINT and DTRINT compute an approximate value of the integral

1= [[ey

evaluated over theinterior of an arbitrary triangle A inthe zy-plane. An attempted accuracy may, optionally,
be specified.

On computers other than CDC or Cray, only the double-precisionversion DTRINT isavailable. On CDC and
Cray computers, only the single-precisionversion RTRINT is available.

Structure:

FUNCTION subprograms

User Entry Names: RTRINT, DTRINT

Obsolete User Entry Names: TRIINT = RTRINT
Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),
tTRINT (F,NSD,NPT,EPS,X1,Y1,X2,Y2,X3,Y3)

has, in any arithmetic expression, the approximate value of theintegral 7.

F (type according to t) Name of auser-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. Thissubprogram must set F(X,Y) = f(X, Y).
NSD (INTEGER)

= 0 : No subdivision of the given triangle.
= 1 : Subdivision of the given triangle (see Method).

NPT (INTEGER)
= 7 : A 7-pointintegration formulais used.
= 25 : A 25-point integration formulais used.
= 64 : A 64-point integration formulais used.

EPS (type according to t) Accuracy parameter (see Accuracy).
X1,Y1 (typeaccording to t) The coordinates of the vertices of A.
X2,Y2
X3,Y3

97 D105-1

Method:

NSD=0:

An approximation I, to I isfound by computing the NPT-point formulafor thetriangle A. Thevalue of EPS
has no influence on the resullt.

NSD=1:

After computing Iy, the triangle A is subdivided into two subtriangles A’ and A”, the corresponding ap-
proximations /" and 1" are computed, and a test is made to see whether

(o — (I'+ 1")]

EPS
1_|_ |I/_|_I//| <

If thistest is satisfied, the routine terminates by setting the function value to 7. If it fails, the process of
subdivision and testing continues according to atree structure. The routine terminates either because the test
is passed successfully by all the subtriangles at some level, or because a maximum number of subdivisions
isreached (see Error Handling).

Accuracy:

Unlessthere is severe cancellation of positive and negative values of f(z,y) over A the argument EPS may,
if NCD = 1, be considered as specifying a bound on the relative error of 7 inthecase |I| > 1, and a bound
on the absolute error inthecase | 7| < 1.

Restrictions:

"Mild” singularitiesare permitted if they coincide with the vertices of A. Any other singularity lyinginside
A or on its boundaries will most likely lead to too many subdivisions (see Error Handling), or cause a
wrong result.

Error handling:

Error D105.1: NPT # 7, 25, 64.

Error D105 . 2: The number of subdivisionshas reached 35 without success.

In both cases, the function valueis set equal to zero, and a message iswrittenonUnit 6, unless subroutine
MTLSET (NOO2) has been called.

References:

1. K.S. Kolbig, A Fortran program and some numerical test results for the integration over atriangle,
CERN 64-32 (1964).

D105-2 98

RGS56P CERN Program Library D106

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 01.12.1994
Language : Fortran Revised:

Gaussian Quadrature with Five- and Six-Point Rules

Subroutine subprograms RGS56P and DGS56P cal culate an approximation and uncertainty for the integral

I:/abf(ac)dac

equal respectively to the mean value and the difference of the results /5 and s obtained by the five- and
six-point Gaussian integration rules.

On CDC and Cray computers, the double-precision version DGS56P is not available.
Structure:

SUBROUTINE subprograms
User Entry Names: RGS56P, DGSEEP
External References: User-supplied FUNCTION subprogram.

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tGS56P(F,A,B,RES,ERR)

F (type according to t) Name of auser-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

A,B (type according to t) End-pointsof integration interval. Note that B may be less than A.

RES (type according to t) The calculated approximationfor /7, i.e. %(15 + Is),

ERR (type according to t) An estimated uncertainty on this approximation, i.e. |15 — Ig|.

99 D106-1

RGQUAD CERN Program Library D107

Author(s) : G.A. Erskine Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 07.06.1992
Language : Fortran Revised:

N-Point Gaussian Quadrature

Function subprograms RGQUAD and DGQUAD cal cul ate the approximate value of the integral

/ i

using the N -point Gauss-L egendre quadrature formula corresponding to theinterval [a, b].

Subroutine subprogramsRGSET and DGSET store, for subsequent use, the abscissae =; and the weights w; of
the N -point Gauss-L egendre quadrature formula corresponding to the interval [a, b].

The following values of N may beused: 2, 3,4, 5,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 40, 48,
64, 80, 96.

RGQUAD, RGSET and DGQUAD, DGSET are independent subprograms: it is not necessary, for instance, to call
DGSET in order to use DGQUAD, or vice-versa.

On CDC and Cray computers, the double-precision versions DGQUAD and DGSET are not provided.
Structure:

SUBROUTINE and FUNCTION subprograms

User Entry Names: RGQUAD, RGSET, DGQUAD, DGSET

Internal Entry Names: D107R1,D107D1

FilesReferenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035), User-supplied FUNCTION subprogram

Usage:

To calculate the integral:

Fort =R (typeREAL), t = D (type DOUBLE PRECISION),
tGQUAD(F,A,B,N)

N
has, in any arithmetic expression, the value Z w; f(x;) whichis an approximation to the given integral.
=1

To store the abscissae; and the weightsw;:

CALL tGSET(A,B,N,X,W)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

A,B (typeaccordingto t) End-pointsa and b of the integration interval.
N (INTEGER) Number N of quadrature points.

X,W (type according to t) One-dimensional arrays. On exit, X(i) and W(i) contain z; and w;, (¢ =
1,2,...,N), respectively.

Method:

Thevaluesof z; and w; are computed by linearly scaling values obtained from a stored table corresponding
totheinterval [—1, +1].

100 D107-1

Accuracy:

The absolute error of RGQUAD and DGQUAD is proportional to the value of the (2.V)th derivativeof f at some
internal point of the interval [«, b] (see Ref. 1).

Error handling:

Error D107 .1: ThevalueN doesnot appear in thelist given above. A messageiswrittenonUnit 6, unless

subroutineMTLSET (N002) hasbeen called. If the subprogram referenced isRGQUAD or DGQUAD, the function
valueis set equal to zero.

References:

1. A.H. Stroud and D. Secrest, Gaussian quadrature formulas, (Prentice-Hall, Englewood Cliffs 1966).

D107-2 101

TRAPER CERN Program Library D108

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.03.1968
Language : Fortran Revised:

Trapezoidal Rule Integration with an Estimated Error

Let afunction f(z) be given by itsvalues at certain discrete pointsz, (v = 1,2,...,n). Let the function
values y,, be accompanied by an estimated standard deviation =,, (square root of the variance). Subroutine
subprogram TRAPER then approximates the integral

B
I = /A f(z)de ~ zy:wl,yl,

by alinear combination of the y,, using the trapezoidal rule. It calculates the standard deviation o of I by

— 2.2
o = E wies.
v

Thefunctionvalues f(A) and f(B) are calculated by linear interpolation.
Structure:

SUBROUTINE subprogram
User Entry Names: TRAPER

Usage:

CALL TRAPER(X,Y,E,N,A,B,RE,SD)

X,Y,E (REAL) Arraysof length > n containingz,, v,, €, respectively.

N (INTEGER) Number of function values

A,B (REAL) Limits of integration.

RE (REAL) On exit, RE contains an approximate value of theintegral 1.

SD (REAL) On exit, SD contains an approximate value of the standard deviation o

If noe, are given, thearray E should be filled with zeros.
Restrictions:

Although there are no restrictionson A and B (B may be less than A), care must be taken if one or both of
them is either smaller than X (1) or bigger than X(N). In these cases f(A) or f(B) are extrapolated linearly
fromY (1) and Y(2) or Y(N-1) and Y () respectively, which may lead to unreasonable results. If A = B or
N < 2, RE and SD will be set to zero. It isassumed that all the z, are distinct. No test is made for this.

Notes:

Thisprogram should only be used for the problem described above. For general-purpose numerical integra-
tion to a preassigned accuracy use GAUSS (D103).

102 D108 -1

RGMLT CERN Program Library D110

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.12.1988
Language : Fortran Revised: 15.03.1993

Gaussian Quadrature for Multiple Integrals

Function subprogram packages RGMLT and DGMLT compute an approximate value of an n-dimensional inte-
gral of theform

bn bn—l(l’n)
In = / dwngbn(xn) / dwn—1¢n—1 (xn—lv xn) T

n—l(l’n)

bl(l’g,.. ,l’n)
¢2($27-"7$n)/ d$1¢1($17...7$n)7

a1(z2,...,Tn)

where1 < n < 6.

Each subprogram integrates over only one variable. The integral I,, is computed by means of a set of n
nested calls to these subprograms.

On computers other than CDC or Cray, only the double-precision version DGMLT is available. On CDC and
Cray computers, only the single-precisionversion RGMLT is available.
Structure:

FUNCTION subprograms
User Entry Names: RGMLT1, RGMLT2, RGMLT3, RGMLT4, RGMLT5, RGMLTS,
DGMLT1, DGMLT2, DGMLT3, DGMLT4, DGMLT5, DGMLT6
FilesReferenced: Unit 6
External References: MTLMTR (N0O2), ABEND (Z035), user-supplied SUBROUTINE subprograms

Usage:

1. Letk be oneof theintegers1,2,...,6. Then, in any arithmetic expression,

RGMLTk (FSUBk, Ak ,Bk,NIk,NGk,X) or
DGMLTk (FSUBk, Ak ,Bk,NIk,NGk,X)
has the approximate value of the integral with respect to ;. of the function specified below.

RGMLTk is of type REAL, DGMLTk is of type DOUBLE PRECISION, and the arguments Ak, Bk, and X
have the same type as the function name. NIk and NGk are of type INTEGER.

FSUBk Name of a user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling
program.

Ak ,Bk End pointsof the integration interval for variable « .

NIk Number of equal subintervalsinto which theinterval (Ak,Bk) isdivided.

NGk Number of Gaussian quadrature points to be used in each of the NIk subintervals. (If
NGk has any value other than 6 or 8, the value 6 is assumed).

X One-dimensional array of dimension > n.

103 D110-1

2. The subroutine FSUBk should be of the form
SUBROUTINE FSUBk (M,Uk,Fk,X)

where Uk, Fk and X are of type REAL for RGMLTk and of type DOUBLE PRECISION for DGMLTk, and
where M is of type INTEGER.

M Aninteger (< 64), whosevalueis set by RGMLTk (DGMLTk).
Uk One-dimensional array with declared dimension (*), whose contentsisset by RGMLTk (DGMLTk).

Fk One-dimensional array with declared dimension (*), whose contents must be set by FSUBk
as described below.

X One-dimensional array which must bethe same asthe array X appearing as an actual argument
inall calstoRGMLT1, RGMLT2,... (DGMLT1, DGMLT2, ...).

The subprogram RGMLTk (DGMLTk) which calls subroutine FSUBk sets the value of M and placesin array Uk
aset of M values of the variable z . Then, if fi(zx, ..., z,) denotesthe function which isto be integrated
with respect to z, it is the job of subroutine FSUBk to set X (k) to the appropriate value of x 5, to compute
fr for each of these values of x;, (taking the remaining variables z;41,...,z, from X(k+1),...,X(n)
respectively) and place theresultsin array Fk. (See Examples.

Method:

Integration with respect to each variable is performed by applying the 6- or 8-point Gaussian quadrature
formulato each of the equal sub-intervals.

Notes:

1. The time needed to compute an n-dimensional integral by means of these subprograms is approxi-
mately
(NG1 % NG2 % - - -« NGn) * (NI1 % NI2* ---* NIn).

This should be kept in mind when choosing the values of NIk.

2. The accuracy of a particular calculation can be estimated by repeating the integration with different
values of NGk (e.g., 8 instead of 6) or by changing NIk, the latter usually being less economical.

Error handling:

Error D110.1: NIk < 0. A message is written on Unit 6, unless subroutine MTLSET (N002) has been
called. Executionishalted on aSTOP instruction.

Examples:

To calculate (in type REAL) the integral

1 &2 1
N T doyzy /22 — —(2V2 - 1)(e—2
Q2 /0 To\/T2€ /0 21214/ 27 + X2 3(\/_)(6)

using 6-point Gaussian quadrature over each of ny = 3, ny = 4 subdivisionsof the corresponding interval.
In the main program, write for instance

D110-2 104

EXTERNAL FSUB2
DIMENSION X(2)
Q2=RGMLT2(FSUB2,0.,1.,3,6,X)

For the SUBROUTINE subprograms FSUB2, FSUB1 write for instance

SUBROUTINE FSUB2(M,U2,F2,X)
EXTERNAL FSUB1
DIMENSION U2(*),F2(*),X(2)
DO 1L =1,M
X(2)=U2(L)
R=SQRT(X(2))
1 F2(L)=R*EXP(X(2))*RGMLT1(FSUB1,0.,R,4,6,X)
RETURN
END

SUBROUTINE FSUB1(M,U1,F1,X)
DIMENSION U1(*),F1(*),X(2)
DO1L=1,M
X(1)=U1(L)

1 F1(L)=X(1)*SQRT(X(1)**2+X(2))
RETURN
END

105 D110-3

CGAUSS CERN Program Library D113

Author(s) : G.A. Erskine Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 07.12.1970
Language : Fortran Revised:15.03.1993

Adaptive Complex Integration Along a Line Segment

Function subprograms CGAUSS and WGAUSS compute, to an attempted specified accuracy, the value of the

complex integral
B
I:/ f(z)dz.
A

The path of integration isthe directed line ssgment A B in the complex z-plane. The function f(z) must be
single-valued on this segment.

The double-precision version WGAUSS is available only on computers which support a COMPLEX* 16 Fortran
datatype.

Structure:

FUNCTION subprograms

User Entry Names: CGAUSS, WGAUSS

FilesReferenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:
In any arithmetic expression,
CGAUSS(F,A,B,EPS) or WGAUSS(F,A,B,EPS)

has the approximate value of theintegral 1.

F Name of auser-supplied FUNCTION subprogram, declared EXTERNAL inthe calling program. This
subroutinemust set F(z) = f(Z).

A,B End-pointsof integration interval.

EPS Accuracy parameter (see Accuracy).

CGAUSS isof type COMPLEX, WGAUSS is of type COMPLEX*16, and the argumentsF, A, B, and Z (in F) have
the same type as the function name. EPS is of type REAL for CGAUSS and of type DOUBLE PRECISION for
WGAUSS.

Method:

For any line segment [, b] we define gs(a, b) and g16(a, b) to be the 8-point and 16-point Gaussian quadra-
ture approximationsto
b
| re:

|g16(a7 b) - 98(07 b)|
1+ |g16(a, b)]

and define

r(a,b) =

106 D113-1

Then, with G = CGAUSS or WGAUSS,
k
G=> gie(zi-1,),
=1

where, starting with zo = A and finishing with z;, = B, the subdivisionpointsz; (¢ = 1,2, ...) are given
by

2 = zi—1 + MB — z_1),
with A equal to the first member of the sequence 1,1/2,1/4,... for which r(z;_1, z;) < EPS. If, a any
stagein the process of subdivision, the ratio

Zi T Zi—1

B—-A

q:

isso small that 1 + 0.005¢ is indistinguishable from 1 to machine accuracy, an error exit occurs with the
function value set equal to zero.

Accuracy:

Unless there is severe cancellation of positive and negative values of f(z) over the interval [A, B], the
argument EPS may be considered as specifying a bound on the relativeerror of 7 inthecase |/| > 1, and
a bound on the absoluteerror in the case |I| < 1. More precisely, if k& is the number of sub-intervals
contributing to the approximation (see Method), and if

B
L = /A F(2)]dz,

then the relation
G~ 1]

Iabs + k

will nearly awaysbe true, provided the routine terminates without printing an error message. For functions
f having no singularitiesin the closed interval [A, B] the accuracy will usually be much higher than this.

< EPS

Error handling:

Error D113.1: The requested accuracy (see Method) cannot be obtained. The function valueis set equal to
zero, and amessage iswrittenonUnit 6, unless subroutineMTLSET (N002) has been called.

Notes:

Valuesof thefunction f(z) at the end-pointsof the linesegment A and B are not required. The subprogram
may therefore be used when these val ues are undefined.
[J

D113-2 107

RIWIAD CERN Program Library D114

Author(s) : B. Lautrup Library: MATHLIB
Submitter: Submitted: 23.07.1971
Language : Fortran Revised:10.01.1986

Adaptive Multidimensional Monte-Carlo Integration

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (in part) RADMUL (D120)

RIWIAD is an adaptive multidimensional integration subroutine based on an origina by G. Sheppey. It
permits numerical integration of alarge class of functions, in particular those that are irregular at the border
of theintegration region. The integral is always performed over the unit hypercube.

Structure:

SUBROUTINE subprogram

User Entry Names: RIWIAD

FilesReferenced: Unit 6

External References: RNDM (V 104) user-supplied FUNCTION subprogram

COMMON Block Names and Lengths: /ANSWER/ 2, /INTERN/ 7, /OPTION/ 3, /PARAMS/ 4,
/RANDOM/ 1, /STORE/ 77, /STORE1/ 10001

Usage:

See Long Write-up for a description of all features. Here only the standard use is described.
The COMMON block PARAMS must always be set by the user:

COMMON /PARAMS/ ACC,NDIM,NSUB,ITER

ACC (REAL) Relative accuracy desired.

NDIM (INTEGER) Number of dimension parameters.
NSUB (INTEGER) Number of subvolumesallowed.
ITER (INTEGER) Maximal number of iterations.

Theintegrand is defined by a user-supplied FUNCTION subprogram having the array Q (NDIM) as parameter,
for example

FUNCTION EXAMPLE(Q)
REAL EXAMPLE,Q
DIMENSION Q(7)

END

108 D114-1

This program defines EXAMPLE as a function of the 7 variablesQ(1), Q(2), ..., Q(7). The sequence

EXTERNAL EXAMPLE

COMMON /PARAMS/ ACC,NDIM,NSUB,ITER
ACC=0.01

NDIM=7

NSUB=10000

ITER=5

CALL RIWIAD(EXAMPLE)

will then integrate EXAMPLE over the 7 variablesQ(1), ..., Q(7), al intheinterval fromOto 1, i.e. over the
7-dimensional unit hypercube. The result will be printed in detail in areadily understandable form.

The program allows extensive user control viathe COMMON blocks. See Long Write-up for details.
Method:

RIWIAD isiterativeandinagiveniterationit dividesthe unit hypercubeinto acertain number of subvolumes
by means of a given set of intervals on each axis. Within each subvolume it estimates the mean value and
variance of the integrand by random sampling, and then cal culates the Riemann sum over the subvolumes.
Using the variances found projected onto each axis it calculates a set of new interval divisionsto be used
in the next iteration. It returns when the desired accuracy is obtained or when the maximum number of
iterations has been performed.

Restrictions:

Thereis, in principle, no limitations on the number of dimensions, although the present version only allows
up to 9-dimensional integrals. The maximal dimensionality can easily be increased.

Notes:

1. The program is rather slow and should preferably be used only when other methods (for instance
Gaussian quadrature) fail due to the irregular behaviour of the integrand. The time consumption is
essentialy proportional to the product of NSUB and ITER.

2. The non-CDC/Cray implementation of RIWIAD has IMPLICIT DOUBLE PRECISION(A-H,0-Z),i.e
al non-INTEGER variablesare DOUBLE PRECISION, including the user-supplied external function.

D114-2 109

RADMUL CERN Program Library D120

Author(s) : A.C. Genz, A.A. Malik Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 15.11.1995
Language : Fortran Revised:

Adaptive Quadrature for Multiple Integrals over N-Dimensional Rectangular Regions

Subroutine subprograms RADMUL and DADMUL compulte, to an attempted specified accuracy, the value of the
integral

bn bn—l bl
In:/ / fler,29,...,2,) deydag - - day,
an An—1 al

over an n-dimensional rectangular region, where a;, b;, (i = 1,2, ..., n) are constants.
On computers other than CDC and Cray, only the double-precision version DADMUL is available. On CDC
and Cray computers, only the single-precision version RADMUL is available.

Structure:

SUBROUTINE subprograms
User Entry Names : RADMUL, DADMUL
External References: User-supplied SUBROUTINE subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tADMUL(F,N,A,B,MINPTS,MAXPTS,EPS,WK,IWK,RESULT ,RELERR,NFNEVL,IFATIL)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program.

N (INTEGER) Number » of dimensions (2 < N < 15).

A,B (type according to t) One-dimensional arrays of length > N. On entry, A(i) and B(1),
(1=1,...,N), contain the lower and upper limits of integration, respectively. Note that a;, b;
correspond to z;.

MINPTS (INTEGER) Minimum number of function evaluationsrequested. Must not exceed MAXPTS.
MAXPTS (INTEGER) Maximum number (> 2#*N + 2N(N + 1) 4 1) of function evaluationsto be allowed.

EPS (type according to t) Specified relative accuracy.
WK (type according to t) One-dimensional array of length IWK, used as working space.
IWK (INTEGER) Length (> (2N + 3) (1 + MAXPTS/(2#*N 4 2N (N + 1) + 1))/2) of WK.

RESULT (typeaccordingto t) Contains, on exit, an approximate value of theintegral 7,,.
RELERR (typeaccordingto t) Contains, on exit, an estimation of the relative accuray of RESULT.
NFNEVL (INTEGER) Contains, on exit, the number of function evaluations performed.

110 D120-1

IFAIL (INTEGER) On exit:

0 Normal exit. RELERR < EPS. At least MINPTS and at most MAXPTS calls to the function F
were performed.

1 MAXPTS istoo small for the specified accuracy EPS. RESULT and RELERR contain the values
obtainablefor the specified value of MAXPTS.

2 IWKistoosmall for the specified number MAXPTS of function evaluations.
RESULT and RELERR contain the values obtainablefor the specified value of IRK.

3 N<20rN > 15 0or MINPTS > MAXPTS, Or MAXPTS < 2**N + 2N(N + 1) + 1.
RESULT and RELERR are set equal to zero.

The user-supplied FUNCTION subprogram F should be of the form

FUNCTION F(N,X)
DIMENSION X(*)

F=f(X(1), ..., X(N)).
RETURN
END

whereX and F are of typet.
Method:

An integration rule of degree seven is used together with a certain strategy of subdivision. For a more
detailed description of the method see References

Error handling:
See description of argument IFAIL.

Notes:

1. Multi-dimensional integrationistime-consuming. For each rectangular subregion, the routinerequires
2" 4 2n% + 2n + 1 function evaluations. Careful programming of the integrand might result in
substantial saving of time.

2. Numerical integration usually works best for smooth functions. Some analysis or suitable transfor-
mations of the integral prior to numerical work may contribute to numerical efficiency.

Source:
This subroutineis an adapted version of Fortran program ADAPT publishedin Ref. 1.
References:
1. A.C. Genz and A.A. Malik, Remarks on algorithm 006: An adaptive algorithm for numerical integra-

tion over an V-dimensional rectangular region, J. Comput. Appl. Math. 6 (1980) 295-302.

2. A.vanDorenand L. deRidder, An adaptive agorithm for numerical integration over an n-dimensional
cube, J. Comput. Appl. Math. 2 (1976) 207-217.

A copy of the text part of the References isavailable.
[J

D120-2 111

DIVON4 CERN Program Library D151

Author(s) : JH. Friedman, M.H. Wright (Stanford) Library: MATHLIB
Submitter: F. James Submitted: 01.12.1981
Language : Fortran Revised: 14.08.1985

Multidimensional Integration or Random Number Generation

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (in part) RADMUL (D120)

DIVON4 isdesigned for integration of scalar functions of several variables, especially functions not smooth
enough to be integrated reliably using Gaussian quadrature. It can also be used effectively to generate
random points in a multidimensional space, with point density given by any bounded function. The heart
of the package is an algorithm for recursive multi-dimensional partitioning of the space into subregions of
approximately constant function value (minimum range criterion).

Structure:

SUBROUTINE package

User Entry Names: BUKDMP, DIVON, DVNOPT, GENPNT, INTGRL, PARTN, RANGEN, TREDMP,
USRINT, USRTRM, DVNBKD, EXMBUC, SPLIT, QUASI, RECPAR, BOUNDS,
TREAUD, NODAUD, BUCMVE, QUAD, FEQN, NOCUT, TSTEXT, DELSLV,
FUN, BUFOPT, BNDOPT, SETTOL, BNDTST, DVCOPY, GRDCMP, DELETE,
BFGS, MODCHL, NMDCHL, DVDOT, LDLSOL, SHRNK, FEASMV, ADDBND,

MULCHK, DELBND, LOCSCH, ORTHVC, MXSTEP, NEWPTR, RLEN, RANUMS
Files Referenced: Printer and optional user-defined external file
External References: NRAN (V105), user-supplied FUNCTION subprogram DFUN

Usage:

The function (integrand) is defined by a user-supplied FUNCTION subprogram which must have the name
DFUN and must cal culate the integrand in double-precision mode:

FUNCTION DFUN(ND,X)
DOUBLE PRECISION DFUN,X(ND)

DFUN = ...
RETURN
END

ND (INTEGER) Number of integration variables.

X (DOUBLE PRECISION) Array containing the coordinates of the point in the integration volume at
which DFUN isto be evaluated.

See Long Write-up for details.
References:

1. JH. Friedman and M.H. Wright, A Nested Partitioning Procedure for Numerical Multiple Integration.
ACM Trans. Math. Software 7 (1981) 76-92.

112 D151-1

RRKSTP CERN Program Library D200

Author(s) : G.A. Erskine Library: MATHLIB
Submitter: Submitted: 01.09.1983
Language : Fortran Revised:01.03.1994

First-order Differential Equations (Runge—Kutta)

Subroutine subprograms RRKSTP and DRKSTP advance the solution of the system of » > 1 simultaneous
first-order differential equations

dy; .
dy$:fi(xvylv---7yn)7 (121727...771)

by a single step of length & in the independent variable x.
On CDC and Cray computers, the double-precision version DRKSTP is not available.

Structure:

SUBROUTINE subprograms

User Entry Names : RKSTP, DRKSTP

Obsolete User Entry Names : RKSTP = RRKSTP
FilesReferenced : Unit 6

External References: user-supplied SUBROUTINE subprogram

Usage:
Fort =R (typeREAL), t = D (type DOUBLE PRECISION),
CALL tRKSTP(N,H,X,Y,SUB,W)
(INTEGER) Number » of equations.

(type according to t) The step-length /.

(type according to t) On entry, X must be equal to theinitial value of the independent variable .
Onexit, X isequal to = + h.

Y (type according to t) One-dimensional array of length > N. On entry, Y(i), (1 =1,...,N), must
containy; (). Onexit, Y(i), (i = 1,...,N), contains approximate values y; (z + h).

SUB Name of auser-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.

W (type according to t) Array containing at least 3*N elements required as working-space.

The user-supplied subroutine SUB should be of the form
SUBROUTINE SUB(X,Y,F)
where the variable X and the one-dimensional arrays Y (*) and F (x) are of type t. Thissubroutine must set
F(I) = fi(X,Y(1),...,Y(N)) (I=1,2,...,N).
Method:
Using boldface quantitiesto denote vectors of length n, the computational sequenceis as follows:
ky = nf(z,y(2)),
ke = hf(z+ %h,y(ac) + %kl),
ks = hf(z+3h,y(z)+ ika),
ky = hf(z+h,y(z)+ ks); y(@+h) = y(z)+ (ki + 2k + 2ks + ky)
The error per step is proportional to /°.

113 D200-1

Error handling:
N < 1 actsas do nothing.

References:

1. F.B. Hildebrand, Introduction to numerical analysis, (McGraw-Hill, New—York 1956) Sect. 6.16.

D200-2 114

RDEQBS CERN Program Library D201

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.02.1989
Language : Fortran Revised:01.12.1994

First-order Differential Equations (Gragg—Bulirsch—Stoer)

Subroutine subprograms RDEQBS and DDEQBS advance the solution of the system of » > 1 simultaneous
first-order differential equations

dy;
dz

:fi(xvylv--'vyn)v (Z'ZLQ,...,TL),

from a specified value z, to a specified value z; of the independent variable «.

On computers other than CDC and Cray, only the double-precision version DDEQBS is available. On CDC
and Cray computers, only the single-precision version RDEQBS is available.

Structure:

SUBROUTINE subprograms

User Entry Names : RDEQBS, DDEQBS

Obsolete User Entry Names: DEQBS = RDEQBS

FilesReferenced : Unit 6

External References: MTLMTR (N0O2), ABEND (Z035), user-supplied SUBROUTINE subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tDEQBS(N,X1,X2,Y,HO,EPS,SUB,W)

N (INTEGER) Number » of equations.

X1 (type according to t) Initial value z; of the independent variable z.

X2 (type according to t) Final value z, of the independent variable «.

Y (type according to t) One-dimensional array of length > N. On entry, Y(i), (i=1,...,N), must
containy;(z1). Onexit, Y(i), (i = 1,...,N), contains approximate values y; (zz).

HO (type according to t) On entry, HO must contain the proposed initial step-length . On exit, HO

containsthe last computed step-length (See a'so Method and Notes.

EPS (type according to t) The requested absolute accuracy . (EPS should not be smaller than approxi-
mately 102 times the machine precision).

SUB Name of auser-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.
W (type according to t) Array containing at least 36xN elements required as working-space.

The user-supplied subroutine SUB should be of the form
SUBROUTINE SUB(X,Y,F)
where the variable X and the one-dimensional arrays Y (*) and F (x) are of type t. Thissubroutine must set

F(I) = fi(X,Y(1),...,Y(M) (I=1,2,...,N).

115 D201-1

Method:

For thefirst integration step, starting at = = x4, the step-length % is chosen to be the smallest of the numbers
ho, ho/2, ho/4, ... for which not more than 9 stages of internal extrapolation yield an estimated error less
than . Thisprocedure isrepeated until = = x5 isreached. (For details, see Ref. 1).

Error handling:

Error D201 . 1: If therequestec accuracy cannot obtained, amessage iswrittenonUnit 6, unlesssubroutine
MTLSET (N002) has been called.
ForN < 1, or X1 = X2 or HO = 0, control is returned to the calling program without any changein Y.

Notes:

For well-conditioned systems of equations any reasonable value of theinitial step length i, may be chosen.
For ill-conditioned systems, the initial value of ho may be important, and tests with different values are
advised. An inappropriate choice may lead to wrong resultsin such cases.

Source:

Thissubroutinesisbased on an Algol 60 procedure given in Ref. 1. The adaption for integration over agiven
interval (not only over one step) isdueto G. Janin.

References:

1. R.Bulirschand J. Stoer, Numerical treatment of ordinary differential equations by extrapolation meth-
ods, Numer. Math. 8 (1966) 1-13.

D201-2 116

RDEQMR CERN Program Library D202

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.02.1989
Language : Fortran Revised:01.12.1994

First-order Differential Equations (Runge—Kutta—Merson)

Subroutine subprograms RDEQMR and DDEQMR advance the solution of the system of » > 1 simultaneous
first-order differential equations

dy;
dz

:fi($7y17"'7yn)7 (221727771)

from a specified value x; to a specified value x5 of the independent variable x. The integration step-length
isautomatically adjusted to keep the estimated error per step lessthan a specified value.

On computers other than CDC and Cray, only the double-precision version DDEQBS is available. On CDC
and Cray computers, only the single-precision version RDEQBS is available.

Structure:

SUBROUTINE subprograms

User Entry Names : RDEQMR, DDEQMR

Obsolete User Entry Names: DEQMR = RDEQMR

FilesReferenced : Unit 6

External References: MTLMTR (N0O2), ABEND (Z035), User-supplied SUBROUTINE subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tDEQMR(N,X1,X2,Y,HO,EPS,SUB,W)

N (INTEGER) Number » of equations.

X1 (type according to t) Initial value z; of the independent variable z.

X2 (type according to t) Final value z, of the independent variable «.

Y (type according to t) One-dimensional array of length > N. On entry, Y(i), (1 =1,...,N), must
containy;(x1). Onexit, Y(i), (i =1,...,N), contains approximate values y; (z3).

HO (type according to t) On entry, HO must contain the proposed initial step-length /. On exit, HO
containsthe last computed step-length (See a'so Method and Notes.

EPS (type according to t) The requested absolute accuracy <. (EPS should not be smaller than approx-
imately 10 times the machine precision).

SUB Name of auser-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.

W (type according to t) Array containing at least 6*N elements required as working-space.

The user-supplied subroutine SUB should be of the form
SUBROUTINE SUB(X,Y,F)
where the variable X and the one-dimensional arrays Y (*) and F (x) are of type t. Thissubroutine must set

F(I) = fi(X,Y(1),...,Y(M) (I=1,2,...,N).

117 D202-1

Method:

The method is a modification by Merson of the Runge-Kutta method. The initial value of the step-length 7
istaken to be thefirst of the numbers ko, ho/2, ho/4, . .. for which the estimated relative error at the end of
the stepislessthan <. At each susequent step, an estimate of the integration error for that step (proportional
to 2°) is computed. If the corresponding relative error exceeds <, the current step-length is halfed; if it is
less than /32 the step-length is doubled. This process is continued until z 5 isreached. (For details, see
Ref. 1).

Error handling:

Error D202. 1: If therequestec accuracy cannot obtained, amessage iswrittenonUnit 6, unlesssubroutine
MTLSET (N002) has been called.

ForN < 1, or X1 = X2 or HO = 0, control isreturned to the calling program without any changein Y.

Notes:

For well-conditioned systems of equations any reasonable value of theinitial step length i, may be chosen.
For ill-conditioned systems, the initial value of ho may be important, and tests with different values are
advised. An inappropriate choice may lead to wrong resultsin such cases.

References:

1. G.N. Lance, Numerical methodsfor high-speed computers, (Iliffe & Sons, London 1960) 56

D202-2 118

RRKNYS CERN Program Library D203

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:01.12.1994

Second-order Differential Equations (Runge—Kutta—Nystom)

Subroutine subprograms RRKNYS and DRKNYS advance the solution of the system of » > 1 simultaneous
second-order differential equations

dei / / .
dxz :fi($7y17"'7yn7y17"'7yn)7 (221727"'777/)

where y! = dy; /dzx, by asinglestep of length A in the independent variable .

On computers other than CDC or Cray, only the double-precision version DRKNYS isavailable. On CDC and
Cray computers, only the single-precision version RRKNYS is available.

Structure:

SUBROUTINE subprograms

User Entry Names : RRKNYS, DRKNYS

Obsolete User Entry Names: RKNYS = RRKNYS

External References: User-supplied SUBROUTINE subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tRKNYS(N,H,X,Y,YP,SUB,W)

N (INTEGER) Number » of equations.

H (type according to t) The step-length A.

X On entry, X must be equal to the initial value of the independent variable z. On exit, X is equa to
z 4+ h.

Y (type according to t) One-dimensiona array of length > N. On entry, Y(i), (i =1,...,N), must
containy; (). Onexit, Y(i), (i = 1,...,), contains approximate values y; (z + h).

YP (type according to t) One-dimensional array of length > N. On entry, YP(i), (i =1,...,N), must
contain y!(x). Onexit, YP(i), (i = 1,...,N), contains approximate values y; (z + h).

SUB Name of a user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.
W (type according to t) Array containing at least 6*N elements required as working-space.

The user-supplied subroutine SUB should be of the form
SUBROUTINE SUB(X,Y,YP,F)
where the variable X and the one-dimensional arrays Y (*), YP (%) and F (*) are of type t. This subroutine

must set
F(I) = fi(X,Y(1),...,Y(N),YP(1),... ,YP(N)) (I=1,2,...,N).

119 D203-1

Method:

Using boldface quantitiesto denote vectors of length n, the computational sequenceis as follows:

1
ki, = §h2f(907}’($)7y/($))

1, 1 1, 1, 1
ky = §h f($+§h7}’(90)+§hy (90)‘|‘Zk17}’(90)+5k1)
_ 10 1 1, L 1
ky = Sh™f(e+ Shy(e)+ Shy'(e) + ki y'(2) + T ko)
1 2 7 7 2

yath) = ye)+hy/(@) + 50+ + k)

1

y(@+h) = y'(@)+

(k1 + 2kg + 2ks + ky)

The error per step is proportional to /°.
Error handling:
For N < 0 or H = 0, control isreturned to the calling program without any changein Y or YP.

References:

1. L. Collatz, The numerical treatment of differential equations, (Springer-Verlag Berlin 1960) 537

D203-2 120

EPDE1 CERN Program Library D300

Author(s) : J. Hornsby Library: MATHLIB
Submitter: R. Keyser Submitted: 02.05.1966
Language : Fortran Revised: 30.01.1980

Elliptic Partial Differential Equation

EPDE1 solves an dliptic partial differential equation of general form (Poisson’s equation being a special
case) over atwo-dimensional region using a finite difference method. The region may be of any shape and
on its boundary either the dependent variable or arelation involving its derivative may be specified.

Structure:

SUBROUTINE subprograms

User Entry Names: EPDE1

Files Referenced: Reader, Printer, TAPE4, TAPES
External References: User-supplied SUBROUTINES

Usage:

See Long Write-up .

121 D300-1

ELPAHY CERN Program Library D302

Author(s) : R.C. LeBail Library: MATHLIB
Submitter: Submitted: 20.03.1972
Language : Fortran Revised:01.12.1981

Fast Partial Differential Equation Solver

ELPAHY uses fast Fourier transform techniques for the solution, over a rectangular domain, of the following
eliptic, parabolic or hyperbolic part differential equation:

*¢(z,y) d*o(x,y) do(z,y)
da2 + ¢ i + 2 dy

+ c30(x,y) = plz,y)

where ¢(z, y) is the unknown function, p(z, y) the known source term, and ¢y, ¢z, c3 given coefficients. A
large variety of boundary conditions can be specified on the sides of the rectangle.

Structure:

SUBROUTINE subprogram

User Entry Names: ELPAHY

Internal Entry Names: NEWRO, ELANAL, ESOLVE, SYNT, MFT
External References: RFT (D700)

COMMON Block Names and Lengths: /FW1/ 774, /FW2/ 100

Usage:

CALL ELPAHY(F,NX,NY,DX,DY,C,IBX,BWEST,BEAST,JBY,BSOUTH,BNORTH)

F (REAL) Two-dimensional array, dimensioned (NX,NY) in the calling program. On input it
contains the source term p(x, y) and on return it contains the unknown function ¢(z, y).

NX (INTEGER) Number of divisionsalong X. NX must be of theform 2™ + 1.

Ny (INTEGER) Number of divisionsalong Y.

DX (REAL) Mesh spacing along X.

DY (REAL) Mesh spacing along Y.

C (REAL) One-dimensiona array of dimension 3, containing the coefficients ¢y, ¢3, c3.

IBX (INTEGER) Controls the type of boundary conditions on the left (BWEST) and right (BEAST)

sides of the rectangular domain:

IBX = 1 : Imposed periodicity along z; BWEST, BEAST not given.

IBX = 2 : Given derivative on either vertical side.

IBX = 3 : Given value on either vertical side.

IBX = 4 : Given value on the left side, given derivative on the right side.

BWEST (REAL) One-dimensional array of size NY containing values or derivatives for the |eft side; the
interpretation depends on IBX.

BEAST (REAL) One-dimensional array of size NY containing values or derivativesfor theright side; the
interpretation depends on IBX.

122 D302-1

JBY

BSOUTH

BNORTH

Notes:

(INTEGER) Controlsthetype of boundary conditionson thelower (BSOUTH) und upper (BNORTH)
sides of the rectangular domain:

Elliptic equation (¢; > 0):

JBY = 1 : Given value on both lower and upper sides.

JBY = 2 : Given derivative on both lower and upper sides.

JBY = 3 : Given value on lower side, given derivative on upper side.

JBY = 4 : Given derivative on lower side, given value on upper side.

Parabolic equation (¢; = 0):

Specify BSOUTH array only. (If y=time, BSOUTH areinitial valuesand the future BNORTH cannot
be specified).

JBY = 1 : Given value on lower side.

JBY = 2 : Given derivative on lower side.

Hyperbolic equation (¢; < 0):

The BSOUTH array specifies the value, the BNORTH array the derivative.

JBY = 1.

(REAL) One-dimensional array of size NX containing values or derivatives for the lower side;
the interpretation depends on JBY.

(REAL) One-dimensional array of size NX containing values or derivatives for the upper side;
the interpretation depends on JBY.

If NX > 65, specify COMMON /FWORK/ of length 6+NX and COMMON /FW1/ of length 6*NX in the calling
program. If NY > 50, specify COMMON /FW2/ of length 2*NY. In either case, make sure your program is
loaded before ELPAHY (D302) (thisis automatic unless you recompile D302 in the same job).

References:

1. R.C. Le Bail, Use of fast Fourier transforms for solving partial differential equations in physics, J.
Comput. Phys. 9 (1972) 440465

A copy of Ref. 1isavailable.

D302-2 123

RDERIV CERN Program Library D401

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.02.1989
Language : Fortran Revised:01.12.1994

Numerical Differentiation

Subroutine subprograms RDERIV and DDERIV compute an approximate numerical value of the derivative
f'(z) of afunction f(z) at aspecified point «.

On computers other than CDC and Cray, only the double-precision version DDERIV is available. On CDC
and Cray computers, only the single-precisionversion RDERIV is available.

Structure:

SUBROUTINE subprograms

User Entry Names : RDERIV, DDERIV

Obsolete User Entry Names: DERIV = RDERIV

FilesReferenced : Unit 6

External References: MTLMTR (NOO2), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tDERIV(F,X,DELTA,DFDX,RERR)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

X (type according to t) The specified point 2 for which the derivativeis to be cal culated.

DELTA (typeaccording to t) On entry, DELTA must contain a scaling factor ¢, which can usually be set
equal to 1. On exit, it contains the last value of thisfactor (see Method).

DFDX (type according to t) On exit, DFDX contains an approximationto f'(X).
RERR (type according to t) On exit, RERR contains an estimate of the relative error of DFDX.

Method:

The method is based on an extensionto numerical differentiation of Romberg's principleof sequence extrap-
olation, originally devel oped for numerical integration. The subroutine starts by computing the 10 numbers

I = [fa+h) = flz = W))/(2h), (k=0,1,...,9),

with
h=8%0.0256 27%/2 (k even)
h=6%0.0192+2-(+=1/2 (odd),

where the scaling factor ¢ isinitially set to DELTA. This procedure is repeated up to 9 times, with 4 replaced
by é/10 each time, until the sequence Ték) isfound to be monotone. A Romberg-like triangular table

Tk — umT(Hl) _ me(k)

m—1 m—1"

with appropriate weights «.,,, , w,, isthen computed for m = 1,2,...,9;k=10,1,...,9 — m, and DFDX is
set equal to 7.\”.

124 D401-1

Restrictions:

The function f(z) must be differentiable at = = X and in a neighbourhood of X. Misleading results will be
obtained if thisisnot true.

Error handling:

Error D401.1: If the function f(z) is such that, after 9 successive reductions of § by a factor 1/10, the

sequence Ték) is not monotone, an error message iswritten Unit 6, unless subroutineMTLSET (N0O2) has
been called. DFDX is set equal to zero, RERR is set equal to onein this case.

References:

1. H. Rutishauser, Ausdehnung des Rombergschen Prinzips, Numer. Math. 5 (1963) 48-54.

D401-2 125

LEAMAX CERN Program Library D501

Author(s) : W. Monch, B. Schorr Library: MATHLIB
Submitter: W. Monch Submitted: 15.03.1993
Language : Fortran Revised:

Constrained Non-Linear Least Squares and Maximum Likelihood Estimation

LEAMAX isa portable collection of subprograms for solving general non-linear least squares problems, non-
linear data fitting problems, and maximum likelihood estimations.

Subroutine subprograms RSUMSQ, RFUNFT, RMAXLK and DSUMSQ, DFUNFT, DMAXLXK calculate an approxima:
tion to a minimum of an objective function ¢ , with respect to » unknown parameters @ = (ay, ..., a,)T €
R":

(S) Thegenera non-linear least squares problem
1 & ,
psla) = 5> [ha)]”
=1
(F) Theleast squares data fitting problem

pr(a) = .

K3

S |:yz - f(%a)r
-1 :

(M) The maximum likelihood estimation

a: <a; <a; (7=1,2,...,n).

Thefunctions f; : R* — R! (i = 1,...,m) and f : Rk x R* — R arearbitrary non-linear functionswith
respect to the argument «. In the case of the data fitting problem (F), a set of observation data { (=, v;)|z; €
RK y; € RY,i = 1,...,m} with their correspondingweights o; (i = 1, ..., m) has to be provided, whereas
for the maximum likelihood estimation (M), the set of datapoints {(z;)|z; € R¥,i = 1, ..., m} belongsto
theinput of the problem.

These subprograms are based on the agorithm described by Moré (Ref. 1) for finding the solution of
a general non-linear least squares problem by using the Levenberg-Marquardt algorithm. The method is
completed by an active set strategy for handling simple box constraints to the unknown parameters (see
Long Write-up for details). The necessary derivatives can either be supplied by the user (subprogram SUB)
or are approximated numerically. In the case of a non-linear data fitting problem, approximations to the
covariance matrix and the standard deviations of the model parameter estimators are also provided.

On computers other than CDC or Cray, only the double-precision versions DSUMSQ, DFUNFT, DMAXLK are
available. On CDC and Cray computers, only the single-precision versions RSUMSQ, RFUNFT, RMAXLK are
available.

126 D501-1

Structure:

SUBROUTINE subprograms
User Entry Names: RSUMSQ, RFUNFT, RMAXLK, DSUMSQ, DFUNFT, DMAXLK
Internal Entry Names: D501L1, D501L2, D501SF, D501P1, D501P2, D501N1, D501N2

External References: RGEQPF (FOO1), RORMQR (FOO1), RTRTRS (FOO1), DGEQPF (FO01),

Usage:

Fort =R

DORMQR (FO01), DTRTRS (FOO1), RVSET (F002), RVSCL (F002),
RVSUB (FO02), RVCPY (FO02), RVMPY (FO02), DVSET (F002),
DVSCL (FO02), DVSUB (FO02), DVCPY (F002), DVMPY (FO02),
RMSET (FO03), RMSCL (FOO3), RMCPY (FO03), RMMPY (FOO03),
RMBIL (FOO3), DMMLT (FOO3), DMSET (F003), DMSCL (F003),
DMCPY (FO03), DMMPY (FOO3), DMBIL (F003),

RMMLT (FOO4), DMMLT (FOO4), RSINV (FO12), DSINV (F012)
User-supplied SUBROUTINE subprogram

(typeREAL), t = D (type DOUBLE PRECISION):

(S) General non-linear least squares problem

CALL
+

(F) Least

CALL
+

tSUMSQ(SUB,M,N,NC,A,AL,AU,MODE,EPS,MAXIT, IPRT,
MFR,IAFR,PHI,DPHI,COV,STD,W,NERROR)

squares data fitting problem

tFUNFT(SUB,K,M,N,NX,NC,X,Y,SY,A,AL,AU,MODE,EPS ,MAXIT,IPRT,
MFR,IAFR,PHI,DPHI,COV,STD,W,NERROR)

(M) Maximum likelihood estimation

CALL
+

SUB

NX
NC

SY

tMAXLK(SUB,K,M,N,NX,X,A,AL,AU,MODE,EPS ,MAXIT,IPRT,
MFR,IAFR,PHI,DPHI,W,NERROR)

Name of user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.
This subprogram must provide the values of the functions f;(a¢) (¢ = 1,...,m), f(-,a), and,
if MODE = 1, the values of the derivatives 0 f;(a)/0a; and 0f(-,a)/0a; (1 =1,...,m;j =
1,...,n) (see Examples.

(INTEGER) Cases (F) and (M) : dimension & of adata point (observation) z; € RX.

(INTEGER) Case (S): number of non-linear functions f;; cases (F) and (M) : number of data points
(observations).

(INTEGER) Number of unknown parameters a.

(INTEGER) Cases (F) and (M) : declared first dimension of array X in the calling program, NX > K.
(INTEGER) Cases (S) and (F): declared first dimension of array COV in the calling program,
NC > N.

(Type according to t) Cases (F) and (M): two-dimensiona array of dimension (NX, > M). On
entry, X must contain the dataset { «; } (the i-th column of X belongsto the data point z; € R,
r=1,...,m).

(type according to t) Case (F): one-dimensional array of length > M, contains, on entry, the data
set{ y; }.

(type according to t) Case (F): one-dimensional array of length > M, contains, on entry, the
weights{ o; } of the data points.

D501-2 127

AL

AU

MODE

EPS

MAXIT
IPRT

MFR
TAFR

PHI

DPHI

cov

STD

NERROR

128

(Type according to t) One-dimensiona array of length > N. On entry, A(J) must contain the
starting value of «; for the Levenberg-Marquardt algorithm. On exit, A(J) contains an approxi-
mation to «; of aminimum point (if the algorithm was successful).

(Type according to t) One-dimensional array of length > N. On entry, AL(J) must contain the
lower bound a; of a; .

(Type according to t) One-dimensiona array of length > N. On entry, AU(J) must contain the
upper bound @; of a; .

(INTEGER)

= 0 : The derivatives are approximated by divided differences.

= 1 : Thederivatives are to be supplied by subprogram SUB.

Other values for MODE are treated asMODE = 0.

(Type according to t) User-supplied tolerance used to control the termination criterion. EPS
should be chosen according to the accuracy required by the problem and the machine accuracy t
(recommended value on entry: between 107 ¢ fort = R, and 1072 fort = D, respectively).

(INTEGER) Maximum permitted number of iterations.
(INTEGER) Printing control.
= 0 : no printing of intermediate results,

= +L : printing of intermediate results at every |L|-thiteration; if IPRT < 0, printing of all input
parameters of tSUMSQ, tFUNFT, tMAXLK, respectively, in addition.
(INTEGER) On exit, MFR contains the number of free variables at the solution point.

(INTEGER) One-dimensional array of length > 2 « N for cases (S) and (F), and of length > N for
case (M), used as working space. On exit, the first MFR elements of IAFR contain the indices of
the free variables at the solution point.

(Type according to t) On exit, PHI contains the value of the objective function at the solution
point.

(Type according to t) One-dimensional array of length > N. On exit, DPHI(J) contains the
derivative d¢/da; of ¢ with respect to a; (j-th component of the gradient of ¢) at the solution
point.

(Typeaccording to t) Cases (S) and (F): two-dimensional array of dimension (NC, > N). On exit,
€OV contains an approximation to the covariance matrix.

(Type according to t) Cases (S) and (F): one-dimensional array of length > N. On exit, STD(J)
containsan approximation to the standard deviation of the estimator of the model parameter « ;.

(Type according to t) One-dimensional array of length > 9« N+ 4« M4+ 2« M*x N4+ 3« N N
for cases (S) and (F), and of length > 7 « N + 2 x Nl x N for case (M), used as working space.

(INTEGER) Error indicator. On exit:

= 0 : No error or warning detected.

= 1 : Atleast oneof the constantsk, M, I, NX, NC, MAXIT isillegal or at least for one j therelation
a; < @; isnottrue.

= 2 : The maximum number MAXIT of iterations has been reached.

= 3 : The objective function ¢ or itsderivativeis not defined for the current values of the param-
eter vector a.

= 4 : Cases (S) and (F): The routines tGEQPF, tORMQR, tTRTRS in the Linear Algebra package
LAPACK (FO01) were unable to solve the linear least squares problem or the subprogram
tSINV (FO12) was unable to compute the covariance matrix.
Case (M): theroutine tSINV (FO12) was unable to solve the normal equations.

D501-3

Examples:

For the user-supplied SUBROUTINE subprogram SUB write for instance in the case t = D:
(S) Objective function (Brown badly-scaled function, n = 2, m = 3):

ps(a) = = [(a1 —10%)2 + (a2 — 2-107%)° + (araz — 2)?]

1
2

SUBROUTINE SUB(N,A,M,F,DF,MODE,NERROR)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (Z0 = 0)

DIMENSION A(*),F(*),DF(M,*)

NERROR=0

F(1)=A(1)-1D6

F(2)=A(2)-2D-6

F(3)=A(1)*A(2)-2

IF(MODE .NE. 1) RETURN

CALL DMSET(M,N,Z0,DF(1,1),DF(1,2),DF(2,1))
DF(1,1)=1

DF(2,2)=1

DF(3,1)=A(2)

DF(3,2)=A(1)

RETURN

END

(F) Objective function (Bard function, n = 3, m = 15, k£ = 3):

@=1y PRI
a) = = =l + ——mM——
o 2 — Y ! T ao + T3, 03

K3

SUBROUTINE SUB(K,X,N,A,F,DF,MODE,NERROR)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(x*),X(*),DF(*)
T=X(2)*A(2)+X(3)*A(3)

IF (T .EQ. 0) THEN

NERROR=3
ELSE

NERROR=0

F=A(1)+X(1)/T

IF(MODE .NE. 1) RETURN

DF(1)=1

DF(2)=-X(1)*X(2)/T**2
DF(3)=-X(1)*X(3)/T**2
ENDIF
RETURN
END

D501-4 129

(M) Objectivefunction (n = 1, m = 100, k = 1):

SUBROUTINE SUB(K,X,N,A,F,DF,MODE,NERROR)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(x*),X(*),DF(*)

PARAMETER (PIR = 0.56418 95835 47756 287D0)
NERROR=3

IF(A(1) .LE. O) RETURN

T=0.5D0* ((X(1)-1)/A(1))*%2
F=PIR*EXP(-T)/A(1)

NERROR=0

IF(MODE .EQ. 1) DF(1)=-F*(1-2xT)/A(1)**2
RETURN

END

In all three cases the parametersk , N, A, M, MODE , NERROR are as declared above. The other parameters
are thefollowing:

F (Typeaccordingtot) Case (S): one-dimensional array of length > M. F(I) must containthefunction
value f;(a) ata (i=1,...,m), onexit.
Cases (F) and (M) : F must contain the function value f(z, a) at (2, a), on exit.

DF (Type according to t) If MODE = 1 values of DF are supplied by SUB. For other values of MODE the
parameter DF is not referenced.
Case (S): two-dimensional array of dimension (M, > N). DF(I,J) must contain the value of the
partial derivative 0 f;(a)/0a; ata, (i =1,...,m;j=1,...,n), onexit.
Cases (F) and (M) : one-dimensional array of length > N. DF (J) must contain the value of the partia
derivative 0 f(z,a)/0a;, (j = 1,...,n), onexit.

X (Type according to t) Cases (F) and (M): one-dimensional array of length > K for one data point
z; € R¥ (in contrast to above declaration).

References:

1. JJ. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, In: Numerical Analysis,

G.A. Watson (Ed.), Lecture Notesin Mathematics 630, Springer-Verlag, New York (1977) 105-116.

2. A Bjorck: Solution of Equationsin R™ (Part 1: Least Squares Methods). In: Handbook of Numerical

Anaysis, PG.Ciarlet, J.L.Lions(Eds.), North-Holland, Amsterdam, New York, Oxford, Tokyo, 1990,
467-636.

3. R.Fletcher: Practical Methods of Optimization. John Wiley and Sons, Chichester, 2nd Edition, 1987.

130

D501 -5

RMINFC CERN Program Library D503

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.11.1993
Language : Fortran Revised:

Minimum of a Function of One Variable

Subroutine subprograms RMINFC and DMINFC calculate, to a limited specified accuracy, the abscissa of
asingle local minimum of a real-valued function f(z) lying in a given interval (a, b), together with the
function value at the minimum. Although this subprogram may find aminimum under other conditions (see
Notes, the search interval should contain exactly one local minimum point z witha < 2 < b.

On CDC and Cray computers, the double-precision version DMINFC is not available.
Structure:

SUBROUTINE subprograms
User Entry Names: RMINFC, DMINFC
External References: User-supplied FUNCTION subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tMINFC(F,A,B,EPS,DELTA,X,Y,LLM)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. Thisfunction must set F(X) = f(X).

A,B (type according to t) On entry, A and B must specify the end-pointsa, b of the search interval.

EPS (type according to t) On entry, EPS must be equal to the accuracy parameter = (see Accuracy).

DELTA (type according to t) On entry, DELTA must be equal to the parameter ¢ specifying a tolerance
interval near A and B (see Accuracy).

X (type according to t) On exit, X is the computed approximation to the abscissa of a minimum of
the function f(z).

Y (type according to t) Contains, on exit, the value of f(X).

LLM (LOGICAL) On exit, LLM is . TRUE. if therelations|X — A| > § and |X — B| > § are both true (i.e.
if X isthe abscissa of alocal minimum lying inside the interval [A, B]), and .FALSE. otherwise
(see Notes.

Method:

The so-called golden section searcts applied (see Reference$. This method uses a fixed number n of
function evaluations, where n = [2.08 x In (|a — b| /=) + 3]+ 1.

Accuracy:

The accuracy depends on the behaviour of the function and is difficult to measure. For example, a flat
minimum resultsin poor accuracy. Thisimplies that the subprograms are not intended to replace the usual

procedures when a minimum of a function is needed in the exact mathematical sense. In any case, a choice
of £ > 108 in double-precisionand of = > 10~* in single-precision mode usually resultsin arelative error
of X which issmaller than or in the order of <. A suggested value of § isé = 10e.

131 D503 -1

Notes:

1. Asarule, the specified interval («, b) should contain strictly onelocal minimum.

2. If thisisnot the case, and if f(«) ismonotonousin («, b), the subprograms find the minimum at the
correct endpoint ¢ or b. LLM issetto .FALSE. inthiscase.

3. In all other possible cases, the behaviour of the subprogramsis not easy to predict. In particular, in
the case of several minimal pointsinside (a, b), one of them isfound, but not necessarily the one with

the smallest value of the function.

References:

1. R. Fletcher, Practical methods of optimization (John Wiley & Sons, Chichester 1987) 39-40.

2. W. Krabs, Einfuhrung in die lineare und nichtlineare Optimierung fir Ingenieure (BSB B.G. Teubner,
Leipzig 1983) 84-86

D503 -2 132

MINUIT CERN Program Library D506

Author(s) : F. James, M. Roos Library: PACKLIB
Submitter: F. James Submitted: 03.05.1967
Language : Fortran Revised:15.01.1994

Function Minimization and Error Analysis

The MINUIT package performs minimization and analysis of the shape of a multi-parameter function. Itis
intended to be used on Chisquare or likelihood functions for fitting data and finding parameter errors and
correlations. The more important options offered are:

e Variable metric (Fletcher) minimization

e Monte Carlo minimization

e Simplex (Nelder and Mead) minimization

e Parabolic error analysis (error matrix)

e MINOS (non-linear) error analysis

e Contour plotting

e Fixing and restoring parameters

e Globa minimization

Structure:

SUBROUTINE subprograms
User Entry Names: MINTIO, MINUIT, MNCOMD, MNCONT, MNERRS, MNEXCM, MNINPU, MNINTR,
MNPARS, MNREAD

Internal Entry Names: MNAMIN, MNBINS, MNCALF, MNCLER, MNCNTR, MNCRCK, MNCROS, MNCUVE,
MNDERI, MNDXDI, MNEIG, MNEMAT, MNEVAL, MNEXIN, MNFIXP, MNFREE,
MNGRAD, MNHELP, MNHESS, MNHES1, MNIMPR, MNINEX, MNINIT, MNLIMS,
MNLINE, MNMATU, MNMIGR, MNMNOS, MNMNOT, MNPARM, MNPFIT, MNPINT,
MNPLOT, MNPOUT, MNPRIN, MNPSDF, MNRAZZ, MNRN15, MNRSET, MNSAVE,
MNSCAN, MNSEEK, MNSET, MNSETI, MNSIMP, MNSTAT, MNSTIN, MNTINY,
MNUNPT, MNWARN, MNWERR, MNVERT, STAND

Usage:
MINUIT can be used either
asa“master” batch program which reads and executes commands appearing in the input data stream;
or
asa“master” interactive program which reads and executes commands given from the terminal;
or

as a Fortran callable “dave’ package, called from the user program or from an intermediate package
such as PAW or HBOOK;

or
any combination of the above.

See Long Write-up for details.

133 D506 -1

FUMILI CERN Program Library D510

Author(s) : I. Silin Library: MATHLIB
Submitter: A. Kobine Submitted: 05.04.1971
Language : Fortran Revised: 18.11.1985

Fitting Chisquare and Likelihood Functions

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 211. Usersare advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: LEAMAX (D501)

FUMILI minimizes the objective functions y2 /2 and ML defined by:

1o li\f:)/j*—Y(X](l)7...,X](L);Al,...,AM)
2t T 2 AY
g=1 7
and
N
ML =3 —[y(x!V o x®a L A

j=1

with respect to the M parameters A where, for each j, 1 < j < N, Y isadata-point with user estimated
error, =AY}, the X; are L co-ordinates of that point and Y is a theoretical function predicting Y* for a
givenset of X; and A.

The method makes use of a particular property concerning the dependence of the objective function (2 /2
or M I.) on the theoretical function (Y') for faster convergence.

Structure:

SUBROUTINE subprograms

User Entry Names: FUMILI, LIKELM, ERRORF

Internal Entry Names. ARITHM, D510BD, FUNCT, MCONV, MONITO, SCAL, SGZ

Files Referenced: Printer

External References: User-supplied FUNCTION and (optional) SUBROUTINE subprograms

COMMON Block Names and Lengths: /A/ 100, /AL/ 100, /AU/ 100, /DA/ 100, /DF/ 100,
/ENDFLG/ 7, /ERROR/ 500, /EXDA/ 1500, /G/ 100,
/NED/ 2, /PL/ 100, /PLU/ 100, /R/ 100,
/SIGMA/ 100, /X/ 10,/Z/ 2485, /Z0/ 2485

Usage:
See Long Write-up .

References:

1. Preprint YINDR-810, 1961 (Dubna) (CERN Library, preprint P. 810).

134 D510-1

RFRDH1 CERN Program Library D601

Author(s) : G.A. Erskineand K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:

Solution of a Linear Fredholm Integral Equation of Second Kind

Subroutine subprograms RFRDH1, DFRDH1 and function subprograms RFRDH2, DFRDH2 cal cul ate an approx-
imation to the solution y of the Fredholm integral equation

b
y(z) = F(a) + / G(a, 1) y(t) dt (1)

over theinterval [, b]. The function F' must not be identically zero. Theinterval [«, b] may be divided into
m subintervals(t;—1,t], (i =1,2,... ,m),witha =ty < t; < --- < t,, =b.

The order N; (number of abscissae) of the Gaussian quadrature formula used for integrating over [t;_1, t;]
is specified separately for each subinterval.

b
Function subprograms RFRDH3 and DFRDH3 evaluate numerically integrals of the form / H(t)y(t)dt

where H isan arbitrary function and y is the solution of (1).

Thefollowing values of N; may beused: 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 40, 48,
64, 80, 96.

On computers other than CDC and Cray, only the double-precision versions DFRDH1 etc. are available. On
CDC and Cray computers, only the single-precision versionsRFRDH1 etc. are available.

Structure:

SUBROUTINE and FUNCTION subprograms

User Entry Names: RFRDH1, RFRDH2, RFRDH3, DFRDH1, DFRDH2, DFRDH3

FilesReferenced: Unit 6

External References: RGSET (D107), DGSET (D107), REQN (FO10), DEQN (F010), MTLMTR (N002),
ABEND (Z035), user-supplied FUNCTION subprograms.

Usage:

For t =R (type REAL), t = D (type DOUBLE PRECISION), thefirst step in the solution of (1) must be the
execution of a statement of the form:

CALL tFRDH1(F,G,M,T,NG,WS,IDIM,N)

F,G (type according to t) Names of user-supplied FUNCTION subprograms, declared EXTERNAL in the
calling program. Subprogram F must set F(X) = F'(X), subprogram G must set G(X, T) = G'(X, T).

(INTEGER) Number m > 1 of subintervalsin [a, b].

(type according to t) One-dimensional array of dimension (0:d) whered > M. On entry, T must
contain the m + 1 ordered pointsof subdivisiont;, (i = 0,1, ... ,m), withtg = ¢ and ¢, = b.

NG (INTEGER) One-dimensional array of length > M. On entry, NG must contain the order (number of
absissae) N, of the Gaussian quadrature formula to be used in theinterval ¢,y < t < ¢, (v =
1,2,...,m).

WS (type according to t) Two-dimensional array of dimensions (IDIM, > IDIM + 4). Used as working
space and for communi cation between the subprograms.

IDIM (INTEGER) A number > 37 N;.
N (INTEGER) Onexit, N = S°7 | N;.

135 D601 -1

OncetFRDH1 hasbeen called, the function subprograms tFRDH2 and tFRDH3 may bereferenced any number
of timeswithout any further call to tFRDH1.

In any arithmetic expression,
tFRDH2(F,G,X,WS,IDIM,N)

hasthe value y(X), where y isthe approximate solution of (1).
In any arithmetic expression,

tFRDH3 (H,WS,IDIM,N)

b
has the approximate value of / H (t) y(t) dt where y isthe approximate solution of (1).

H (type according to t) is the name of a user-defined FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set H(X) = H (X).

Method:
Let the sets{w;} and {z;} be defined by

{wg} = {wgl)7 ... ,wg\h), ... ,w§m), ... 7wg\T,r:n)}7
{z1} = {z?), e ,z](\}l), e ,z§m), e 72](\7;1)}'

w;i) and z](i) are respectively the weightsand abscissae of the V;-point Gaussian quadrature formul ae corre-
spondingto theinterval [¢,_1,¢;]. Subprograms RFRDH1 or DFRDH1 sets up and solves the following system
of simultaneouslinear equationswith unknownsy(z):

N
y(z) = Fz) + > wiGl, 2)y(ze) (=1,2,...,N)

J=1
where N =37 | N;.

N
Function subprogram tFRDH2 calculates y(X) = > wi G(X, 21) y(2x).
k=1

N
Function subprogram tFRDH3 calculates T = > wy H (z1) y(2x).
k=1

Accuracy:

The accuracy depends upon the extend to which the product G'(z, ¢)y (t) can be represented by a polynomial
of degree 2N; — 1 foral z intheinterval [t;_1,%;], (i = 1,2,...,m).

Error handling:

Error D601.1: In tFRDH1, the system of linear equations is singular. A message is written on Unit 6,
unless subroutineMTLSET (N002) has been called.

If any of the values V; does not appear in the list given above, a messageiswrittenonUnit 6 by RGSET or
DGSET (D107) unless subroutine MTLSET (N0O2) has been called.

D601-2 136

RFT CERN Program Library D700

Author(s) : C. Isdin Library: MATHLIB
Submitter: Submitted: 04.09.1972
Language : Fortran Revised: 15.01.1977

Real Fast Fourier Transform
L et the discrete Fourier transform be defined by

2migk

N-1
1
= — ex Tk,) =0,1,...,N).
Ys \/N; p(N) k (])

The subroutines of package RFT compute thistransform or itsinverse

—2mijk

N-1
1
xk:—_g exp()yj, (k=0,1,...,N)

for real functions, with the restrictionthat N isa power of 2.

Structure:

SUBROUTINE subprograms

User Entry Names: RFT, RCA, RPA, RPS, RSA

Internal Entry Names: D700SU

Files Referenced: Printer

COMMMON Block Names and Lengths: /D700DT/ 6, /FWORK/ 321

Usage:

CALL RFT(M,X,IX,Y,IY,MODE) or
CALL RCA(M,X,IX,Y,IY) or

CALL RPA(M,X,IX,Y,IY) or

CALL RPS(M,X,IX,Y,IY) or

CALL RSA(M,X,IX,Y,IY)

M (INTEGER) Number m (such that » = 2™) of input values (full period or half period).
X (REAL) Input array. The input values are taken from X (k+IX+ 1) for k = 0,1, ..., n.
Y (REAL) Output array. Theresultsare stored in Y(k+IY 4 1) forj =0,1,...,n.

MODE (INTEGER) Selects the mode of operation for RFT asfollows:

MODE = 1: Analysis of a general real function.

CALL RFT(M,X,IX,Y,IYV,1) or
CALL RPA(M,X,IX,Y,IY)

assumeszy, = X(k*xIX+ 1) (k=0,1,...,n—1); n = 2™ = N todefineafull period of the function to
be analysed. The value z,, isignored. The results are returned in the following order:

Yo = Yn = Y(l)
Yi = Yn—; = Y(*IY+ 1) +iY((J+ n/2)xIY+ 1), (j=1,2,...,n/2).

The other valuesin Y are not changed.

137 D700-1

MODE = 4: Synthesis of a general real function.

CALL RFT(M,X,IX,Y,IY,4) or
CALL RPS(M,X,IX,Y,IY)
isexactly theinverse of MODE=1 as described above. Thevalue z,, is set equal to .

MODE=2/5: Analysis/Synthesis of a real even function.
For an even function, the transform isidentical to itsinverse.

CALL RFT(M,X,IX,Y,IY,2) or
CALL RFT(M,X,IX,Y,IY,5) or
CALL RCA(M,X,IX,Y,IY)

al assumethat z, = X(k+IX+ 1), (k= 0,1,...,n), n = 2™ = N/2 define a half-periodof the function
to be analysed and that the other half period is generated by evencontinuation. The results returned are the
cosineterms

Y;j = Yon—j = Y(j*IY+ 1), (j=0,1,...,n).
Notethat the full period has 2n = N points.

MODE = 3/6: Analysis/Synthesis of a real odd function.
For an odd function the transform is also identical to itsinverse. All assumethat z ;, = X(k*IX+ 1), (k =
1,2,...,n);

CALL RFT(M,X,IX,Y,IY,3) or
CALL RFT(M,X,IX,Y,IY,6) or
CALL RSA(M,X,IX,Y,IY)

n = 2™ = N/2 define ahalf-periodof the function to be analysed and that the other half period is generated
by odd continuation. The resultsreturned are the sine terms

yj:_y2n—j:Y(j*IY+ 1)7 (j:l,Q,...,n).

Notethat yo = y,, = 0 and that thevaluesreturned areY(1) = X(1) and Y(n+IY+1) = X(n+IX+1). Again
the full period has2n = N points.

Restrictions:

These subroutineswork for any input such that the full periodhas at least four points, i.e., m > 2 for genera
functions, or m > 1 for odd or even functions. If the number of data pointsexceeds 129 (m < 7), thecalling
program must provide sufficient working storage by using the statement

COMMON /FWORK/ W{(nnn)

wherennn = 5 * 2™.

References:

1. C. Iselin, An approach to fast Fourier transform, CERN 71-19.

A copy of Ref. 1isavailable.

D700-2 138

CFT CERN Program Library D702

Author(s) : R.C. Singeton (Stanford) Library: MATHLIB
Submitter: B. Fornberg Submitted: 03.05.1968
Language : Fortran Revised:01.10.1974

Complex Fast Fourier Transform

A discrete Fourier transform is defined by:

N-— ..
Y = 3 X(j) exp(y), (n=0,1,...,N—1).

=0

—_

o

and the inverse

N-1 ..
7G) = Y ¥ (n) exp(QﬂX}]n), G=0,1,...,N—1)

satisfying Z(j) = NX(j),(j=0,1,...,N — 1). CFT evaluates these sums using fast Fourier technique.
It isnot required that V isapower of 2. One-, two- and three-dimensional transforms can be performed.

Structure:

SUBROUTINE subprogram
User Entry Names: CFT
Files Referenced: Printer

Usage:

CALL CFT(A,B,NTOT,N,NSPAN,ISN)

Arrays A and B originaly hold the real and imaginary components of the data, and return the real and
imaginary components of the resulting Fourier coefficients.

Multivariate data is indexed according to the Fortran array element successor function, without limit on
the number of implied multiple subscripts. The SUBROUTINE is called once for each variate. The callsfor
a multivariate transform may be in any order. NTOT is the total number of complex data values. N isthe
dimension of the current variable. NSPAN/N is the spacing of consecutive data values while indexing the
current variable. The sign of ISN determinesthe sign of the complex exponential, and the magnitude of ISN
isnormally one.

For asingle-variate transform, NTOT = N = NSPAN = (number of complex data values), e.g.
CALL CFT(A,B,N,N,N,1)
A tri-variate transform with A(N1,N2,N3),B(N1,N2,N3) iscomputed by

CALL CFT(A,B,N1#N2*N3,N1,N1,1)
CALL CFT(A,B,N1#N2*N3,N2,N1%N2,1) and
CALL CFT(A,B,N1#N2*N3,N3,N1*N2*N3,1)

The data may alternatively be stored in a single COMPLEX array A, then the magnitude of ISN changed to
two to give the correct indexing increment and the second parameter used to pass the initial address for the
sequence of imaginary values, for example:

139 D702-1

REAL
EQUIVALENCE (A,S)

CALL CFT (A,S(2),NTOT,N,NSPAN,2)

Arrays AT (MAXF), CK (MAXF), BT (MAXF), SK(MAXF), and NP (MAXP) are used for temporary storage. If the
available storage isinsufficient the program is terminated by a STOP.

MAXF must be > the maximum prime factor of N. MAXP must be > the number of prime factors of N. In
addition, if the square-free portion X of N has two or more prime factors, then MAXP must be > K — 1.
Storage in NFAC allows for a maximum of 11 factors of N. If N has more than one square-free factor, the
product of the square-free factors must be < 210.

Notes:

CFT is very genera since the number of pointsis not restricted to powers of two, as is the case for RFT
(D700) and FFTRC (D701). For N = 16, 32, 64, 128 theroutinesin FFTRC (D701) are considerably faster.

References:

1. R.C. Singleton, An Algorithm for Computing the Mixed Radix FF.T., IEEE Trans. Audio Electroa-
coust., AU-1(1969) 93-107.

2. Reprinted in: L.R. Rabiner and C.M. Rader: Digital Signal Processing, |EEE Press New York (1972)
294.

D702-2 140

RFSTFT CERN Program Library D705

Author(s) : K.S. Kalbig, H.-H. Umstéatter Library: MATHLIB
Submitter: Submitted: 22.04.1996
Language : Fortran Revised:

Real Fast Fourier Transform

Subroutine RFSTFT calculates the finite Fourier transform of a real periodic sequence yo, y1, .- -, Yn_1,
whose period n must be a power of two. Either the direct transform

-1
Z kexp(_ﬂﬂjk) . (7=0,1,...,n/2), D
k

or the inverse transform

yp = ZC (Z%Jk), (k=0,1,...,n—1), 2

where y;, are rea and C; are complex numbers, may be calculated. Notethat C; = C',_;, (j = n/2 +
1,...,n—1), where@ denotesthe complex conjugate of «. Thus, only the numbers C'; for which0 < j <
n/2 are calculated.

Structure:

SUBROUTINE subprogram
User Entry Names: RFSTFT
External References. CFSTFT (D706)

Usage:

COMPLEX C(0:..)
REAL Y(O:..)
EQUIVALENCE (C,Y)

CALL RFSTFT(M,C)

M (INTEGER) On entry, » is determined by the absolutevalue of M vian = 2/,
M < 0 : Thedirect transform (1) is calculated.
M > 0 : Theinversetransform (2) is calculated.
Unchanged on exit.

(COMPLEX) One dimensional array of dimension (0:4d), whered > n/2.

Y (REAL) One dimensiona array of dimension (0:d), whered > n + 1.
M<O:
Onentry,Y(k) =yi, (k=0,1,...,n—1).
Onexit,C(j) =Cy, (7 =0,1,...,n/2), asdefined by (1).
M>0:

Onentry,C(j) =C;, (7=0,1,...,n/2).
Onexit, Y(k) = yx, (k=0,1,...,n — 1), asdefined by (2).

141 D705-1

Method:
The subroutine uses CFSTFT (D705) with sequences reduced to half of their length as explaind in Ref. 1.

References:

1. E.O. Brigham, Thefast Fourier transform, (Prentice-Hall, Englewood Cliffs, 1974) Ch. 10, Sect. 10,
Fig. 10-10.

D705-2 142

CFSTFT CERN Program Library D706

Author(s) : K.S. Kalbig, H.-H. Umstéatter Library: MATHLIB
Submitter: Submitted: 22.04.1996
Language : Fortran Revised:

Complex Fast Fourier Transform

Subroutine CFSTFT cal culatesthe finite Fourier transform of acomplex periodic sequenceag, ay, ... , ¢y 1,
whose period n must be a power of two. Either the direct transform

n—1

— —i2mjk
AJ = Zakexp(il)7 (jZO,l,...ﬂl—l), (1)

n
k=0

or the unscaled inverse transform

n—1 . .
27 ik
ap = E Ajexp(l 7;‘]), (k=0,1,...,n—1), 2

where a;, o and A; are complex numbers, may be calcul ated.

If the A; in (2) have the values defined by (1), then ey, = ax/n, (k=0,1,...,n — 1). To ensure optimum
use of storage, the same array is used for input and output, and all intermediate cal culations are carried out
inthisarray.

Structure:

SUBROUTINE subprogram
User Entry Names: CFSTFT

Usage:

CALL CFSTFT(M,A)

M (INTEGER) On entry, is determined by the absolutevalue of M vian = 2/,
M < 0 : Thedirect transform (1) is calculated.
M > 0 : Theinversetransform (2) is calculated.
Unchanged on exit.

A (COMPLEX) One dimensional array of dimension (0:d), whered > n — 1.
M<O:
Onentry, A(k) = ag, (k=0,1,...,n—1).
Onexit,A(j) = A;, (=0,1,...,n— 1), asdefined by (1).
M>0:
Onentry, A(j) = A;, (j=0,1,...,n—1).
Onexit, A(k) = ag, (k=0,1,...,n— 1), asdefined by (2).

Method:

The method is based on an agorithm of Cooley, Lewis and Welch (see Reference$, with the following
modifications which increase speed for small values of M: multiplications by exp(ipr) are replaced by
addition or subtraction, and terms of the form exp(i27/q), (¢ = 2,4,...,n) are calculated recursively
using only square roots and divisions.

143 D706 -1

References:

1. G. Dahlquist and A. Bjorck, Numerical methods (Prentice-Hall, Englewood Cliffs, 1974) 416.

2. L.R. Rabiner and B. Gold, Theory and application of digital signal processing (Prentice-Hall, Engle-
wood Cliffs, 1975) 332.

D706 -2 144

POLINT CERN Program Library E100

Author(s) : F. James Library: KERNLIB
Submitter: Submitted: 05.09.1966
Language : Fortran Revised:18.11.1985

Polynomial Interpolation

Subroutine POLINT interpolatesin a table of arguments a; and function values f; = f(a;), using an inter-
polating polynomial of specified degree K — 1 which passesthrough K successive tabular points. Thetable
arguments «; need not be equidistant. Meaningful results can usually be obtained only for small values of
K (typicaly lessthan 10).

Structure:

SUBROUTINE subprogram

User Entry Names: POLINT

Files Referenced: Printer

External References: KERMTR (NOOL), ABEND (Z035)

Usage:
CALL POLINT(F,A,K,X,R)

F (REAL) One-dimensiona array. F(j) must be equal to the value at A(j) of the function to be
interpolated, (j = 1,2,...,K).

A (REAL) One-dimensional array. A(j) must be equal to thetableargument ¢;, (j = 1,2, ... ,K).

K (INTEGER) K-1 isthe degree of the interpolating polynomial.

X (REAL) Argument at which the interpolating polynomial isto be evaluated.

R (REAL) On exit, R is set equa to the value at X of the polynomia passing through the points
(a;, [;),J=1,2,...,K).

If X lies outside the range of the points A(1), ..., A(K), the interpolation becomes an extrapolation, with

consequent loss of accuracy.

Method:

Newton'sdivided difference formulais used.
Restrictions:

2 <X < 20. If X > 20, theinterpolationis performed as if X had the value 20. The original value of K is
unchanged on exit.

Error handling:
ErrorE100.1: K < 1. A messageis printed unless subroutine KERSET (NOO1) has been called.
Notes:

POLINT isintended for interpolation using all the tabulated pointsin the array A. To use only the tabul ated
pointsaround the value of the argument X, use DIVDIF (E105).
[]

145 E100-1

MAXIZE CERN Program Library E102

Author(s) : K.S. Kolbig, H. Lipps Library: MATHLIB
Submitter: Submitted: 29.08.1968
Language : Fortran Revised:01.12.1994

Maximum and Minimum Elements of Arrays

Function subprograms MAXIZE, MAXRZE, MAXDFZ and MINIZE, MINRZE, MINDFZ give give the positions of
the maximum and minimum elements of aone-dimensional array.

On CDC and Cray computers, the double-precision versionsMAXDZE and MINDZE are not available.
Structure:

FUNCTION subprograms
User Entry Names: MAXIZE, MAXRZE, MAXDZE, MINIZE, MINRZE, MINDZE
Obsolete User Entry Names: MAXFZE = MAXRZE, MINFZE = MINRZE

Usage:

Inany arithmetic expression, for t = I (typeINTEGER), t = R (typeREAL),t = D (typeDOUBLE PRECISION),
MAXtZE(A(J) ,N) and MINtZE(A(J),N)

has the INTEGER value of the location of, respectively, the maximum and minimum elements of the N
successive elements of the array A, relative to the elementA(J), where A isof typet.

Notes:

1. If there is more than one location at which the maximum or minimum is attained, the first locationis
returned as the function value in each case.

2. If N < 1 thefunctionvalueis 1.
3. Clearly, N+J should not exceed the dimension of the array A.

4. The obsolete older entries MAXFZE (for MAXRZE) and MINFZE (for MINRZE) are kept for atransitional
period. They will eventually disappear.

146 E102-1

AMAXMU CERN Program Library E103

Author(s) : J. Zall Library: KERNLIB
Submitter: C. Letertre Submitted: 01.09.1969
Language : Fortran Revised:

Largest Absolute Number in Scattered Vector

AMAXMU looks for the largest absolute value in a scattered vector of real numbers.
Structure:

FUNCTION subprogram
User Entry Names: AMAXMU

Usage:
In any arithmetic expression,
AMAXMU(A,IDO,IW,NA)

is set to the largest absolute value of numbersin any of the subsets of A as specified by IDO, IW and NA.

A (REAL) One-dimensiona array, containing a number of subsets of real numbers.
IDO (INTEGER) Number of subsetsto be examined.

IW (INTEGER) Number of wordsin each subset.

NA (INTEGER) Specifies the distance between the first elements of consecutive subsets.
Notes:

To find the largest element in a continuous vector, VMAXA (F121) isfaster than AMAXMU.

Examples:

X=AMAXMU(A,4,1,2)

sets X equal to the largest absolutevalue of A(1), A(3), A(5) and A(7).

147 E103-1

FINT CERN Program Library E104

Author(s) : C. Letertre Library: KERNLIB
Submitter: B. Schorr Submitted: 17.05.1971
Language : Fortran Revised:27.11.1984

Multidimensional Linear Interpolation

Function subprogram FINT uses repeated linear interpolation to evaluate a function f(z 1, 2, ... ,z,) of n
variables which has been tabulated at the nodes of an n-dimensional rectangular grid. It is not necessary
that the table arguments corresponding to any coordinate x; be equally spaced.

Structure:

FUNCTION subprogram

User Entry Names: FINT

Files Refernced: Printer

External References: KERMTR (NOOL), ABEND (Z035)

Usage:

In any arithmetic expression,

FINT(N,X,NA,A,F)

has an approximate value of f(X,Xa,...,Xxa).
N (INTEGER) Number of coordinates » required to define the function f.
X (REAL) One-dimensiond array. X(j), (j = 1,2,...,N), must contain the coordinates of the point at

which the interpolationis to be performed.

NA (INTEGER) One-dimensiona array. For j = 1,2,...,N, NA(j) must be equal to the number of
numerical values of variable z; which are stored inarray A.

A (REAL) One-dimensional array of length not lessthan the sum of NA(1), ... ,NA(N). ThefirstNA(1)
elements of A must contain numerical values a1, a1, . . . of thefirst variable 2, in strictly increas-
ing order, the next NA(2) elements of A must contain numerical values asy, as9, . .. of the second
variable z, in strictly increasing order, and so on.

F (REAL) Multidimensional array with dimensionsNA(1), NA(2), ... NA(N), containing values of
the function f at the nodes of the rectangular grid defined by A:
F(i,j,...,m) = f(a1i,a25,.-.,Gpm), 1 =1,2,... ,NA(1),...;m =1,2,... ,NA(N)).

If any coordinate z; of the given point X lies outside the range of the corresponding table arguments, the
interpolation for this coordinate is replaced by an extrapolation based on the two nearest table arguments,
with consequent loss of accuracy.

Method:

Repeated linear interpolation with respect to variables x 1, x5, ... within the grid cell which contains the
given point X. For n = 2, with (z1, z2) replaced by (z, y) for clarity, the procedure is equivalent to the
following:

Letaq,as,... bethetabulated valuesof x. Let by, bo, ... bethetabulated values of .
Let : and j be the subscriptsfor whicha; < © < a;41,b; <y < bji1.

148 E104-1

Then compute:

t =

(
g; = (I=0f(ai,b;) +tf(ait1,b;))
giv1 = (L=t f(a;,bjr1 +tf(ai1,b541),
w = (y="0)/(bjt1—0),
Jappr = (1 —u)g; +ugjn

Restrictions:

1. 1 <N < 5. FINTisset equa tozeroif N isnot inthisrange.
2. NA(3) > 1, (j =1,2,...,N).

3. Thetable arguments for each variable must be in strictly increasing order.

Thereis no test for conditions2 or 3.
Error handling:

E104.1: N< 1 or N > 5. FINT is set equa to zero, and a message is printed unless subroutine KERSET
(NO01) has been called.

Examples:

Givenafunction of twovariables ¢ (z, y) defined by aFUNCTION subprogram G, to construct atable of values
of fem = g(Vk,Jogm)fork =1,2,...,10,m = 1,2,...,15, and to interpolate in this table to set GINT
equal to an approximate value of ¢(1.7,2.9). The program is written in a form which allows generalization
to functions of more than two variables.

PARAMETER (NA1=10,NA2=15)
DIMENSION X(2),NA(2),A(NA1+NA2) ,F(NA1,NA2)
DATA NA/NA1,NA2/
C STORE ARGUMENT ARRAY
K1=0
K2=K1+NA1
DO 1 J = 1,MAX(NA1,NA2)
IF (J .LE. NA1) A(J+K1)=SQRT(FLOAT(J))
IF (J .LE. NA2) A(J+K2)=LOG(FLOAT(J))
1 CONTINUE
C STORE FUNCTION ARRAY
DO 3 J1 = 1,NA1
DO 2 J2 = 1,NA2
F(J1,J2)=G(A(J1+K1) ,A(J2+K2))
2 CONTINUE
3 CONTINUE
C INTERPOLATE IN TABLE
X(1)=1.7
X(2)=2.9
GINT=FINT(2,X,NA,A,F)

E104-2 149

DIVDIF CERN Program Library E105

Author(s) : F. James Library: KERNLIB
Submitter: G.A. Erskine Submitted: 19.07.1973
Language : Fortran Revised:27.11.1984

Function Interpolation

Function subprogram DIVDIF interpolatesin atable of arguments «; and function values f; = f(a;), using
aninterpolating polynomial of specified degree which passesthroughtabular pointswhich are symmetrically-
positioned around the interpolation argument. The table arguments « ; need not be equidistant.

Structure:

FUNCTION subprogram

User Entry Names: DIVDIF

Files Referenced: Printer

External References: KERMTR (NOOL), ABEND (Z035)

Usage:
In any arithmetic expression,
DIVDIF(F,A,N,X,M)
has an approximate value of f(X).
F (REAL) One-dimensiona array. F(j) must be equal to the value at A(j) of the function to be
interpolated, (j = 1,2,...,N).
(REAL) One-dimensional array. A(j) must be equal to thetableargument ¢;, (j = 1,2,...,N).
(INTEGER) Number of valuesin arraysF and A.

(REAL) Argument at which the interpolating polynomial is to be evaluated.

(INTEGER) Requested degree of the interpolating polynomial. If M exceeds M., = min(10,N — 1)
theinterpolation is carried out using a polynomial of degree M ,,,,.. instead of M. The original value
of M isunchanged on exit.

= o= =2 e

Method:

Newton's divided difference formulais used. Except when X lies near one end of the table (in which case
unsymmetrically-situated interpol ation points are used), the interpolation procedure is as follows:

M odd:

An interpolating polynomial passing through M 4 1 successive points (a ;, f;) symmetrically placed with
respect to X isused.

Meven

The mean of two interpolating polynomialsis used, each passing through M + 1 successive points (« ;, f;),
one polynomial having an extra point to the left of X, the other having an extra point to the right of X.

If X liestoo closeto either end of the table for symmetrically-positioned tabular valuesto be used, theM + 1
values at the end of the table are used. If X lies outside the range of the table, the interpolation becomes an
extrapolation, with corresponding loss of accuracy.

Restrictions:

The argument values A(1), A(2), ... must be in either strictly increasing order or strictly decreasing order.
No error message is printed if thisisnot true.

150 E105-1

Error handling:

Error E105.1: N < 2 or M < 1. DIVDIF is set equal to zero and a message is printed unless subroutine
KERSET (N001) has been called.

Notes:

See also the write-up for POLINT (E100).

E105-2 151

LOCATR CERN Program Library E106

Author(s) : F. James, K.S. Kolbig Library: KERNLIB
Submitter: Submitted: 18.10.1974
Language : Fortran Revised:15.11.1995

Binary Search for Element in Ordered Array

Integer function subprograms LOCATI and LOCATR perform a binary search in an array of non-decreasing
integer or real numbersa; < as < ... < a, tolocate a specified valuet.

Structure:

FUNCTION subprograms
User Entry Names: LOCATT, LOCATR
Obsolete User Entry Names: LOCATF = LOCATR

On CDC or Cray computers, the double-precision version LOCATD is not available.
Usage:

Inany arithmetic expression, for t = I (typeINTEGER), t = R (typeREAL),t = D (typeDOUBLE PRECISION),
LOCATt (tA,N,tT)

has the INTEGER value according to the description below.

tA (type according to t) One-dimensional array. The numbers tA(j) must form a non-decreasing
sequencefor j =1,2,... 1.

N (INTEGER) Number » of elementsin array tA.

tT (type according to t) Search valuet.

Depending on four possible outcomes of the search, each subprogram returnsthe followingvalueL (a = tA,
t=tT):

a; =t forsomejwithl < j <N L=y
t < ay L=0
ap <t < apyq forsomekwithl <k <N-1 L=-k
ay <t L=-N

If the value t occurs more than oncein the array «, the result L. may correspond to any of the occurrences.
Method:
Repeated bisection of the subscript range.

Notes:

1. The number of comparisons performed is approximately proportional to In N. Therefore, for large N
the binary search is considerably faster than a sequential search using aDO loop. However, for N less
than about 40 aDO loop isfaster.

2. Theobsolete older entry LOCATF is kept for atransitional period. It will eventually disappear.

152 E106-1

RLSQPM CERN Program Library E201

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.12.1994
Language : Fortran Revised:

Least Squares Polynomial Fit

Subroutine subprograms RLSQPM and DLSQPM fit a polynomial
pm(z) = Z a]wj
7=0
of degree m to » equally-weighted data points (z;, y;). The calculated coefficients a; are such that

an = Z (yZ — pm(xi))Q = min.
=1
Subroutine subprogramsRLSQP1 and DLSQP1 fit astraightline p; () = ag + a1 ton such points.
Subroutine subprograms RLSQP2 and DLSQP2 fit aparabolap, (v) = ag + ay@ + aza? to n such points.
Anestimates = +/S2 /(n — m — 1) of the standard deviation o is calculated.
On CDC and Cray computers, the double-precision versionsDLSQPM, DLSQP1 and DLSQP2 are not avail able.

Structure:

SUBROUTINE subprograms
User Entry Names: RLSQPM, RLSQP1, RLSQP2, DLSQPM, DLSQP1, DLSQP2
External References: RVSET (F002), DVSET (F002), DVSUM (F002), DVMPY (FO02), DSEQN (F012)

Usage:
Fort =R (typeREAL), t = D (type DOUBLE PRECISION),
CALL tLSQPM(N,X,Y,M,A,SD,IFAIL)
CALL tLsSQP1(N,X,Y,A0,A1,SD,IFAIL)
CALL tLsQP2(N,X,Y,A0,A1,A2,SD,IFAIL)
(INTEGER) Number » of data points.

(type according to t) One-dimensional array of length > N. On entry, X(i) contains the ab-
scissasz;, (1 =1,2,...,n).

Y (type according to t) One-dimensional array of length > N. Onentry, Y(i) containsthe ordi-
natesy;, (1 =1,2,...,n).
(INTEGER) Degree m of the polynomial to be fitted.
(type according to t) One-dimensional array of dimension (0:4), whered > M. Contains, on
exit, inA(j) thecoefficientsa;, (7 =0,1,...,m).

A0,A1,A2 (typeaccordingtot) Contain, on exit, the coefficients ag, a; for pi (z) = ap+aiz or ag, a1, az
for pa(2) = ag + a1@ + aga?, respectively.

SD (type according to t) Contains, on exit, the estimate s.

IFAIL (INTEGER) Error flag.
= 0 : Normal case,
=1:N<1orM<OorM>NorM> 20,
= —1 : The matrix of normal equationsis humerically singular.

Inthecase IFAIL # 0: M =0, A(j) = 0 and A0 = A1 = A2 = 0 on exit.

153 E201-1

Method:

The normal equations are solved. On computers other than CDC or Cray, double-precision mode arithmetic
isused internally for RLSQPM, RLSQP1 and RLSQP2.

Notes:
Meaningful results can usually be obtained only for small values of m (typically < 10).

References:

1. D.H. Menzel, Fundamental formulas of physics, v. 1, (Dover, New York 1960) 116-122.

E201-2 154

LSQ CERN Program Library E208

Author(s) : E. Keil Library: KERNLIB
Submitter: B. Schorr Submitted: 01.12.1969
Language : Fortran Revised:27.11.1984

Least Squares Polynomial Fit

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 218. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: RLSQPM (E201)

SubroutineLsQ fits a polynomial of degree m — 1 to n equally-weighted data points (z ;, y;). The computed
coefficientsa; of the fitted polynomial have values which minimize

=1 7=1

2
Z (yz — Zajwfl) .
For the case m = 2 (straight line fit), subroutine LLSQ is faster and easier to use than LsQ.
Meaningful results can usually be obtained only for small values of m (typically less than 10).

Structure:

SUBROUTINE subprograms

User Entry Names: LsQ, LLSQ

Files Referenced: Printer

External References: RVSUM (FO02), RSEQN (F012), DSEQN (F012), KERMTR (N0O1), ABEND (Z035)

Usage:

CALL LSQ(N,X,Y,M,A)
CALL LLSQ(N,X,Y,A1,A2,TFAIL)

N (INTEGER) Number » of data points.

X (REAL) One-dimensiona array. X (i) must be equal to the data coordinate z;,
(1=1,2,...,N).

Y (REAL) One-dimensional array. Y (i) must be equal to the observed value y;,
(1=1,2,...,N).

M (INTEGER) On entry, M must be equal to the number m of coefficients of the polynomial to be
fitted. On exit, the value of M may differ from this (see Error Handling).

A (REAL) One-dimensional array. On exit from LSQ, A(j) is equal to the coefficient of 2/~ in
the fitted polynomial, (= 1,2,... ,M).

Al1,A2 (REAL) On exit from LLSQ, A1 and A2 are equal to the coefficients of the fitted straight line
a1 + aszx.

IFAIL (INTEGER) On exit from LLSQ, IFAIL isequal to -2 if N < 2, to -1 if the matrix of normal

equationsis numerically singular, and to zero otherwise.

155 E208-1

Method:
Normal equations.
Error handling:

ErrorE208.1: M < 1 0orM > N or M > 20 (subroutineLsQ). M isreplaced by zero.
Error E208.2: The normal equations matrix is numerically singular (subroutine LsSQ).
For each error, amessage is printed unless subroutineKERSET (N0O1) has been called.

Notes:

On computers ather than Cray and CDC double-precision arithmetic is used internally.

E208-2 156

NORBAS CERN Program Library E210

Author(s) : W. Monch, B. Schorr Library: MATHLIB
Submitter: W. Monch Submitted: 15.03.1993
Language : Fortran Revised:

Polynomial Splines / Normalized B-Splines

NORBAS (NORmalized BAsis Splines) is a portable collection of subprograms for various calculations with
polynomial splinesin one dimension (1D) and in two dimensions (2D). The polynomial splines are repre-
sented as linear combinations of normalized basis splines (B-splines).

On computers other than CDC or Cray, only the double-precision versions DSPKN1, etc. are available. On
CDC and Cray computers, only the single-precision versionsRSPKN 1, etc. are available.

The following outline provides the background material and the notations needed for describing the subpro-
grams and their parameters. For further information about splines and their applications see Referencesin
particular Ref. 7.

Case (1D):

k Degree (order —1) of the B-spline (0 < k£ < 25).

m Number of spline-knots (m > 2k + 2).

¢ Index of the B-spline (1 <i<m—k—1).

T Set of m spline-knots = {ty,t,,...,t,}, in non-decreasing order, with multiplicity < & + 1

(i.e. no more than £ + 1 knots coincide).
[a,] Interval, defined by @ = 411 , b =t —g.

B;(z) Normalized B-spline of degree k& over 7 with index :. The value of B;(z) is identically zero
outsidetheinterval ¢; < z < t;4x+1 , and the normalization of B; () is such that

+oo . _ .
/ Bi(x)dx:% (i=1,....m—k—1).

s(x) Polynomial splineat = € [, b] in B-spline representation

m—k—1

y = s(z) = Z ¢ Bi(z).

=1
Spline interpolation to a data set:

Given a data set {z;, yi}1=1,... » ; determine coefficients {c; };=1,... , of a polynomial interpolation spline
y = s(z) in B-spline representation with degree & over aset 7 of m = n + k + 1 knots, such that the
following relations (interpolation conditions) hold:

s(z)) = wi (l=1,...,n).
The existence of a solution of this interpolation problem depends on an appropriate choice of the spline-
knots (Ref. 7, Theorem XI11.1 (Schoenberg-Whitney)).
Least squares spline approximatiorto a data set:
Given adata set {z;, y; }i=1,... » ; determine coefficients {¢;};=1,... m—x—1 Of a polynomial approximation
spliney = s(z) in B-spline representation with degree & over aset 7 of m < n + &k 4 1 knots, such that
following least squares problem is solved:

n

dlery ooy Cmek—1) = Z (y1 — s(x;))® = min!

=1

157 E210-1

Variation diminishing spline approximation to a function (Schoenberg):
For agiven functiony = f(x) on [a, b] thisspline approximationis defined by y = s(x), with
(Ref. 7, p. 158-162)

c;, = f(xz), T, = (ti+1‘|‘““|‘ti+k)/k (i: 1,....m—-k—1;k> 1).
Case (2D):

kx Degree of one-dimensional B-splinesin z-direction (0 < kz < 25).

ky Degree of one-dimensional B-splinesin y-direction (0 < ky < 25).

mx Number of spline-knotsin z-direction (mz > 2 kz + 2).

my Number of spline-knotsin y-direction (my > 2ky + 2).

¢ Index of B-spline (1 < i< ma — ka — 1) in z-direction.

j Index of B-spline (1 < j < my — ky — 1) iny-direction.

Te Set of ma spline-knots 7, = {t;1,tz2,...,teme} in z-direction, in non-decreasing order,
with multiplicity < kz + 1 (i.e. no more than kz + 1 knots coincide).

Ty Set of my spline-knots 7, = {t,,1,%y2,...,tymy} iN y-direction, in non-decreasing order,
with multiplicity < ky 4 1 (i.e. no more than £y + 1 knots coincide).

[z, bs] Interval in z-direction, defined by ¢, = t; k11, by = to e—ka-

[ay, by] Interval in y-direction, defined by a, =t ky+1 , by = tymy—ky-

B;(x) B-spline of degree kx over 7, withindex i.

B;(y) B-spline of degree ky over 7, with index ;.

B; ;(x,y) Product B; ;(z,y) = B;(z) B;(y) of two one-dimensional B-splines.
s(z,y) Two-dimensional polynomia splineat (z,y) € [a,, b,] x [ay, b,] in B-spline representation

me—kr—1 my—ky—1

z = s(z,y) = Z Z i Bij(,y).
=1 7=1

Spline interpolation to a data set:
Given a data set {15, Y1y, 21z, iy Ho=1,... nosly=1,... .ny ; determine coefficients {¢; ; }i=1.... naz;j=1,.. ny Of @
two-dimensional polynomial interpolation spline = = s(z, y) in B-spline representation with degrees kz ,
ky over the sets 7, of ma = na + kx + 1 knotsin z-direction and 7, of my = ny + ky + 1 knotsin
y-direction, such that following relations (interpolation conditions) hold:
(21, Yiy) = Zinly (le=1,...,nx;ly=1,...,ny).

The existence of a solution of this interpolation problem depends on an appropriate choice of the spline-
knots 7, , 7, in the two-dimensional interpolation area [a, b;.] X [ay, by] .
Least squares spline approximatiorto a data set:
Given a data set {1, Yiy, 21z, iy Ho=1,... nosly=1,... .ny ; determine coefficients {¢; ; }i=1.... naz;j=1,.. ny Of @
two-dimensional polynomial approximation spline z = s(z, y) in B-spline representation with degrees kz,
ky over the sets 7, of ma < na + kx + 1 knots in z-direction and 7, of my < ny + ky + 1 knotsin
y-direction, such that following least squares problem is solved:

ny ny

¢(Cl,17 s 7Cmac—kx—1,my—ky—1) — Z Z (le,ly - 5($ll’7 yly))2 = min!

lz=1 ly=1
Variation diminishing spline approximation to afunction:
For agivenfunction z = f(z,y) on[a,, b,] X [a,, b,] thistwo-dimensional spline approximation is defined
by z = s(z,y) on[ay, by] X [ay, by], with

cij =[x, y5); ;= (tyip1 + - Floirks) ke (t=1,...,ma—ka —1; ka > 1),
Yi = (tyjer + - Flygrr)/ky (G=1,...,my—ky—1; ky > 1).

E210-2 158

The package NORBAS containsSFUNCTION and SUBROUTINE subprogramsfor solving thefollowing problems.
To calculate:

(K)

(B)

(P)

(1

(A)

(V)

(D)

159

A set 7 of m spline-knotsin the interval [a, b] for normalized B-splines B;(x) of degree k, use sub-
program tSPKN1 (1D). The knots are in non-decreasing order and determined in such a way that the
first k + 1 knotscoincide with a, thelast £ 4 1 knotscoincide with b, and theremaining (m — 2 k — 2)

knots are equidistantin (a, b).

Two sets 7. , 7, of spline-knotsin [a., b,] and [a,, b,] for B-splines B; ;(x, y) of degrees kx and ky
in z- and y-direction, use subprogram tSPKN2 (2D). 7,, and 7, are calculated by the same formulae
in z-, and y-direction, asin case (1D).

Thefunction B;(z),

— d"B; . “
the n-th derivative dxix), or theintegral / B;(€) d¢

of a normalized B-spline B;(z), with fixed degree & and index i over a set T of spline-knots, use
subprogram: tSPNB1 (1D).
The function B; ; (z,y),
9" ™ B (2, y) . R

D Gy or theintegral /_Oo /_Oo B; (&, n) dndé
of atwo-dimensional B-spline B; ;(z, y), with fixed degrees kz, ky and indices ¢, j over the sets 7,
7, of spline-knots, use subprogram tSPNB2 (2D).

the partial derivative

Thefunction s(z),

d . ”
di(:) , or the integral / s(&) d€
of apolynomial spliney = s(x) in B-spline representation with given coefficients ¢, use subprogram
tSPPS1 (1D).
Thefunction s(z, y),

the n-th derivative

8711’ any S($7 y) . /x /y
G By or the integral] s(&,n) dndé

of atwo-dimensional polynomial splinez = s(z, y) in B-spline representation with given coefficients
¢; ;, Use subprogram tSPPS2 (2D).

the partial derivative

The coefficients ¢; of a one-dimensional polynomial interpolation spliney = s(x) in B-spline repre-
sentation to a user-supplied data set {«;, 3; }, use subprogram tSPIN1 (1D).

The coefficients ¢; ; of a two-dimensional polynomial interpolation spline = = s(z,y) in B-spline
representation to a user-supplied data set { =, yiy, 2121y }, USe Subprogram tSPIN2 (2D).

The coefficients ¢; of a one-dimensional polynomial least squares approximation spliney = s(z) in
B-spline representation to a user-supplied data set {z;, y; }, use subprogram tSPAP1 (1D).

The coefficients ¢; ; of atwo-dimensional polynomial least squares approximation spline =z = s(z, y)
in B-spline representation to a user-supplied data set {z ., y1y, 21,1y } » USe Subprogram tSPAP2 (2D).

The coefficients ¢; of a one-dimensional polynomial variation diminishing spline approximation y =
s(z) in B-spline representation to a user-supplied function y = f(z), use subprogram tSPVD1 (1D).
The coefficients ¢; ; of a two-dimensional polynomial variation diminishing spline approximation
z = s(x,y) in B-spline representation to a user-supplied function = = f(z,y), use subprogram
tSPVD2 (2D).

From given coefficients ¢; of a one-dimensional polynomial spliney = s(x) in B-spline representa-
tion, the corresponding coefficients d; of its n-th derivative d"s(z)/dz" in B-spline representation,
use subprogram tSPCD1 (1D).

From given coefficients ¢; ; of a two-dimensional polynomia spline z = s(z, y) in B-spline repre-
sentation, the corresponding coefficients d; ; of its partial derivative 9™* 0™ s(x,y)/{dz"" dy™} in
B-spline representation, use subprogram tSPCD2 (2D).

E210-3

Structure:

SUBROUTINE and FUNCTION subprograms

User Entry Names. RSPKN1, RSPKN2, RSPNB1, RSPNB2, RSPPS1, RSPPS2, RSPIN1, RSPIN2
RSPAP1, RSPAP2, RSPVD1, RSPVD2, RSPCD1, RSPCD2,
DSPKN1, DSPKN2, DSPNB1, DSPNB2, DSPPS1, DSPPS2, DSPIN1, DSPINZ2,
DSPAP1, DSPAP2, DSPVD1, DSPVD2, DSPCD1, DSPCD2,

HﬂaﬂalEnUyruaﬂes RSPAS1, RSPAS2, RSPLKK, DSPAS1 DSPAS2, DSPLKK
FilesReferenced: Unit 6
External References: RGBTRF (FO01), RGBTRS (FO01), RGESVD (F001),

DGBTRF (FO01), DGBTRS (FO01), DGESVD (F0O01),

RVSET (FO02), RVSUM (F002), RVCPY (FO02), RVMPY (F002),
DVSET (FO02), DVSUM(F002), DVCPY (FO02), DVMPY (F002),
RMCPY (FOO3), RMMPY (FO03), DMCPY (FO03), DMMPY (F003),
MTLMTR (NOO2), ABEND (Z035).

User-supplied FUNCTION subprogram

Usage:

For t =R (typeREAL), t = D (type DOUBLE PRECISION):
(K) Knots

CALL tSPKN1(K,M,A,B,T,NERR)
CALL tSPKN2(KX,KY,MX,MY,AX,BX,AY,BY,TX,TY,NERR)

(B) Normalized B-splines

tSPNB1(K,M,I,NDER,X,T,NERR)
tSPNB2(KX,KY,MX,MY,I,J,NDERX,NDERY,X,Y,TX,TY,NERR)

(P) Polynomial spline

tSPPS1(K,M,NDER,X,T,C,NERR)
tSPPS2(KX,KY,MX,MY,NDERX ,NDERY,X,Y,TX,TY,C,NDIMC,W,NERR)

(I) Spline interpolation

CALL tSPIN1(X,N,XI,YI,KNOT,T,C,W,IW,NERR)
CALL tSPIN2(XX,KY,NX,NY,XI,YI,ZI,NDIMZ,KNOT,TX,TY,C,NDIMC,W,IW,NERR)

(A) Least squares spline approximation

CALL tSPAP1(X,M,N,XI,YI,KNOT,T,C,W,NW,NERR)
CALL tSPAP2(XX,KY,MX,MY,NX,NY,XI,¥I,ZI , NDIMZ,KNOT,TX,TY,C,NDIMC,W,NW,NERR)

(V) Variation diminishing spline approximation

CALL tSPVD1(F,XK,M,T,C,NERR)
CALL tSPVD2(F,KX,KY,MX,MY,TX,TY,C,NDIMC,NERR)

(D) Coefficients of derivatives
CALL tSPCD1(X,M,NDER,T,C,D,NERR)

CALL tSPCD2(KX,KY,MX,MY,NDERX,NDERY,TX,TY,C,NDIMC,D,NERR)

E210-4 160

Case (1D):

F

=2 H =2 =N

NDER

XI

YI

KNOT

A,B

NW
W

161

Name of a user-upplied FUNCTION subprogram, declared EXTERNAL in the calling program. This
subprogram must provide the value of the function y = f(z) for variation diminishing spline ap-
proximation.

(INTEGER) Degree of B-splines(1 < K < 25 for tSPVD1, 0 < K < 25 otherwise).

(INTEGER) Number of knots (> 2 x K + 2).

(INTEGER) Index of B-splines(1 < I <M—-K-—1).

(INTEGER) Number of datapoints{x;, y;} (> K + 1 for splineinterpolation (tSPIN1); > M — K — 1
for spline approximation (tSPAP1)).

(INTEGER) Selects one out of three cases: (i) integral, (ii) function value, or (iii) derivative.
(—1 < NDER < K for tSPNB1 and tSPPS1; 1 < NDER < X for tSPCD1).

= —1 : Calculation of theintegral of B;(z) (tSPNB1), or theintegral of s(z) (tSPPS1).

= 0 : Calculation of the function value B;(z) (tSPNB1), or thefunction value s(z) (tSPPS1).

> 1 : Calculation of the NDER-th derivative of B;(z) (tSPNB1), or the NDER-th derivative of s(z)
(tSPPS1).

(Type according to t) Independent variable 2 of polynomial spline s(z) or B-spline B; ().

(Type according to t) One-dimensional array of length > N. On entry, XI(L) must contain the [-th

data point z; for spline interpolation (tSPIN1) or spline approximation (tSPAP1). The data points

must be in ascending order.

(Type according to t) One-dimensional array of length > N. On entry, YI(L) must contain the [-th
data point y; for splineinterpolation (tSPIN1) or spline approximation (tSPAP1).

(INTEGER) Controlsthe mode of supplying the knotsfor spline interpolation or approximation.

= 1,2 : The knots are computed by the subprograms tSPIN1 and tSPAP1. At the left and right
end-point of the interpolation (approximation) interval [z, z,,] arise multiple knots. The
remaining knots are either equidistant (KNOT = 1) or are computed by using the data points
{2} of interpolation (approximation) (KNOT = 2).

1,2 : The knots must be supplied by the user.

(Type according to t) On entry, A and B must contain the left (right) end-point of the interval [a, b]
for the calculation of a set of spline knots (tSPKN1).

(Type according to t) One-dimensional array of length > M .

For tSPKN1 and for tSPINT1, tSPAP1 if KNOT = 1, 2 : On exit, T(J) containsthe j-th knot. In the
other cases, on entry, T(J) must contain the j-th knot. The knots must be in non-decreasing order
with multiplicity < K 4 1.

(Type according to t) One-dimensional array of length > M — K — 1.

For tSPPS1 and tSPCD1: On entry, C(I) must contain the i-th coefficient ¢; of the polynomial
spline s(z) in B-spline representation.

For tSPIN1, tSPAP1 and tSPVD1: On exit, C(I) contains the :-th coefficient ¢; of the polynomial
interpolation or approximation spline s(z) in B-spline representation.

(Type according to t) One-dimensional array of length > M — K — 1.

On exit, D(I) contains the coefficient d; of the NDER-th derivative of a polynomia spline s(z) in
B-spline representation.

(Type according to t) One-dimensional array of length > (3 xK + 1) * N (¢SPIN1), and of length
> NW (tSPAP1); used as working space.

(INTEGER) Length of working array W, (NW > N * (no+5)+nox(no+1); np=M— K — 1).
(INTEGER) One-dimensional array of length > N, used as working space.

E210-5

NERR (INTEGER) Error indicator. On exit:

= 0 : No error or warning detected.
= 1 : Atleast one of the parameters I, X, M, N, NDER isnot in rangeor A < B isnot true.
= 2 : The subprograms tGEQPF, tORMQR, tTRTRS in the Linear Algebra package LAPACK (FOO1)

were unable to solve the linear system of equations for calculating the coefficients of the
splineinterpolation to a given data set.

Case (2D):

F

KX,KY

MX,MY
I,J
NX,NY

NDERX,
NDERY

X,Y
XI,YI

z1

NDIMZ
KNOT

AX,BX;
AY,BY

Name of a user-upplied FUNCTION subprogram, declared EXTERNAL in the calling program. This
subprogram must provide the value of the function = = f(x, y) for variation diminishing spline
approximation.

(INTEGER) Degree of one-dimensional B-splinesin z- (y-)direction (1 < KX < 25, 1 <KY < 25
for tSPVD2; 0 < KX < 25, 0 < KY < 25 otherwise).

(INTEGER) Number of knotsin z- (y-)direction (MX > 2 x KX + 2, MY > 2 « KY 4 2).
(INTEGER) Indices of B-splines (1 < T < MX — KX — 1, 1 < J < MY — KY — 1),

(INTEGER) Number of data points z;, (yi,) in z-(y-)direction (NX > KX + 1, NY > KY + 1 for
splineinterpolationtSPIN2; NX > MX — KX — 1, NY > MY — KY — 1 for splineapproximationtSPAP2).

(INTEGER) Selects one out of three cases: (i) integral, (ii) function value, or (iii) derivative.

(—1 < NDERX < KX, —1 < NDERY < KY for tSPNB2 and tSPPS2;
1 < NDERX < KX, 1 < NDERY < KY for tSPCD2).
= —1: Caculation of theintegral of B; ;(x,y) (tSPNB2), or theintegral of s(z, y) (tSPPS2).
= 0 : Calculationof thefunctionvalue B; ; (z, y) (tSPNB2), or thefunctionvalue s(z, y) (tSPPS2).
> 1 : Calculation of the NDERX-th partial derivative with respect to » and the NDERY-th partial

derivative with respect to y of B; ;(z,y) (¢tSPNB2), or the calcultion of these derivatives of
s(z,y) (tSPPS2).

Notethat in thefirst two cases NDERX = NDERY = —1, NDERX = NDERY = 0, respectively.
(Typeaccording to t) Independent variables z, y of polynomial splines(z, y) or B-spline B; ;(z, y).

(Type according to t) One-dimensional arrays of length > NX and > NY, respectively. On entry,
XI(LX) and YI(LY) must contain the [z-th data point z;, and the [y-th data point y;, for spline
interpolation (tSPIN2) or spline approximation (tSPAP2). The data points must be in ascending
order.

(Type according to t) Two-dimensional array of dimension (NDIMZ, > NY). On entry, ZI(LX,LY)
must contain the ({z, ly)-th data point z;, ;,, for splineinterpolation (tSPIN2) or spline approxima-
tion (tSPAP2).

(INTEGER) Declared first dimension of atwo-dimensional array ZI in the calling program (> NX).
(INTEGER) Controlsthe mode of supplying the knotsfor spline interpolation or approximation.

= 1,2 : The set of knots are computed by subprograms tSPIN2 and tSPAP2. At the left and right
end-pointsof theinterpolation (approximation) intervals [z 1, ,..], [y1, Yny] @isemultiple
knots. The remaining knots are either equidistant (KNOT = 1) or are computed by using
the data points{z ., v, } of interpolation (approximation) (KNOT = 2).

1,2 : The knots must be supplied by the user.

(Type according to t) On entry, AX, BX; AY, BY must contain the left (right) end-points of the
intervals[a,, b;]; [ay, b,] for the calculation of aset of splineknotsin z- (y-)direction, respectively,
by tSPKN2.

E210-6 162

TX,TY

(Type according to t) One-dimensional arrays of length > MX and > MY, repectively.

For tSPKN2 and for tSPIN2, tSPAP2 if KNOT = 1,2 : On exit, TX(J) and TY(J) contain the j-th
knot in z- (y-)direction. In the other cases, on entry, TX(J) and TY(J) must contain the j-th knot
in z- (y-)direction. The knots must be in non-decreasing order with multiplicity < KX 4+ 1 and
< KY + 1, respectively.

C (Type according to t) Two-dimensional array of dimension (NDIMC, > MY — KY — 1).
For tSPPS2, tSPCD2: Onentry, C(I,J) must containthe (¢, j)-thcoefficient ¢; ; of the polynomial
spline s(z, y) in B-spline representation.
For tSPIN2, tSPAP2, tSPVD2: On exit, C(I,J) containsthe (z, j)-th coefficient ¢; ; of the poly-
nomial interpolation or approximation spline s(z, y) in B-spline representation.
NDIMC (INTEGER) Declared first dimension of atwo-dimensional array C in the calling program
(> MX — KX — 1).
D (Type according to t) Two-dimensional array of dimension (NDIMC, > MY — KY — 1).
On exit, D(I,J) containsthe coefficient d; ; of the partial derivative of order nz, ny with respect
to z and y of a polynomia spline s(z, y) in B-spline representation.
W (Type according to t) One-dimensional array of length > MY — KY — 1 (tSPPS2),
> (3# KX« NY + 2) * NX * NY (tSPIN2), and of length > Nw (tSPAP2), used as working space.
NW (INTEGER) Length of aone-dimensional array W, used as working space
(> NX * NY % (ng+6)+no*(ng+1); no= (MX — KX — 1) x (MY — KY — 1)).
IW (INTEGER) One-dimensional array of length > NX * NY, used as working space.
NERR (INTEGER) Error indicator. On exit:
= 0 : No error or warning detected.
= 1 : At least one of the parameters I, J, KX, KY, MX, MY, NX, NY, NDERX, NDERY isnot in range or
at least one of therelations AX < BX, AY < BY ishot true.
= 2 : Theroutines tGEQPF, tORMQR, tTRTRS in the Linear Algebra package LAPACK (FOO1) were
unable to solve the linear system of equationsfor calculation coefficients of spline interpo-
lation to a given data set.
Examples:
Calculate

1. The coefficients ¢; of a polynomial interpolation spline y = s(x) of degree k = 2 in B-spline repre-
sentation to agiven dataset { (z, y1) }1=1,... 6;

2. The corresponding coefficients d; of the first derivative ¢’ =

3. Thevauesof s(z),

163

ds(z),
dz '’

ds(z)
dz

and /ggs(g)df forz = 0(0.1)1.
0

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION XI(6),YI(6),T(9),C(6),D(6),W(42),IW(6)
DATA X,N,NDER,KNOT / 2,6,1,1 /

DATA XI / 0D0,0.20D0,0.40D0,0.60D0,0.80D0,1.00D0 /
DATA YI / 1D0,0.66D0,0.47D0,0.38D0,0.35D0,0.34D0 /
M=N+K+1

CALL DSPIN1(X,N,XI,YI,KNOT,T,C,W,IW,NERR)
CALL DSPCD1(X,M,NDER,T,C,D,NERR)

E210-7

WRITE(6,1000) K,N,(T(I),I=1,M)

DO 20 J=0,10

X=J/1D1

SPLO=DSPPS1(XK,M, 0,X,T,C,NERR)
SPL1=DSPPS1(XK,M, 1,X,T,D,NERR)
SPLI=DSPPS1(XK,M,-1,X,T,C,NERR)

20 WRITE(6,1010) J,X,SPLO,SPL1,SPLI

1000 FORMAT(...)
1010 FORMAT(...)

END

DEGREE OF POLYNOMIAL SPLINE:

KNOTS T :

.00
.10
.20
.30
.40
.50
.60
.70
.80
.90
.00

© 00 N O U WN P~ O 4y
_ O O O O O O O O O o

-
(@]

Error handling:

O O O O O O O O O O

S(X)

.000000
.809004
.660000
.550992
.470000
.415028
.380000
.358838
.350000
.344235
.340000

Error E210.1: K|KX,KY not in range,
Error E210.2: M| MX,MY not in range,
Error E210.3: I11,J notinrange,
Error E210.4: N|NX,NY not in range,
Inall cases, NERR isset = 1 (seeabove). A messageiswrittenonUnit 6, unlesssubroutineMTLSET (NOO2)

has been called.

2

0.00 0.00 0.00 O.

NUMBER OF DATA POINTS:
26 0.50 0.75

DS (X)
-2.119921
-1.700000
-1.280079
-0.940017
-0.679816
-0.419615
-0.280953
-0.142290
-0.065306
-0.050000
-0.034694

EworE210.5:NDERINDERX,NDERYrKﬁinrange
Error E210.6: A,B|AX,BX;AY,BY inconsistent,
Error E210.7: NDERX | NDERY inconsi stent.

E210-8

O OO O O O O O O O o

1.00

IN(X)

.000000
.090100
.163201
.223467
.274299
.318334
.357970
.394796
.430174
.464873
.499072

164

References:

1

10.
11.

165

JH. Ahlberg, E.N. Nilson, J.L. Walsh, The Theory of Splinesand their Applications, Academic Press,
New York, 1967.

M.J. Marsden, An identity for spline functions with applicationsto variation diminishing spline ap-
proximation, J. Appr. Theory 3 (1970), 7-49.

C. de Boor, On calculating with B-splines, J. Appr. Theory 6 (1972), 50-62.
M.G. Cox, The numerical evaluation of B-splines, J. Inst. Maths Applics 10 (1972), 134-149.

J.G. Hayes, J. Halliday, The least-squares fitting of cubic spline surfaces to general data sets, J. Inst.
Maths Applics 14 (1974), 89-103.

M.G. Cox, An agorithm for splineinterpolation, J. Inst. Maths Applics 15 (1975), 95-108.
C. de Boor, A Practical Guideto Splines, Springer-Verlag, Berlin (1978).

P. Lancester, K. Salkauskas, Curve and Surface Fitting - An Introduction, Academic Press, New York,
1986.

J.C. Mason, M.S. Cox (Eds.), Algorithmsfor Approximation, Clarendon Press, Oxford, 1987.
JW. Schmidt, H. Spéth (Eds.), Splinesin Numerical Analysis, Akademie-Verlag, Berlin, 1989.

H. Spéth, Eindimensionale Spline-Interpolations-Algorithmen; Zweidimensionale Spline-Interpola-
tions-Algorithmen, (2 Bd.) R. Oldenbourg, Miinchen 1990/1991.

E210-9

RCSPLN CERN Program Library E211

Author(s) : K.S. Kolbig, H. Lipps Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 01.05.1990
Language : Fortran Revised:

Cubic Splines and their Integrals

SubroutinesRCSPLN and DCSPLN compute a (vector-valued) cubic spline function /(x) which interpolates
between a given set of points. EntriesRCSPNT and DCSPNT compute the first and second integral over F'(z).

On computersother than CDC or Cray, only thedouble-precisionversionsDCSPLN and DCSPNT are available.
On CDC and Cray computers, only the single-precision versionsRCSPLN and RCSPNT are available.

Given an interval [a, b], asubdivision of thisinterval inton > 2 subintervals
a=x9g <21 < ...<xp_1 <y =0,

andn+ 1 functionvaluesYy = {yg1, ..., yrm } ONthen+ 1 abscissae(caled ‘knots’) z (k =0, 1,...,n),
RCSPLN and DCSPLN compute afunction F(z) of classC2, defined on [a, b], which assumes the given value
Y attheknot 2, (i.e. F'(zx) = Yk), and which, when restricted to the ith sub-interval [z;_;, 2;] isidentica
with a set of m polynomials {p;1, ..., pim}, €ach of degree at most 3. Any function F'(z) which satisfies
the above two conditionsis called a ‘cubic spline’ through the n + 1 points (z x, Y%). To define the spline
function F'(z) uniquely the subroutines impose an additional boundary condition, specified by their MODE
parameter:

MODE = 0: F"(z¢) = F'"'(z,) = 0 (the so-called natural spling.
MODE = 1: F"(zg) = F"(z1) and F"(z,—1) = F"(z,,).
Structure:

SUBROUTINE subprograms
User Entry Names: RCSPLN, RCSPNT, DCSPLN, DCSPNT
Filesreferenced: Unit 6

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

Spline: CALL tCSPLN(N,X,M,Y,NDIM,MODE,A,B,C,D)
Integrals: CALL tCSPNT(N,X,M,Y,NDIM,MODE,A,B,C,D)

N (INTEGER) Number n of subintervals [z;_, z;]. Must contain a value of at least 2 on entry.
Unchanged on return.

X (type according to t) One-dimensional array of dimension (0:d) of at least » + 1 elements. On
entry, X (k) must contain the abscissaz, (k= 0,1,...,n). Unchanged on return.

M (INTEGER) Number m of components of the vector-valued spline function #'(z). Must contain

avalue of at least 1 on entry. Unchanged on return.

Y (type according to t) Two-dimensional array of dimension (0:NDIM,d) whered isavalue not
lessthan m. Onentry, Y(k, j) must contain the value y;; of the jth component of the vector
Yi, (k=0,1,...,n;7=1,...,m). Unchanged on return.

NDIM (INTEGER) Upper bound of the first dimension of arrays A, B, C, D and Y. Must contain a value
of at least » on entry. Unchanged on return.

MODE (INTEGER) Type of boundary condition (see description above). Must contain the value O or 1
on entry. Unchanged on return.

166 E211-1

A,B,C,D (typeaccordingtot) Two-dimensional arrays of dimension (NDIM,d), whered > m.
OnreturnfromRCSPLN, A(i,3j),B(i,j),C(i,j) andD(i, j) will containthefour coefficients
aij, bij, Cijy and dij of the ponnomiaI

Pij = aij + bij(w — wica) 4 cij(w — 2i0)? + dij(e — wi1)?

that determines the jth component f;(z) of the spline in the :th subinterval [z;_;, 2], ¢ =
L....,n,j=1,...,m.
On return from RCSPNT,

A(i,§) = /lfj(t)dt and B(i,j) =// £5(t) dt da,

withi=1,....n;5=1,...,m.
Arrays C and D have been used as working space.

Restrictions:
N>2,M>1,NDIM > N, MODE = O or 1.

Error handling:

ErrorE211.1: N < 2.

ErrorE211.2: M < 1.

Error E211.3: NDIM < N.

Error E211.4: MODE # 0 and MODE # 1.

A messageiswrittenonUnit 6, unlesssubroutine MTLSET (N002) has been called.
[J

E211-2 167

RCHEBN CERN Program Library E222

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.12.1994
Language : Fortran Revised:

Solution of Overdetermined Linear System in the Chebychev Norm

Subroutine subprograms RCHEBN and DCHEBN find the Chebyshev or minimax solution to a set of overdeter-
mined linear equations Ax = b, i.e. the vector x which minimizes

n

¢ = max ¢ = max |b; — E a;; ;).
1<i<m 1<i<m —
]:

On computers other than CDC or Cray, only the double-precision version DCHEBN isavailable. On CDC and
Cray computers, only the single-precision version RCHEBN is available.

Structure:

SUBROUTINE subprograms
User Entry Names: RCHEBN, DCHEBN

External References: RVSCA (F002), RVSCL (F002), RVSCS (F002), RVSET (F002), RVXCH (F002),
DVSCA (F002), DVSCL (F002), bvscs (F002), DVSET (F002), DVXCH (FO02)

Usage:

For t =R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tCHEBN(M,N,A,MDIM,B,TOL,RELERR,X,RESMAX,IRANK,ITER,ICODE)

(INTEGER) Number 2 of equations.
(INTEGER) Number n (< m) of unknowns.

(type according to t) Two-dimensiona array of dimension (MDIM,d), whered > n + 3. On
entry, A(I,J) must contain the coefficients a;; (¢ = 1,...,m; j = 1,...,n) of matrix A.
The contents of A isdestroyed during execution.

MDIM (INTEGER) Declared first dimension of array A, where MDIM > m + 1.

B (type according to t) One-dimensional array of length > m 4 1. On entry, thefirst m elements
of B must contain the vector b. On exit, these elements contain the residuals ;.

TOL Tolerance parameter which should be set to a value somewhat greater than the machine preci-
sion.

RELERR (type according to t) On entry, RELERR should be set to zero if the true minimax solution is
required. (For RELERR non-zero see Notes.

X (type according to t) One-dimensional array of length > n 4 3. On exit, the first n elements
of X contain the solution vector x.

RESMAX (type according to t) On exit, RESMAX containsthe value ¢ of the maximum residual.

TIRANK (INTEGER) On exit, IRANK containsan estimate of the rank of the matrix A. (This estimate may
depend on TOL).

ITER (INTEGER) On exit, ITER containsthe number of simplex iterations performed.

ICODE (INTEGER) On exit, ICODE contains one of the following:

= 0 : Solutionx is not unique,
= 1 : Solutionx isunique,
= 2 : Calculation terminated prematurely because of rounding error.

168 E222-1

Method:
Modified simplex method of linear programming applied to the dual of the stated minimax problem.
Notes:
1. If RELERR on entry contains a non-zero positive value r, RELERR on exit containsavalue r’ < r, and
the computed solution x” in X and the maximum residual ¢’ in RESMAX are such that (¢/ — ¢)/c < 1/,

where ¢ is the maximum residual corresponding to the true minimax solution x. By setting RELERR
non-zero (e.g. RELERR = 0. 1), the number of simplex iterationsis usually reduced.

2. If RESMAX iswithin one or two orders of magnitude of TOL, the computed residualsin B on exit may
contain few significant digits, and may have been set to zero if RESMAX < TOL.

Source:
The subprograms are based on a Fortran algorithm givenin Ref. 1.

References:

1. 1. Barrodale and C. Phillips, Algorithm 495: Solution of an overdetermined system of linear equations
in the Chebyshev norm, ACM Trans. Math. Software 1 (1975) 264—270.

E222 -2 169

TL CERN Program Library E230

Author(s) : W. Hart, W. Matt Library: KERNLIB
Submitter: Submitted: 01.01.1975
Language : Fortran Revised:04.02.1986

Constrained and Unconstrained Linear Least Squares Fitting

The TL package finds the least squares solution to a set of unweighted linear equations, possibly subject to
a set of equality congtraints. The solution isfound by Householder triangul arisation (see Ref. 1 for details)
with parameter elimination if constraints are present. This write-up ends with a few words on generalised
least squares fitting (unequal weighting) which isasimple application of the TL package.

All matrices are assumed to be stored row-wise and without gaps contrary to the Fortran convention, i.e.,
if the Fortran statement DIMENSION A(NJ,NI) reserves memory for the matrix A the element A4;; isfound
inword A(J,I).

Structure:

SUBROUTINE subprograms
User Entry Names: TLSC, TLS, TLERR, TLRES
Internal Entry Names: TLSMSQ, TLSWOP, TLUK, TLSTEP, TLPIV

Usage:

General Description

Consider the set of M linear equations
N
> Ajjay =b (i=1,2,...,MwithN < M)
i=1

to be solved such that the Euclidian norm ||Ax — b||2 = S? isminimised. Instead of determining x from
the Normal Equation x = (A’A)~1A’b it is found by applying successive Householder transformations
(Q) which reduce A to upper triangular form without changing the norm of the columns of A or the vector
b. Thisisbeneficial from the point of view of stability and flexibility of application. Writing

and Qb—y— [}’1] } N rows

QA—R = [Rl]}Nrows
yz| } M — N rows

O} M- Nrows

wehavethat || Rx — y||2 = ||Ax — b||2 and thevector x isobtained by backward substitutioninR 1x = y;.
As abyproduct, the sum of squares of residualsis directly calculated as 52 = ||yz||2.

Now consider A and b to be composed of A, constraints to be satisfied exactly, followed by M — M,
equationsto be minimised. Writing

A—[Al]}Ml rows b_|:b1:|}M1 rows
Azl } M — My rows ba| Y M — M, rows

then ||A2x — bz||2 = S? hasto be minimized subjectto A ;x — by = 0.

170 E230-1

Thisproblemissolved by eliminating M ; parameters and then eval uating the reduced set of parameters (see
Ref. 2 for details).

An attractive feature of the unitary Householder transformations is that when each parameter is eliminated
("solved for”) column pivoting allowsthe selection of that parameter which givesthe maximum reductionin
the current value of .S2. Thusit is possible to terminate the cal culation whenever S 2 or its current reduction
become acceptably small. This can be exploited when iterating. If there is more than one RHS vector, then
x and b become N x L and M x L matrices with the pivoting strategy applied to the first column of b.

The triangular form of Ry allows the error matrix, E, of the fitted parameters to be derived directly from
R, itself without inverting. The equationis

E=R;'(R;).

Moreover, the vector of fitted residualsis most easily computed by applying the inverse Househol der trans-
formationto y, i.e.

Ax—b:Q—l[;].
2

Note that these residuals do not have to be calculate find the fitted .S ? which is output from the fitting
routines.

In al routines described below, the dimensionality of the problem is transmitted via the common block
COMMON /TLSDIM/ M1i,M,N,L,IER

The parameter IER returnsthe number of parameters solved for, or else-1001 if either M1 > N, N > Mor A
has rank lessthan N.

Constrained Least Squares Fitting

CALL TLSC(A,B,AUX,IPIV,EPS,X)

A (REAL) The combined constraint / derivative matrix of dimension M x N, the upper M1 rows being
the constraints.

B (REAL) The combined constraint / measurement matrix of dimension M x L, the upper M1 rows
being the constraints.

X (REAL) The matrix of dimension N x L returning the L |east squares solutions.

AUX (REAL) Working array of length N 4+ max(N,L). On output AUX(J) , (J=1,L) contain the min-

imised sum of sguares.

IPIV (INTEGER) Working array of length N which holds the exchange information (column pivoting is
employed if necessary).

EPS (REAL) Parameter specifying apivoting criterium. Thereisno exchange of columns/ and 1 unless
EPS x PIVOT(I) > PIVOT(1). Typicaly EPS ~ 0.1.

Subroutines called: TLSMSQ, TLSWOP, TLUK, TLSTEP.

When constraint equations are present, the full pivoting strategy cannot be adopted and so all parameters
are solved for, i.e., IER returnsthe value N or -1001. Under these circumstances EPS is used to reduce the
amount of pivotingto those cases whereit isfelt to be absolutely necessary.

E230-2 171

Unconstrained Least Squares Fitting

CALL TLS(A,B,AUX,IPIV,EPS,X)

A (REAL) M x N derivative matrix.

B (REAL) M x L matrix of measurements.
X (REAL) N x L parameter solution matrix.
AUX (REAL) Working array asfor TLSC.

IPIV (INTEGER) Working array as for TLSC.

EPS (REAL) Input parameter used for prematurely terminating the calcul ation:
> 0 : Termination whenr.m.s. residua < |EPS|,
< 0 : Termination when the reduction in the residual < |EPS]|,
= 0 : Unconditionally solvefor all X ;.

Subroutines called: TLSMSQ, TLSWOP, TLUK, TLSTEP, TLPIV.

As previously indicated, full pivoting is possible without constraints, hence the alowance for premature
exit.

Fitted Error Matrix
CALL TLERR(A,E,AUX,IPIV)

The parameter and subroutine arguments defined previously in COMMON /TLSDIM/ requirethe output values
from a call to TLS or TLSC. E isan N x N matrix which, upon return, will contain the unnormalised
covariance matrix of the fitted parameters, (A’A)~1. A may be overwritten by E and the routine may be
called independently from TLS/TLSC by setting IER to zero.

Subroutinescalled: TLUK, TLSTEP.

Fitted Residuals
CALL TLRES(A,B,AUX)

All the arguments and common variables require the output values from acall to TLS or TLSC. Upon return,
B will give the matrix of residuals, i.e., for each set of least squares equations the column vector Ax — b.

Subroutine called: TLSTEP.

Notes:

1. The pivoting and exit criteria of TLS are calculated using the first vector of measurements; therefore
itiswiseto haveEPS = 0if L > 1.

2. TLERR and/or TLRES may be called in any order after TLS or TLSC.
3. TLS or TLSC may be used for solving simultaneous linear equationsby setting M = N or M1 = N.

4. Useful examplesin the application of these routinescan befoundin the HYDRA Geometry / Kinematics
Processors.

172 E230-3

Generalized Least Squares Fitting

The problem isto minimise (Ax — b)’G(Ax — b) where G, the weight matrix, is the inverse of the error
matrix of the measurement vector b. Once again Householder triangularisation offers an attractive ater-
native to the Normal Equation solution x = (A’GA)~*A’Gb. Thefirst step is to perform the Choleski
decomposition of G, which is positive semi-definite (see TR (F112)), such that G = U’U, U being upper
triangular. The problem is then reduced to minimising |[|A'x — b!||z, where Al = UA and b! = Ub,
which is just the unweighted case previously described. This has the feature that if A has aready been
triangularised then the product UA remains triangular and only back substitution is necessary to find the
weighted least squares solution.

References:

1. G. Golub, Numerical methods for solving linear least squares problems, Numer. Math. 7 (1965)
206-216.

2. A. Bjorck and G. Golub, Iterative refinement of linear |east square solutions by Househol der transfor-
mation, BIT 7 (1967) 322-337.

E230-4 173

LFIT

Author(s) : M. Metcalf
Submitter:
Language : Fortran

CERN Program Library

Least-Squares Fit to Straight Line

E250

Library: MATHLIB
Submitted: 01.05.1977
Revised:27.11.1984

Given a vector of values Y measured at the points X, LFIT and LFITW find the best |east-squaresfit to the
linear relationshipy = a X +b. LFIT performsan unweightedfit and LFITW takes account of a given vector
of weights. Both subroutines have an option for skipping missing points without shifting the points of the

vector X .

Structure:

SUBROUTINE subprogram
User Entry Names: LFIT, LFITW

Usage:

CALL LFIT(X,Y,L,KEY,A,B,VAR) or
CALL LFITW(X,Y,W,L,KEY,A,B,VAR)

X (REAL) Vector of abscissae.

Y (REAL) Vector of values corresponding to pointsX.

W (REAL) Vector of weights (for LFITW only).

L (INTEGER) Length of vectors X, Y and W.

KEY (INTEGER)
= 0 : indicatesthat any pointswhere Y = 0 are to be skipped,
= 1 :indicatesthat al L pointsare to be used.

A (REAL) Fitted slope a.

B (REAL) Fitted constant term b.

VAR (REAL) Residual sum of sgquares divided by (L — 2) indicating the badness of fit.

References:

1. D.H. Menzel, Fundamental Formulas of Physics, Dover Publ., New York (1960) 116.

174

E250-1

PARLSQ

Author(s) : H. Grote
Submitter: M. Metcalf
Language : Fortran

CERN Program Library

Least-Squares Fit to Parabola

E255

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 218. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: RLSQP2 (E201)

Library: MATHLIB
Submitted: 01.05.77
Revised:

Given avector of valuesY measured at the points X', PARLSQ finds the best least-squares fit to the parabola
Y = ¢ + cox + 322,

Structure:

SUBROUTINE subprogram
User Entry Names: PARLSQ

Usage:

X
Y
L
C

VAR

CALL PARLSQ(X,Y,L,C,VAR)

(REAL) Vector of abscissae.

(REAL) Vector of values corresponding to pointsX.
(INTEGER) Length of vectorsX and Y.

(REAL) Array of dimension 3 inthe calling program. On exit, it containsthe coefficients ¢y, ¢, ¢3.

Notes:

(REAL) Residual sum of squaresdivided by L — 3.

If L < 3,C and VAR are set to zero.

References:

1. D.H. Menzel, Fundamental Formulas of Physics, Dover Publ., New York (1960) 122

175

E255-1

RCHECF CERN Program Library E406

Author(s) : T. Havie Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 24.01.1986
Language : Fortran Revised:01.12.1994

Chebyshev Series Coefficients of a Function

Subroutine subprograms RCHECF, DCHECF and QCHECF cal culate coefficients for a finite sum of Chebyshev
polynomials approximating a function f(z) over aninterval « < x < b to accuracy <. It returns an integer
n and coefficients ¢y, ¢1, . . . , ¢, such that the sum

n

Fr@) = eTi(t) ey

=0

wheret = (22 —a —b)/(b— a) and T};(t) isthe Chebyshev polynomial of degree j, satisfiesfora < z <b
therelation

|7 (@) = f(z)] <e. (2)

Subsequent evaluation of the approximation (1) can be done by calling CHSUM (E407) with the appropriate
value of itsargument MODE.

On computers other than CDC and Cray, only the double- and quadruple-precision versions DCHECF and
QCHECF are available. On CDC and Cray computers, only the single- and double-precision versionsSRCHECF
and DCHECF are available.

Structure:

SUBROUTINE subprogram

User Entry Names: RCHECF, DCHECF, QCHECF

Obsolete User Entry Names: CHECF = RCHECF

FilesReferenced: Unit 6

External References: MTLMTR (N0O2), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),t = Q (type REAL*16),

CALL tCHECF(F,A,B,EPS,C,N,DELTA)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program.

A,B (type according to t) End-points a, b of the approximation interval.

EPS (type according to t) Requested accuracy.

C (type according to t) One-dimensional array with dimension (0:d), d > 128. On exit, C(j) =
C]‘,(j:(),l,... ,N).

N (INTEGER) On exit, N isequal to the subscript of the last computed coefficient.

DELTA (typeaccordingto t) On exit, DELTA issuch that therelation | f*(z) — f(2)| < DELTA isamost
certainly truefor = € [a, b]. (See Error Handling.)

Method:

176 E406-1

Theinterval [a, b] is subdivided successively into sets of subintervalsof length2 ~*(b—a), (k= 0,1,2...).
After each subdivisionthe orthogonality properties of the Chebyshev polynomial swith respect to summation

over equally-spaced points are used to compute two sets of approximate values of the coefficients ¢;: one
set computed using the end-points of the subintervals, and one set using the mid-points. The mean of these

two values is taken as the best estimate of the c;, which are then tested to see (a) whether certain rate-of-
convergence criteria are satisfied, (b) whether there is some n for which the sum for 7 > n of the available
c; islessthan <. If both conditions are satisfied the subroutine terminates.

Error handling:

Error E406. 1: If the requested accuracy cannot be obtained with 65 coefficients (i.e., N = 64) amessageis
written on Unit 6, unlesssubroutine MTLSET (N002) has been called. In this case, values of f* computed
from (1) with N = 64 should still be in error by lessthan DELTA.

Notes:
1. This subroutineis intended for use with functions f(z) which can be computed to full machine ac-
curacy, and which are sufficiently smooth to ensure fairly rapid decrease of the ¢; with increasing j.

Functions defined by experimental data can usually be approximated better by |east-squares methods,
using ordinary polynomials.

2. Note that some authors use a different definition for the constant term in (1), i.e. ¢o/2 instead of ¢g.
Here, the definition of Ref. 1 isused.

References:

1. Y.L. Luke, Mathematical functionsand their approximations, (Academic Press, New York 1975)

E406 -2 177

RCHSUM CERN Program Library E407

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 24.01.1986
Language : Fortran Revised: 15.11.1995

Summation of Chebyshev Series

Function subprograms RCHSUM and DCHSUM compute, for real arguments = in the specified intervals, one of
the following four sums:

S(z) = échn(x) (~1<z<1) (1)
S(x) = ﬁ;cnnn(m) (~1<a <) 2)
S(x) = ﬁ%chznﬂ(ﬂf) (~1<a<) 3)
S(x) = ﬁ%chi(@ (0<z<) (4)

where 7}, (z) isthe Chebyshev polynomial of degree n and 7' (z) = 1, (22 — 1).
On CDC and Cray computers, the double-precision version DCHSUM is not available.

Structure:

FUNCTION subprograms
User Entry Names: RCHSUM, DCHSUM
Obsolete User Entry Names: CHSUM = RCHSUM

Usage:
In any arithmetic expression,
RCHSUM(MODE,C,N,X) or DCHSUM(MODE,C,N,X)

has the value of the sum selected by MODE. RCHSUM is of type REAL, and DCHSUM is of type DOUBLE
PRECISION. € and X have the same type as the function name. MODE and N are of type INTEGER.

MODE Type of sum to be evaluated (MODE = 1, 2, 3, 4).
C One-dimensional array with dimension (0:d), d > N, containing the coefficients

oy C1y ... 43CN.
Limit N of summation.
Argument z.

Notes:

Note that some authors use a different definition for the constant termin (1), (2) and (4), i.e. ¢o/2 instead of
co. Here, the definition of Ref. 1 isused.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975)

2. C.W. Clenshaw, Chebyshev series for mathematical functions, Mathematical Tables, Vol.5 (National
Physical Laboratory, London, 1962).

178 E407-1

RCHPWS CERN Program Library E408

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.02.1994
Language : Fortran Revised:

Conversion of Chebyshev to Power and Power to Chebyshev Series

Subroutine subprograms RCHPWS, RPWCHS and DCHPWS, DPWCHS perform the conversion of a finite Cheby-
shev seriesto afinite power series (i.e. apolynomial) and vice versa

Thus, given the coefficientsc;, (7 = 0,1, ..., n) of afinite Chebyshev series, RCHPWS and DCHWPS calculate
the coefficientsa;, (7 = 0,1, ..., n) of the equivalent polynomial:

cotali(z)+ -+, Th(z) = ag+arz+---+aa”.

Conversely, given the coefficientsa;, (j = 0,1, ..., n) of apower series, RPWCHS and DPWCHS calculate the
coefficientsc;, (7 = 0,1, ..., n) of the equivalent finite Chebyshev series:

ap+ a1z + -+ ax” = co+ali(x)+ -+ e Th(x).

In both cases, T’;(x) isthe Chebyshev polynomial of degree ;.

Note that sometimes the constant term in the Chebyshev seriesis defined differently, i.e. ¢, /2 instead of ¢g.
Here, the definition of Ref. 1 isused.

On computersother than CDC or Cray, only the double-precisionversionsDCHPWS and DPWCHS are available.
On CDC and Cray computers, only the single-precision versions RCHPWS and RPWCHS are available.

Structure:

SUBROUTINE subprograms
User Entry Names: RCHPWS, RPWCHS, DCHPWS, DPWCHS
Filesreferenced: Unit 6

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tCHPWS(N,C,A)

N (INTEGER) Degree n of last Chebyshev polynomial in the expansion.

C (type according to t) One-dimensional array of dimension (0:d), whered > N. On entry, C must
contain the coefficients ¢;, (j = 0, 1, ..., n) of the Chebyshev expansion.

A (type according to t) One-dimensional array of dimension (0:d), whered > N. On exit, A contains
the coefficientsa;, (= 0,1,. .., n) of the power series expansion.

CALL tPWCHS(N,A,C)

N (INTEGER) Degree n of the polynomial.

A (type according to t) One-dimensional array of dimension (0:d), where 0 > N. On entry, A must
contain the coefficients a;, (j =0, 1, ..., n) of the polynomial.

C (type according to t) One-dimensional array of dimension (0:d), where0 > N. On exit, C contains

the coefficients¢;, (7 = 0,1, ... , n) of the Chebyshev expansion.

179 E408-1

Error handling:

Error E408.1: N < 0 or N > 100.
A messageiswrittenonUnit 6, unlesssubroutine MTLSET (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975)

E408 -2 180

RTRGSM CERN Program Library E409

Author(s) : T. Havie, K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.12.1994
Language : Fortran Revised:

Summation of Trigonometric Series

Function subprograms RTRGSM and DTRGSM compute the sum of the trigonometric series

flz) = ao—l—Zakcoskx—l—Zbksinkx

k=1 k=1
for agiven argument = intherange —7 < = < & and given coefficients ay., bx.
On CDC and Cray computers, the double-precision version DTRGSM is not available.

Structure:

FUNCTION subprogram
User Entry Names: RTRGSM, DTRGSM

Usage:
In any arithmetic expression, for t = R (type REAL), t = D (type DOUBLE PRECISION),
tTRGSM(X,A,N,B,M,I0P)

hasthevalue f(z).

X (Type according to t) Argument z.

A (Type according to t) One-dimensional array of dimension (0:d) where d > N, containing the
constant coefficient a(in A(0) and the cosine coefficientsay (k =1,...,n)inA(k).

(INTEGER) The number n of cosine coefficients.

(Typeaccording to t) One-dimensiona array of length > M, containingthesinecoefficientsb, (k =
1,...,n)inB(k).

M (INTEGER) The number m of sine coefficients.
I0P (INTEGER) An option number:
= 1 :thegenera case,
=2:dl by arezero,i.e. f(z) = f(—z),
=3:dl a; arezero,i.e. f(z) = —f(—2).
Method:
Standard recurrence relations are used for calculating the sum (see Ref. 1).
Notes:

For afunction f(z) givenintherange a < z < b, usethe transformation

x = 27 (z—b+a) for IOP = 1,
b—a 2

z—a
for IOP = 2 or IOP = 3.

r = T
—a

References:

1. W. Clenshaw, A note on the summation of Chebyshev series, MTAC (later renamed Math. Comp.) 9
(1955) 118-120.

181 E409-1

LAPACK CERN Program Library FO01

Author(s) : see below Library: MATHLIB
Submitter: B. Damgaard Submitted: 07.06.1992
Language : Fortran Revised:

Linear Algebra Package

Authors: E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen.

LAPACK is a package of subroutineswritten in Fortran for solving the most common problems in numerical
linear algebra: systems of linear equations, linear least squares problems, eigenvalue problems, and singular
value problems. LAPACK is intended to supersede LINPACK and EISPACK. It extends the functionality of
these packages by including equilibration, iterative refinement, error bounds, and driver routines for linear
systems, routines for computing and re-ordering the Schur factorization, and condition estimation routines
for eigenvalue problems. LAPACK improves on the accuracy of the standard algorithmsin EISPACK by in-
cluding high accuracy algorithms for finding singular values and eigenvalues of bidiagonal and tridiagonal
matrices respectively that arise in SVD and symmetric eigenvalue problems. The algorithms and software
are structured to achieve high efficiency on vector processors, high-performance “ superscalar” workstations,
and shared-memory multi-processors.

Structure:
SUBROUTINE subprograms
Usage:

It is highly recommended to obtain a copy of the LAPACK Users' Guide published by SIAM. This Users
Guide gives a detailed description of the philosophy behind LAPACK as well as an explanation of its usage.
European users must order from the distributorsof SIAM booksin Europe:

STM Distribution Ltd.

Sunbury International Business Centre
Middlesex TW16 7DX, England

Tel. +44 932765119, FAX +44 932 765429

or from booksellers. Other users should contact SIAM directly in order to find out the address of the local
retailer:

SIAM

3600 University City Science Center
Philadelphia, PA 19104-2688

Tel. +12153829800, FAX +1 215386 7999 .

Availability

CERN isdistributing the package only in compiled form, suited for the CERN-supported platforms. Source
codeisdirectly available vianetlib (Use £ind netlib for details). Alternatively, NAG offers the distri-
bution via magnetic tapes for a nominal handling charge. NAG can be contacted at

NAG Response Centre
Tel. +44 865 311744, FAX +44 865 311755

182 FOO1-1

RVADD

Author(s) : H.L
Submitter:

ipps

CERN Program Library

Language : Fortran or Assembler or COMPASS

Elementary Vector Processing

These subprograms perform elementary vector operations.

Structure:

SUBROUTINE and FUNCTION subprograms
RVDIV, RVMPA, RVMPY, RVMUL, RVMULA, RVMUNA,
RVSCL, RVSCS, RVSET, RVSUB, RVSUM, RVXCH,
DVDIV, DVMPA, DVMPY, DVMUL, DVMULA, DVMUNA4,
DVSCL, DVSCS, DVSET, DVSUB, DVSUM, DVXCH,
CVDIV, CVMPA, CVMPY, CVMUL, CVMULA, CVMUNA,
CVSCL, CVSCS, CVSET, CVSUB, CVSUM, CVXCH,

User Entry Names. RVADD,

RVCPY,
RVSCA,
DVCPY,
DVSCA,

RVRAN,
DVADD,
DVRAN,
CVADD, CVCPY,
CVRAN, CVSCA,
CVMPYC, CVMPAC

F002

Library: KERNLIB
Submitted: 18.12.1979
Revised: 27.05.1987

External References: LOCF (N100), RANF (G900), DRANF (G900) (some Fortran versions only).

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),t = C (type COMPLEX):

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

F

Mmoo

tVSET (N,S,Z1,Z2) zZ; =5

tVRAN (N,A,B,Z1,Z2) z; = random (see Note 2)
tVCPY (N,X1,X2,Z1,7Z2) zj =

tVXCH (N,X1,X2,Y1,Y2) interchanges = ; with y;
tVADD (N,X1,X2,Y1,Y2,Z1,Z2) Zy=xj 4y,

tVSUB (N,X1,X2,Y1,Y2,Z1,Z2) Z;=x) =y

tVMUL (N,X1,X2,Y1,Y2,Z1,Z2) z; = XY,
tVMULA(N,X1,X2,Y1,Y2,21,22) z; = xjy; + 2
tVMUNA(N,X1,X2,Y1,Y2,21,22) z; = =y + 2

tVDIV (N,X1,X2,Y1,Y2,Z1,Z2,IFAIL) z; = z;/y; (See Note 3)
tVSCL (N,S,X1,X2,21,22) z; = s&;

tVSCA (N,S,X1,X2,Y1,Y2,21,Z2) z; = st + yj

tVscs (N,S,X1,X2,Y1,Y2,21,Z2) z; = Sx; — Yj

tVSUM (N,X1,X2) f=a1+ -+,

tVMPY (N,X1,X2,Y1,Y2) f=xy +-+ 20,
tVMPA (N,X1,X2,Y1,Y2,S) =z +- -+ ay, +s
CVMPYC(N,X1,X2,Y1,Y2) f=x1n+ -+ 2,0
CVMPAC(N,X1,%X2,Y1,Y2,S) f=xipn+- -+ a0, +5

where y; is the complex conjugate of y;.

183

FO02 -1

N (INTEGER) The mathematical dimension of thevectors (j = 1,2,...,N).
S,A,B (Type according to t) The scalar values s, a, and b, respectively.

X1,X2 (Type according to t) Array elements. They must contain the elements «1, x» of the vector
(z;).

Y1,Y2 (Type according to t) Array elements. They must contain the elements y,, y» of the vector
()

Z1,22 (Type according to t) Array elements. On exit, they will contain the elements z;, z, of the
result vector (z;).

IFAIL (INTEGER) On exit, IFAIL is set to zero if all elements y; are non-zero. Otherwise IFAIL is

set to the smallest index & for which . = 0.

For N < 1 all subroutines return control without action; functions tVSUM, tVMPY and CVMPYC assume the
value zero, and tVMPA and CVMPAC assume the value S.

Restrictions:

If vector (z;) overlaps with vector (z;) or (y;), results will be correct provided each element z; coincides
with an element x;, or vy, where k < j.

Accuracy:

On computers with IBM 370 architecture, RVMPY, RVMPA, CVMPY and CVMPA accumulate the inner product
using double-precision arithmetic internally; the final result isthen rounded to single precision.

Notes:

1. Thevectors (z;) etc. need not be packed: any equidistant spacing of their elementsis permitted. The
subprograms determine the location of the vector element «; from the actual arguments X1 and X2.

2. tVRAN sets z; to a random value of type t that is uniformly distributed in the interval (A,B). For
CVRAN, thereal and imaginary partsof z; are distributed uniformly and independently in (REAL (A) ,REAL(B))
andin (AIMAG(A) ,AIMAG(B)).

3. Ifyr=0andyy,...,yr_1 arenon-zero, tVDIV computesonly zy, ..., zr_1 and S&tSIFAIL = £.

4. The use of an in-line DO loop will be more efficient than calling the equivalent vector processing
subprogram when the vector length is sufficiently small, due to the overhead of the subprogram call.

FO02 -2 184

RMADD CERN Program Library FO03

Author(s) : H. Lipps Library: KERNLIB
Submitter: Submitted: 18.12.1979
Language : Fortran or Assembler or COMPASS Revised:15.11.1995

Elementary Matrix Processing

These subprograms perform elementary matrix operations.
Structure:

SUBROUTINE and FUNCTION subprograms

User Entry Names. RMADD, RMBIL, RMCPY, RMDMP, RMMNA, RMMNS, RMMPA, RMMPS,
RMMPY, RMRAN, RMSCL, RMSET, RMSUB, RMUTL, RUMNA, RUMNS,
RUMPA, RUMPS, RUMPY,
DMADD, DMBIL, DMCPY, DMDMP, DMMNA, DMMNS, DMMPA, DMMPS,
DMMPY, DMRAN, DMSCL, DMSET, DMSUB, DMUTL, DUMNA, DUMNS,
DUMPA, DUMPS, DUMPY,
CMADD, CMBIL, CMCPY, CMDMP, CMMNA, CMMNS, CMMPA, CMMPS,
CMMPY, CMRAN, CMSCL, CMSET, CMSUB, CMUTL, CUMNA, CUMNS,

CUMPA, CUMPS, CUMPY, CMMPYC, CCMMPY, CUMPYC, CCUMPY
External References: LOCF (N100), RANF (G900), DRANF (G900) (some Fortran versions only).

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),t = C (type COMPLEX):

CALL tMSET (M,N,S,Z11,Z12,Z21) Zij =8

CALL tMRAN (M,N,A,B,Z11,Z12,Z21) z;; = random (see Note 2)
CALL tMCPY (M,N,X11,X12,X21,Z11,212,221) Zij = Ty

CALL tMUTL (N,X11,X12,X21) x;, = xx; (j > k) (see Note 3)
CALL tMSCL (M,N,S,X11,X12,X21,211,212,221) Zij = 8Ty

CALL tMDMP (M,N,D1,D2,X11,X12,X21,211,212,721) zii = dixy;

CALL tMADD (M,N,X11,X12,X21,Y11,Y12,Y21,Z11,Z12) Zij = Ty + Yij
CALL tMSUB (M,N,X11,X12,X21,Y11,Y12,Y21,Z11,Z12) Zij = Ti5 — Yij

CALL tMMPY (M,N,X11,X12,X21,Y1,Y2,71,22) Zi= @y + o Tinln

CALL tMMPA (M,N,X11,X12,X21,Y1,Y2,71,22) Zi= @y + o Tl + %
CALL tMMPS (M,N,X11,X12,X21,Y1,Y2,71,22) Zi= g+ Tl — %
CALL tMMNA (M,N,X11,X12,X21,Y1,Y2,71,22) L= —TAYL — = Tl %
CALL tMMNS (M,N,X11,X12,X21,Y1,Y2,71,22) L= —TAYL — = Tl — %
CALL tUMPY (N,U11,U12,U22,Y1,Y2,Z1,22) Zp = wiy; + o W

CALL tUMPA (N,U11,U12,U22,Y1,Y2,Z1,22) Zp = iy o U+ 2
CALL tUMPS (N,U11,U12,U22,Y1,Y2,Z1,22) 2= iy o U — 2
CALL tUMNA (N,U11,U12,U22,Y1,Y2,Z1,22) 2= Uy — = UWinYn F 2
CALL tUMNS (N,U11,U12,U22,Y1,Y2,Z1,22) 2= U — = WinYn — 2
F = tMBIL (N,V1,V2,X11,X12,X21,Y1,Y2) f =k o vk Y

CALL CMMPYC(M,N,X11,X12,X21,Y1,Y2,71,22) Zi= @l + o il

CALL CCMMPY(M,N,X11,X12,X21,Y1,Y2,71,22) Zi= iy + o Tinln

CALL CUMPYC(N,U11,U12,U22,Y1,Y2,Z1,22) 2 = wii; + o Wi

CALL CCUMPY(N,U11,U12,U22,Y1,Y2,Z1,22) 2= wpy; + o U ln

185 FOO3 -1

where z;;, u;1, y; are the complex conjugates of z;;, u;x, y;, respectively.

M,N (INTEGER) The mathematical dimensions of the matrices and vectors (¢ = 1,2,...,M;
Gk=1,2,...,N).
S,A,B (Type according to t) The scalar values s, a, and b, respectively.

X11,X12,X21 (Type according to t) Array elements. They must contain the elements x11, 12, 21 Of
the matrix (z;;).

Y11,Y12,Y21 (Type according to t) Array elements. They must contain the elements i1, 12, y21 Of
the matrix (y;;).

Y1,Y2 (Typeaccordingtot) Array elements. They must containthe elementsy , 2 of the vector
()

D1,D2 (Typeaccordingto t) Array elements. They must containthe elementsd; , d- of the vector
(d;).

Vi,V2 (Typeaccordingtot) Array elements. They must contain the elements v, , v, of the vector

(vk).

U11,U012,U22 (Type according to t) Array elements. They must contain the elements w1, 12, 29 Of
the upper-triangular matrix (u;).

Z11,712,721 (Typeaccordingtot) Array elements. On exit, they will containtheelements zy 1, z12, zo1
of the result matrix (z;;).

Z1,Z2 (Type according to t) Array elements. On exit, they will contain the elements z, 25 of
the result vector (z;).

ForM < 1 or N < 1 al subroutinesreturn control without action and all functions assume the value zero.
Accuracy:

On computers with IBM 370 architecture, all routines that accumulate the inner product of type REAL or
COMPLEX use double-precision arithmetic internally; the final result is then rounded to single precision.

Notes:

1. Thevectors (y;) etc. need not be packed: any equidistant spacing of their elementsis permitted. The
subprograms determine the location of the vector element y; from the actual arguments Y1 and Y2.
Similarly, thematrices (z;;) etc. need not be stored according to the Fortran convention; any equidis-
tant spacing of their rows and columns is permitted. In particular, matrices may be stored row-wise.
The subprograms determine the location of the matrix element xz;; from the actual arguments X11,
X12, and X21.

2. tMRAN sets z;; to arandom value of type t that is uniformly distributed in the interval (A,B). For
CMRAN, thereal and imaginary partsof z;; aredistributed uniformly and independently in (REAL(A) ,REAL(B))
andin (AIMAG(A) ,AIMAG(B)).

3. tMUTL copies the upper triangle of the square matrix (z ;) of order N to the lower triangle of this
matrix, thus creating a symmetric matrix.

4. The use of in-line DO loops will be more efficient than calling the equivalent matrix processing sub-
program when the matrix dimensions are sufficiently small, due to the overhead of the subprogram
call.

FO03 -2 186

RMMLT CERN Program Library FO04

Author(s) : H. Lipps Library: KERNLIB
Submitter: Submitted: 18.12.1979
Language : Fortran or Assembler or COMPASS Revised: 27.05.1987

Matrix Multiplication

These subprograms cal cul ate the matrix product
Z=XY orZ =XY,
where'Y” denotes the conjugate of the complex matrix Y, or one of the matrix expressions

Z=XY+Z, Z=XY-Z, Z=-XY+Z, Z=-XY-Z

Structure:

SUBROUTINE subprograms
User Entry Names. RMMLA, RMMLS, RMMLT, RMNMA, RMNNMS,
DMMLA, DMMLS, DMMLT, DMNMA, DMNMS,

CMMLA, CMMLS, CMMLT, CMNMA, CMNMS, CMMLTC
External References: LOCF (N100) (some Fortran versions only).

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),t = C (type COMPLEX):

CALL tMMLT (M,N,K,X11,X12,X21,Y11,Y12,Y21,711,7212,7221,W) Z=XY

CALL tMMLA (M,N,K,X11,X12,X21,Y11,Y12,Y21,711,Z12,721) Z=XY+7Z
CALL tMMLS (M,N,K,X11,X12,X21,Y11,Y12,Y21,711,712,721) Z=XY -7
CALL tMNMA (M,N,K,X11,X12,X21,Y11,Y12,Y21,711,Z12,721) Z=-XY+Z
CALL tMNMS (M,N,K,X11,X12,X21,Y11,Y12,Y21,711,Z12,721) Z=-XY-Z

CALL CMMLTC(M,N,K,X11,X12,X21,Y11,Y12,Y21,711,7Z12,721,W) Z=XY

M,N,K (INTEGER) The mathematical dimensions of the matrices: X has M rows and N columns,
Y hasN rows and K columns, Z has M rows and K columns.

X11,X12,X21 (Type according to t) Array elements. They must contain the elements x 11, 12, 21 Of

the matrix X.

Y11,Y12,Y21 (Type according to t) Array elements. They must contain the elements i1, 12, y21 Of
the matrix Y.

Z11,712,721 (Typeaccordingtot) Array elements. On exit, they will containtheelements z1 1, z12, zo1
of the matrix Z.

W (Type according to t) Working space array as specified below, required only if Z overlaps

X or Y. Otherwise adummy variable.

ForM < 1orN < 1orK < 1, al subroutinesreturn control without action.

Thematrices X, Y and Z need not to be stored according to the Fortran conventions: any equidistant spacing
of their rows and columnsis permitted. In particular, matrices may be stored row-wise. Each subroutine can
work with the transpose of a matrix. To make this possible, each matrix is specified in the calling sequence
by three arguments. For example, the called subroutine will operate on the matrix A = («;;) if the actual
arguments which replace X11, X12, X21 in the calling sequence are a1y, a12, as1, and will operate on the
transpose A’ of A if the actual argumentsare a1, as1, a12.

The only cases in which the result matrix Z is permitted to overlap X or Y are the following:

187 FOO4 -1

tMMLT: X =XY o Y =Y'Y, providedWisanarray of at leastX elements.
Y =XY o X=XX’, providedWisanarray of atleastM elements.
CMMLTC: X =XY o Y =Y'Y, providedWisanarray of at leastK elements.
Y=XY o X=XX, providedWisanarray of at leastM elements,
Accuracy:

On computers with IBM 370 architecture, all routines that accumulate the inner product of type REAL or
COMPLEX use double-precision arithmetic internally; the final result isthen rounded to single precision.

Notes:

The product of amatrix and itstranspose (or Hermitian conjugate) is recognized by tMMLT (or CMMLTC) and
the computation is shortened accordingly.

Examples:

Assume that the two-dimensional arrays A, B, C, D, E, the one-dimensional array W, and the dummy variable
V are declared by

COMPLEX A(9,9),B(9,9),C(9,9),D(9,9),E(9,9),V,W(99)

andthat a4 x 5 matrix A, a5 x 7 matrix B, and a7 x 3 matrix C have been stored according to the Fortran
conventionsin arrays of corresponding name.

1. TocomputeD = AB:

CALL CMMLT (4,5,7,A,A(1,2),A(2,1),B,B(1,2),B(2,1),D,D(1,2),D(2,1),V).

To pack the 4 x 7 product matrix AB row-wiseinto array W:
CALL CMMLT (4,5,7,A,A(1,2),A(2,1),B,B(2,1),B(1,2),W,W(2),W(8),V).

(Notethat =11 goesintoW (1), zyo iNtoW(2), and z9; iNtOW(8)).

For the purpose of abbreviation we shall denote
A,A(1,2),A(2,1) bya, A,A(2,1),A(1,2) bya’,
and similarly for arrays B, C, D, E. Thefirst exampl e above then becomes

CALL CMMLT(4,5,7,a,b,d,V).
2. TocomputeD = B’A’ = (AB)"

CALL CMMLT(7,5,4,b’,a’,d,V) or CMMLT(4,5,7,a,b,d’,V).
3. TocomputeD = AA’andE = A’A;

CALL CMMLT(4,5,4,a,a’,d,V)
CALL CMMLT(5,4,5,a’,a,e,V).

4. ToreplaceAby AB orby AA”:
CALL CMMLT(4,5,7,a,b,a,W) or CALL CMMLT(4,5,4,a,a’,a,W).
These two calls require a working vector W containing 7 or 4 complex elements, respectively.
5. TocomputeD = AB andE = BC = (C'B')":

CALL CMMLTC(4,5,7,a,b,d,V)
CALL CMMLTC(3,7,5,c’,b’,e’,V).

FO04 -2 188

RINV CERN Program Library FO010

Author(s) : G.A. Erskine Library: KERNLIB
Submitter: Submitted: 18.12.1979
Language : Fortran Revised:27.11.1984

Linear Equations, Matrix Inversion

Subroutine tEQN (wheret = R, D or C as described below) solves the matrix equation
AX =B, *)

which represents a system of N simultaneouslinear equationswith K right-hand sides:

N
Zai]w]‘k:bik, (iZl,Q,...,N,kZl,Q,...,I().

J=1
Subroutine tINV computes the inverse of a square matrix A. Subroutine tEQINV solves the system (*) and
also computesthe inverse of A, but is appreciably slower than tEQN.

If the determinant of A isalso required, or if several systems of the form (*) are to be solved sequentially
with the same coefficient matrix A but differing right-hand sides B, the subroutinesin RFACT (FO11) should
be used.

Structure:

SUBROUTINE subprograms

User Entry Names: RINV, REQN, REQINV, DINV, DEQN, DEQINV, CINV, CEQN, CEQINV
Internal Entry Names: FO10PR

Files Refeenced: Printer

External References: RFACT (FO11), RFEQN (FO11), RFINV (FO11),

DFACT (FO11), DFEQN (FO11), DFINV (FO11),
CFACT (FO11), CFEQN (FO11), CFINV (FO11),
TMPRNT (FO11), KERMTR (NOO1), ABEND (Z035)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),t = C (type COMPLEX):

CALL tEQN (N,A,IDIM,IR,IFAIL,K,B)
CALL tINV (N,A,IDIM,IR,IFAIL)
CALL tEQINV(N,A,IDIM,IR,IFAIL,K,B)

N (INTEGER) Order of the square matrix A.

A (Type according to t) Two-dimensional array whose first dimension has the value IDIM.
IDIM (INTEGER) First dimension of array A (and of array B if K > 1).

IR (INTEGER) Array of at least N elements, required as working space.

IFAIL (INTEGER) On exit, IFAIL will be set to —1 if A isfound to be singular, and to 0 otherwise.
(Singularity will often go undetected because of rounding errors during factorization even if the
elements of A have integral values.)

K (INTEGER) Number of columns of the matrices B and X.

(Type according to t) In general, a two-dimensional array whose first dimension has the value
IDIM. B may be one-dimensional if K = 1.

189 FO10-1

These subroutines must be called with matrix A in array A and matrix B in array B. Then, provided the
matrix A isnon-singular, IFAIL will be set to 0 and arrays A and B will be set asfollows:

tEQN The solution X replaces B. The matrix A is destroyed.
tINV Theinverse A~ of A replacesA.
tEQINV The solution X replaces B, and theinverse A ~1 of A replacesA.

If the matrix A issingular, IFAIL will be set to —1. In this case the contents of A is unpredictable and the
contents of B is unchanged.

Method:

Triangular factorization with row interchanges, implemented by in-linecode if N < 3 and by callsto library
program RFACT (FO11)if N > 3. If N < 1 or IDIM < NorK < 1, amessageisprinted and program execution
isterminated by calling ABEND (Z035).

Examples:

Assume that the 10 x 10 matrix A and the 10 x 3 matrix B are stored according to the Fortran convention
inarrays A and B respectively of aprogram containing declarations

DIMENSION IR(25)
DOUBLE PRECISION A(25,30),B(25,10)

To replace B by the 10 x 3 solutionmatrix X of the system of equations AX = B and toreplace A by A 1,
with ajump to label 100 if A issingular:

CALL DEQINV (10,A,25,IR,IFAIL,3,B)
IF(IFAIL .NE. 0) GO TO 100

FO10-2 190

RFACT CERN Program Library FO11

Author(s) : G.A. Erskine, H. Lipps Library: KERNLIB
Submitter: Submitted: 18.12.1979
Language : Fortran or Assembler or COMPASS Revised:27.11.1984

Repeated Solution of Linear Equations, Matrix Inversion, Determinant

These subroutines provide a two-step procedure for solving sets of linear equations
AX =B *)

which is faster than the library programs RINV (F010) when (*) must be solved repeatedly for the same
matrix A with different sets of right-hand sides. The inverse matrix A =1 and the determinant det(A) may
also be calculated.

Structure:

SUBROUTINE subprograms

User Entry Names: RFACT, RFEQN, RFINV, DFACT, DFEQN, DFINV, CFACT, CFEQN, CFINV
Internal Entry Names: TMPRNT

Files Referenced: Printer

External References: KERMTR (NOO1), ABEND (Z035)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),t = C (type COMPLEX):

CALL tFACT(N,A,IDIM,IR,IFAIL,DET,JFAIL)
CALL tFEQN(N,A,IDIM,IR,K,B)
CALL tFINV(N,A,IDIM,IR)

N (INTEGER) Order of the square matrix A.

A (Type according to t) Two-dimensional array whose first dimension has the value IDIM.
IDIM (INTEGER) First dimension of array A (and of array B if K > 1).

IR (INTEGER) Array of at least N elements, required as working space.

IFAIL (INTEGER) On exit, IFAIL will be set to —1 if A isfound to be singular, and to 0 otherwise.
(Singularity will often go undetected because of rounding errors during factorization even if the
elements of A have integral values.)

DET (Type according to t) On exit, DET will be set to the value det(A) unless JFAIL returns anon-zero
value.

JFAIL (INTEGER) Onexit, JFAIL will be set to zero if det(A) can be safely evaluated. Otherwise JFAIL
isset asfollows:
= —1 if det(A) is probably too small,
= +1 if det(A) is probably too large.

K (INTEGER) Number of columns of the matrices B and X.

(Type according to t) In general, a two-dimensional array whose first dimension has the value
IDIM. B may be one-dimensional if K = 1.

191 FO11-1

Subroutine tFACT must be called with matrix A in array A prior to any callsto tFEQN and tFINV. On return
the situationisasfollows:

1. Provided A isnon-singular, IFAIL will be set to 0, and A and R will be set in preparation for callsto
tFEQN and tFINV.

If Aissingular, IFAIL will be set to —1, in which case any subsequent call to tFEQN or tFINV will
give unpredictable results.

2. Provided det(A) can be safely evaluated within the range of the computer, JFAIL will be set to 0 and
and DET will be set to det(A). In particular, if A issingular, both JFAIL and DET will be set to zero.

If the evaluation of det(A) would probably cause underflow, JFAIL will be setto —1 and DET will be
set to zero.

If the evaluation of det(A) would probably cause overflow, JFAIL will be set to +1 and DET will be
incorrect.

Execution continues, and subsequent callsto tFEQN and tFINV will give correct results.

Subroutine tFEQN may be called only after tFACT has been called, with the contents of A and R unchanged,
and with matrix B in array B. On return, B will contain the solution X, with A and R unchanged. Therefore a
singlecall to tFACT may be followed by several callsto tFEQN with differing B.

SubroutinetFINV may be called only after tFACT has been called, with the contents of A and R unchanged.
On return, A will contain the inverse A~! of A. Therefore, once tFINV has been called, it is no longer
meaningful to call tFEQN with A as parameter.

Method:

Triangular factorization with row interchanges. The inverse matrix A ~1 isthe product, in reverse order, of
thein-placeinversesof thetriangular factors. The array R holdsinformation specifying the row interchanges.

Accuracy:

On computerswith IBM 370 architecture, inner products are accumulated using double-precisionarithmetic
internally for arrays of type REAL and COMPLEX.

Error handling:

IfN < 10orIDIM< NorK < 1, amessageisprinted and program execution isterminated by calling ABEND
(2035).

Examples:

Assumethat the 10 x 10 matrix A, the 10 x 3 matrix B, and the 10-element vector z are stored according to
the Fortran convention in arrays A, B and Z respectively of a program containing the declarations

DIMENSION IR(25)
COMPLEX A(25,30),B(25,10),Z(25),DET

Then, unless A is singular (which isto cause a jump to statement 100), the following statements will set
DET = det(A), replace B by A~'B, replacezby A=z, and replace A by A~1:

CALL CFACT (10,A,25,IR,IFAIL,DET,JFAIL)
IF(IFAIL .NE. 0) GO TO 100

CALL CFEQN(10,A,25,IR,3,B)

CALL CFEQN(10,A,25,IR,1,Z)

CALL CFINV(10,A,25,IR)

FO11-2 192

RSINV CERN Program Library F012

Author(s) : H. Lipps Library: KERNLIB
Submitter: Submitted: 01.09.1983
Language : Fortran or Assembler or COMPASS Revised:

Symmetric Positive-Definite Linear Systems

Subroutine tSINV (where t = R or D as described below) computes the inverse of a symmetric positive-
definite matrix A.

Subroutine tSEQN solves a set of linear equations
AX =B *)

whose coefficient matrix A is symmetric and positive-definite. The determinant det(A) of A may be calcu-
lated by subroutine tSFACT described below.

If severa systems of the form (*) are to be solved with the same A but differing B, a procedure which is
appreciably faster than calling subroutine tSEQN repeatedly isto execute a single call to subroutine tSEQN
(or subroutine tSFACT if the determinant is required), and then to call subroutine tSFEQN as many times as
required. When the last system (*) has been solved, the inverse matrix A 1, if required, may be computed
by calling tSFINV.

Subroutine tSEQN and tSFACT both replace the matrix A by a lower triangular matrix L and an upper
triangular matrix U suchthat LU = A. ThisLU decompositionis referred to below aslu(A).

Given lu(A) and some matrix B, subroutine tSFEQN replaces B by the solution X of equation (*) without
changing lu(A) . Subroutine tSFEQN may therefore be called repeatedly with differing B.

Given lu(A), subroutine tSFINV replacesu(A) by theinverse A~1 of A.
Structure:

SUBROUTINE subprograms
User Entry Names: RSFACT, RSEQN, RSFEQN, RSINV, RSFINV

. DSFACT, DSEQN, DSFEQN, DSINV, DSFINV
Files Referenced: Printer

External References: TMPRNT (FO11), KERMTR (NOO1), ABEND (Z035)
Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION):

CALL tSINV (N,A,IDIM,IFAIL)

CALL tSEQN (N,A,IDIM,IFAIL,K,B)

CALL tSFACT(N,A,IDIM,IFAIL,DET,JFAIL)
CALL tSFEQN(N,A,IDIM,X,B)

CALL tSFINV(N,A,IDIM)

N (INTEGER) Order of the matrix A.

A (Type according to t) Two-dimensional array whosefirst dimension has the value IDINM.

IDIM (INTEGER) First dimension of array A (and of array B if K > 1).

IFAIL (INTEGER) On exit, IFAIL will beset to 0 if A is positive-definite, and to -1 otherwise.

DET (Type according to t) On exit, DET will be set to the value det(A) unless JFAIL returns a

non-zero value.

193 FO12-1

JFAIL (INTEGER) On exit, JFAIL will be set to zero if det(A) can be safely evaluated. Otherwise
JFAIL isset asfollows:
= —2if A isnot positive-definite,
= —1if det(A) is probably too small,
= +1 if det(A) is probably too large.

(INTEGER) Number of columns of the matrices B and X.

(Type according to t) In general, atwo-dimensional array whose first dimension has the value
IDIM. B may be one-dimensiond if K = 1. tSEQN accepts adummy argument B if K = 0.

The contents of arrays A and B on entry and exit are asfollows:

tSINV On entry, A must be stored in A. On exit, A contains A ~1 if IFAIL = 0, or elseis undefined.

tSEQN On entry, A must be stored in A and B in B. On exit, A contains lu(A) and B contains X if
IFAIL = 0, or else A isundefined and B is unchanged.

tSFACT On entry, A must be stored in A. On exit, A containslu(A) if IFAIL = 0, or elseis undefined.
DET containsdet(A) if JFAIL = 0, containszero if JFAIL = —1, and is undefined otherwise.

tSFEQN On entry, lu(A) must be stored in 4, and B in B. On exit, A isunchanged and B contains X.
tSFINV On entry, lu(A) must be stored in 4. On exit, A contains A ~1.

Method:
Modified Cholesky factorization (without square roots). See Ref. 1.
Accuracy:

On computerswith IBM 370 architecture, inner products are accumulated using double precision arithmetic
internally for arrays of type REAL.

Notes:

Only those elements a;; of the original matrix A for which: > j are required on entry to tSINV, tSEQN and
tSFACT.

Error handling:

If N < 1orIDIM< NoOrK < 0 (tSEQN) or K < 1 (tSFEQN), amessage is printed and program execution
isterminated by calling ABEND (Z035).

Examples:

Assume that the 10 x 10 matrix A and the 10 x 3 matrix B are stored according to the Fortran convention
inarrays A and B respectively of aprogram containing the declarations

REAL A(25,30),B(25,10)

To replace B by the 10 x 3 solution matrix X of the system of equations AX = B, withajumpto label 100
if A isnot positive definite:

CALL RSEQN(10,A,25,IFAIL,3,B)
IF(IFAIL .NE. 0) GO TO 100

References:

1. JH. Wilkinson and C. Reinsch (eds.), Handbook for automatic computation, Vol.2: Linear algebra
(Springer-Verlag, New York 1971), Chapter 2.

FO12-2 194

POLROT CERN Program Library F105

Author(s) : M. Regler Library: MATHLIB
Submitter: Submitted: 01.03.1968
Language : Fortran Revised:27.11.1984

Rotate a Three-Dimensional Polar Coordinate System

POLROT calculates the values of §’ and ¢’ of the coordinate system S’(¢’, ¢, r), obtained by rotation of the
3-dimensional polar coordinate system S (6, ¢, r) about any axis (0 < § < 7,0 < ¢ < 27).

Structure:

SUBROUTINE subprogram
User Entry Names: POLROT

Usage:

CALL POLROT(THETA,PHI,THPRIM,PHPRIM,THAX,PHAX,ROTANG)

THETA (REAL) Angle @ inthe old system S (8, ¢, r).

PHI (REAL) Angle ¢ inthe old system S (6, ¢, r).

THPRIM (REAL) Angle ¢’ in the new system S'(¢', ¢,).

PHPRIM (REAL) Angle ¢’ inthe new system S’(¢, ¢/, r).

THAX,PHAX (REAL) Anglesdefining the axis of rotation in the old system S (6, ¢, r).
ROTANG (REAL) Angleinthe old system through which the system is rotated.

The subroutine calculates from THETA and PHI the new values THPRIM and PHPRIM in a coordinate system
obtai ned by rotating the old system through an angle ROTANG about an axis defined by THAX and PHAX in the
old system.

Method:

THETA and PHI are converted to aunit vector in Cartesian coordinates; THAX, PHAX and ROTANG are converted
to atensor, which is used to obtain a vector in the new system of axes giving THPRIM and PHPRIM.

Notes:

If THPRIM isvery small, PHPRIM isbadly defined.

195 F105-1

MXPACK

Author(s) : TC
Submitter: C. Letertre
Language : Fortran

CERN Program Library

TC Matrix Manipulation Package

F110

Library: KERNLIB
Submitted: 01.08.1969
Revised:07.03.1989

OBSOLETE

Please note that thisroutine has been obsoleted in CNL 194. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement; RVADD (F002), RMADD (FO03), RMMLT (FO04)

The routines of MXPACK compute the product of two matrices or the product of their transposed matrices
and may add or subtract to the resultant matrix a third one, add or subtract one matrix from another, or
transfer a matrix, its negative, or amultiple of it, transpose a given matrix, build up a unit matrix, multiply
a matrix by a diagonal (from left or from right) and may add the result to another matrix, add to square
matrix the multiple of a diagonal matrix, compute the products X = ABA’ (A’ denotes the transpose of
A)and X = A'BA. Itisassumed that matrices are stored row-wise without gaps contrary to the Fortran

convention.
Structure:

SUBROUTINE subprograms

User Entry Names: MXMAD, MXMAD1, MXMAD2, MXMAD3, MXMPY, MXMPY1, MXMPY2, MXMPY3
MXMUB, MXMUB1, MXMUB2, MXMUB3, MXTRP, MXUTY, MXMLRT, MXMLTR

Usage:
Matrix Multiplication

CALL MXMPY(A,B,C,NI,NJ,NK)
CALL MXMPY1(A,Q,C,NI,NJ,NK)
CALL MXMPY2(P,B,C,NI,NJ,NK)
CALL MXMPY3(P,Q,C,NI,NJ,NK)

If NJ = 0, C will befilled with zeros.

Matrix Multiplication and Addition
CALL MXMAD(A,B,C,NI,NJ,NK)
CALL MXMAD1(A,Q,C,NI,NJ,NK)

CALL MXMAD2(P,B,C,NI,NJ,NK)
CALL MXMAD3(P,Q,C,NI,NJ,NK)

If NJ = 0, C will not be changed.

196

(Ai)(Bjk) = (Ci)
AQ'— C (QisNK x NJ)
P'B — C (PisNJ x NI)
P'Q — C

(Aij)(Bjk) + (Cie) = (Cix)
AQ +C—C
PB+C—C
P'Q' +C— C

F110-1

Matrix Multiplication and Subtraction

CALL MXMUB(A,B,C,NI,NJ,NK) (Aij)(B]‘k) — (CZ') — (CZ')
CALL MXMUB1(A,Q,C,NI,NJ,NK) AQ -C—=C
CALL MXMUB2(P,B,C,NI,NJ,NK) PB-C—C
CALL MXMUB3(P,Q,C,NI,NJ,NK) PQ -C—C

If NJ = 0, C will be replaced by —C.
Matrix Transposition
CALL MXTRP(A,B,NI,NI) (A;) — (Bji)
Unity Matrix
CALL MXUTY(A,NI) (Ay) =1; (A4;) =0, (i #£J)
Matrix Multiplication

CALL MXMLRT(A,B,X,M,N) A[m x n]B[n x n] A'ln x m] = X[m x m]
CALL MXMLTR(A,B,X,N,M) A’ln x m]B[m x m] Alm x n] = X[n X n]

Notes:

In the formulae above, (4;;) etcdenotes the ensemble of elements of the matrix A etcwith the row index
¢+ and the column index j. The Fortran variables NI, NJ and NK specify the dimensions associated with
theindices, j and k. If DIMENSION A(NJ,NI) reserves space for the matrix A, then the element A;; is
containedinA(J,I).

[]

F110-2 197

TR CERN Program Library F112

Author(s) : W. Hart Library: KERNLIB
Submitter: Submitted: 01.01.1975
Language : Fortran Revised:12.12.1986

Manipulation of Triangular and Symmetric Matrices

At CERN, matrices are often stored row-wise (TC-convention); furthermore, symmetric matrices are stored
packed as the lower |eft triangular part only, i.e., the /th diagonal element is found in position I (1 + 1) /2.
The TR-package performs many of the frequently required operations associated with such matrices without
resorting to expanding into the unpacked square form. In al the following routinesan M x M symmetric
matrix istaken to be stored in the packed form with M (M + 1)/2 elements,

Some of these operations produce and require the manipulation of lower triangular matrices which have
all elements zero above the leading diagonal. These are also stored in the packed form with all the zeros
dropped; therefore, care hasto be taken in the interpretation of a packed matrix as to whether it representsa
symmetric or lower triangular array. To facilitatethisdistinctionin the Write-up, thefollowing nomenclature
has been adopted:

A,B,C unpacked rectangular matrices (row-wise storage)

Q,R,S,T packed symmetric matrices
V,W packed lower triangular matrices

On 32-hit machines the calcul ations are performed internally in double-precision mode.
Structure:

SUBROUTINE subprograms

User Entry Names. TRCHUL, TRCHLU, TRSMUL, TRSMLU, TRINV, TRSINV, TRLA, TRLTA,
TRAL, TRALT, TRSA, TRAS, TRSAT, TRATS, TRAAT, TRATA,
TRASAT, TRATSA, TRQSQ, TRPCK, TRUPCK

Usage:

Choleski Decomposition
CALL TRCHUL(S,W,M) S =WWwW
CALL TRCHLU(S,V,M) S=VV’

SisanM x M positive semi-definitgymmetric matrix (e.g., error or weight matrix) and the routinescal cul ate
the complementary lower triangular Choleski factors. It is alowed to overwrite S by W or V.

Symmetric Multiplication of Lower Triangular Matrices

CALL TRSMUL(W,S,M) W'W — S
CALL TRSMLU(W,R,M) WW' =5 R

WisanM x M lower triangular matrix and S, R the two symmetric products of the multiplication of W by its
transpose. It is allowed to overwrite W by either S or R.

198 Fl112-1

Lower Triangular Matrix Inversion

CALL TRINV(W,V,M) w-1l v

Wisan M x M lower triangular matrix which is inverted into V (the inverse of a lower triangular matrix is
lower triangular). W may have rows and columns of zeasgroduced by the Choleski decomposition of a
weight matrix with unmeasured variables. It isallowed to overwrite W by V.

Symmetric Matrix Inversion

CALL TRSINV(S,R,M) S™1 4R
S isan M x M positive semi-definitsymmetric matrix which is inverted into R (also stored packed). It is
permissible to overwrite S by R.
Triangular — Rectangular Multiplication

CALL TRLA (W,A,B,M,N) WA —B

CALL TRLTA(W,A,B,M,N) W'A — B

CALL TRAL (A,V,B,M,N) AY —B

CALL TRALT(A,V,B,M,N) AV’ —»B
A and B are M x N rectangular matrices, W isan M x M lower triangular matrix, and V isan N x N lower
triangular matrix. In each call it is alowed to overwrite A by B.
Symmetric - Rectangular Multiplication

CALL TRSA (S,A,C,M,N) SA —»C

CALL TRAS (A,R,C,M,N) AR —=C

CALL TRSAT(S,B,C,M,N) SB’ - C

CALL TRATS(B,R,C,M,N) B'R—C
A and C are M x N rectangular matrices, B isan N x M matrix, S isan M x M symmetrix matrix, and R is an
N x N symmetric matrix. It isnotallowed to overwrite A or B by the product matrix C.
Symmetric Multiplication of Rectangular Matrices

CALL TRAAT(A,S,M,N) AA'—'S

CALL TRATA(B,R,M,N) B'B —» R
AisanM x N matrix, Bisan N x M matrix, S isan M x M symmetric matrix, and R isan M x M symmetric
matrix. No overwriting is alowed.
Transformation of Symmetric Matrix

CALL TRASAT(A,S,R,M,N) ASA’' =+ R

CALL TRATSA(B,S,R,M,N) B'SB —» R

CALL TRQsSQ (Q,T,R,M) QTQ —R
AisanM x N matrix, Bisan N x M matrix, Sisan N x N symmetric matrix, and R, Q, T are M x M symmetric
matrices. No overwriting is allowed.
Packing and Unpacking a Symmetric Matrix

CALL TRPCK (A,S,M) A—S
CALL TRUPCK(S,A,M) S—A

AisanM x M unpacked symmetric matrix (all M> elements) and S is the same matrix stored packed. Over-
writing is allowed for both TRPCK and TRUPCK.

F112-2 199

DOTI CERN Program Library F116

Author(s) : CERN TC Division Library: KERNLIB
Submitter: C. Letertre Submitted: 01.09.1969
Language : Fortran Revised:27.11.1984

Scalar Product of Two Space-Time Vectors

Function subprogram DOTI computes the scalar product a.b of two space-time vectors
(al, ag, as, ia4), (bh bz, b37 ib4), where i = +/ -1, i.e

ab = a1b1 + a2b2 + a3b3 — a4b4.

Structure:

FUNCTION subprogram
User Entry Names: DOTI

Usage:

In any arithmetic expression,
DOTI(A,B)
hasthe valuea.b.
A,B (REAL) One-dimensional arrays of length 4, containing a;, b;, (j = 1,2, 3, 4), respectively.

200 F116-1

CROSS CERN Program Library F117

Author(s) : CERN TC Division Library: KERNLIB
Submitter: C. Letertre Submitted: 01.09.1969
Language : Fortran Revised:

Vector Product of Two 3-Vectors

Subroutine subprogram CROSS computes the vector (or cross) product
c=axbh

of two 3-vectorsa, b.

Structure:

SUBROUTINE subprogram
User Entry Names: CROSS
COMMON Block Names and Lengths: /SLATE/ 40

Usage:

CALL CROSS(A,B,C)

A,B (REAL) One-dimensional arrays of length 3, containing the components (a1, az, as),
(b1, bz, b3), respectively.

C (REAL) On exit, C contains the components (¢1, ¢z, ¢3) of a X b, i.e.
c1 = azbs — azby
o = a3b; — ayb3

C3 = a1b2 — agbl.

C may overlap either A or B.
[]

201 F117-1

ROT CERN Program Library F118

Author(s) : CERN TC Division Library: KERNLIB
Submitter: C. Letertre Submitted: 01.09.1969
Language : Fortran Revised:

Rotating a 3-Vector

Subroutine subprogram ROT rotates a 3-vector (a1, az, as) by agiven angle # around the z—axis.
Structure:

SUBROUTINE subprogram
User Entry Names: ROT
COMMON Block Names and Lengths. /SLATE/ 40

Usage:

CALL ROT(A,TH,B)

A (REAL) One-dimensional array of length 3, containing (a1, as, as).
TH (REAL) Angle# giveninradians.

B (REAL) One-dimensional array of length 3. On exit, B contains the components (b1, b3, b3) of the
rotated vector, i.e.

by = ay;cosf — aysin b
by = a;sin @ + agcosd

b3 = as.

B may overlap A.

202 F118-1

VECMAN CERN Program Library F121

Author(s) : M. Aderholz, PM. Nicholson Library: KERNLIB

Submitter: M. Aderholz Submitted: 01.06.1973

Language : Fortran or Assembler Revised: 16.09.1991
Vector Algebra

Performs various vector manipulations, such as addition of two vectors, multiplication of a vector by a
scalar, scalar product, pre- and post-multiplication of avector by a matrix.

Structure:

SUBROUTINE, and FUNCTION subprograms

User Entry Names: VADD, VSUB, VMUL, VBIAS, VSCALE, VLINCO, VUNIT, VMATR,
VMATL, VCOPYN, VFIX, VFLOAT, VFILL, VZERO, VBLANK, VEXCUN,
VDIST, VDIST2, VDOT, VDOTN, VDOTN2, VMOD, VASUM, VSUM,
VMAXA, VMAX, VMINA, VMIN, LVMAXA, LVMAX, LVMINA, LVMIN,
LVSMI, LVSMX, LVSDMI, LVSDMX, LVSIMI, LVSIMX

Notes:

VLINE istheorigina and obsolete name for the linear combination routine VLINCO; it was changed because
it clashed with an entry point in some system library.

Usage:

The argumentsin the calling sequences below are defined as follows:

A,B,X (REAL) One-dimensiona arrays of length N.

DA (DOUBLE PRECISION) One-dimensiona array of length N.
IA,IX (INTEGER) One-dimensional arrays of length N.

C,V (REAL) One-dimensiona arrays of length M.

EX (REAL) One-dimensional array of length 3.

G (REAL) Two-dimensional array of dimension (M,N).
ALPHA (REAL) Variable.

F1,F2 (REAL) Variables.

Y (REAL) Variable.

N,M (INTEGER) Variables.

Matrix ' is assumed to be stored row-wisg contrary to the Fortran convention, i.e. element G;; isfound in
word G(J,I) of the memory alocated with DIMENSION G(M,N).

Any summation) | istaken over theindex I from 1 to N or over theindex J from 1 to M.

203 F121-1

Subroutines

CALL VADD(A,B,X,N) X(I) = A(I) + B(I) (I=1,2,...,N)
CALL VSUB(A,B,X,N) X(I) = A(I) — B(T) (I=1,2,...,N)
CALL VMUL(A,B,X,N) X(I) = A(T) * B(I) (I=1,2,...,N)
CALL VBIAS(A,ALPHA,X,N) X(I) = A(I) + ALPHA (I=1,2,...,N)
CALL VSCALE(A,ALPHA,X,N) X(I) = A(T) + ALPHA (I=1,2,...,N)
CALL VLINCO(A,F1,B,F2,X,N) X(I)=A(I)*F1+4B(I)*F2 (I=1,2,...,N)
CALL VUNIT(A,X,N) = aflal

X(I) = A(T)/VMOD(A, N) (I=1,2,...,N)
CALL VMATR(A,G,V,N,M) v=aG

V(I) =3 A(T) % G(J,T) (J=1,2,...,M)
CALL VMATL(G,C,X,N,M) v =Ge

X(I) = Y6G(J, 1) % C(J) (I=1,2,...,N)
CALL VCOPYN(A,X,N) X(I) = —A(T) (I=1,2,...,N)
CALL VFIX(A,IX,N) IX(I) = A(T) (I=1,2,...,N)
CALL VFLOAT(IA,X,N) X(I) = 1A(1) (I=1,2,...,N)
CALL VFILL(X,N,ALPHA) X(I) = ALPHA (I=1,2,...,N)
CALL VZERO(IX,N) IXI)=0 (I=1,2,...,N)
CALL VBLANK(IX,N) IX(I) = blank (I=1,2,...,N)
CALL VEXCUM(A,EX,N) EX(1) = min(EX(1),A(1),...,A(N))

EX(2) = max(EX(2),A(1),. .., A(N))

EX(3) = EX(3) + >_ A(I)

REAL functions

VDIST2(4,B,N) (a—b)? = (A(I) — B(I))?
VDIST(4,B,N) la —b] = v/(a—b)?
VDOT(4,B,N) ab =" A(T) * B(I)
VDOTN2(A,B,N) (ab)?/(a?b?)
VDOTN (A ,B,N) ab/|al|b|
VMOD (A,N) la| = Va2
VASUM(A,N) > |A(T)]
VSUM (4,N) ST A(T)
VMAXA (A,N) max (|A(1)], [A(2)], ..., |A(N)])
VMAX (A,N) max (A(1),A(2),...,A(N))
VMINA(A,N) min (|A(1)], |A(2)],- .., [AW)])
VMIN (A,N) min (A(1),4(2),...,A(N))

F121-2 204

INTEGER functions

LVMAXA(A,N)
LVMAX (A,1)
LVMINA(A,N)
LVMIN (A,N)

LVSMI(A,N,INC)
LVSMX(A,N,INC)
LVSDMI(DA,N,INC)
LVSDMX(DA,N,INC)
LVSIMI(IA,N,INC)
LVSIMX(IA,N,INC)

wherek = 1,1+ INC, 1+ 2 % INC,. ..
[]

205

Location of max |A(I)]
Location of max A(I)
Location of min [A(I)
Location of min A(I)

Location of min A(k)
Location of max A(k)
Location of min DA(k)
Location of max DA(k)
Location of min IA(k)
Location of max IA(k)

14 (N — 1) % INC

F121-3

SCATTER CERN Program Library F122

Author(s) : F. Antonelli Library: MATHLIB
Submitter: F. Carminati Submitted: 29.05.1989
Language : Fortran (IBM: Assembler) Revised:

Search Operations on Sparse Vectors

Performs logical search and data movement operations on sparse vectors. On Cray systems these routines
are part of the default libraries (scilib). An optimized Assembler version is provided for IBM 3090 with
Vector Facilities. Fortran code is used on the other systems.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: IILZ, ILSUM, SCATTER, GATHER, WHENEQ, WHENNE, WHENFLT,
WHENFGT, WHENFLE, WHENFGE, WHENILT, WHENIGT, WHENILE, WHENIGE

Usage:

The argumentsin the calling sequences below are defined as follows:

A,B (REAL) One-dimensional arrays.
IA,INDX (INTEGER) One-dimensional arrays.
LA (LOGICAL) One-dimensional array.
NW,INC (INTEGER) Variables or expressions.
TARG (REAL) Variable or expression.

ITARG,NFOUND (INTEGER) Variables.
In any arithmetic expression,
IILZ(NW,A,INC)

represents the INTEGER number of leading zero elementsin
LA(1),LA(INC+ 1), LA(2* INC+1),... ,LA((NW — 1) * INC + 1);

ILSUM(NW,LA,INC)

representsthe INTEGER number of . TRUE. elementsin
LA(1),LA(INC+ 1), LA(2% INC + 1),...,LA((NW — 1) INC + 1).

CALL SCATTER(NW,A,INDX,B)
CALL GATHER(NW,A,B,INDX)

set A(INDX(I)) =B(I),(I=1,2,... ,NW)and A(I) = B(INDX(I)), (I =1,2,...,NW), respectively.
CALL WHENFxx(NW,A,INC,TARG,INDX,NFOUND)
searches A(1), A(INC+ 1),A(2* INC+ 1),... ,A((NW — 1) x INC + 1) for elements which satisfy the re-

lation A(.) .xx.TARG where xx = LT, LE, GT, GE. On exit, INDX(1), ..., INDX(NFOUND) will contain the
indices of the NFOUND elements which satisfy the relation specified.

206 F122 -1

CALL WHENIxx(NW,IA,INC,ITARG,INDX,NFOUND)

performes the same task as WHENFxx but for INTEGER draw and target.

CALL WHENEQ(NW,a,INC,targ,INDX,NFOUND)
CALL WHENNE(NW,a,INC,targ,INDX,NFOUND)

performs the same task as WHENFxx or WHENIxx, but for xx = EQ, NE, and REAL draw a and REAL target
targ, or INTEGER draw a and INTEGER target targ, respectively.

F122 -2 207

BVSL CERN Program Library F123

Author(s) : F. Antonelli Library: MATHLIB
Submitter: F. Carminati Submitted: 27.11.1989
Language : Fortran, IBM Assembler Revised: 16.08.1994

Bit Vector Manipulation Package

This package contains high performance procedures to operate with sparse arrays using Bit Vectors instead
of ordinary Index Vectors to address the elements of an arrays. The routines are, at present, available only
on IBM 3090 VF machines.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names:

YLOSB, IYLOSB, YLOXB, IYLOXB,
GTHRB, SCTTB, ANDB, XORB, NOTB, NANDB, NORB, ORB, BINVEC, ZEROB,
ONEB, CNTOB, CNTZB, RANGB, INTGB, RJCTB, SXPYB, VXPYB, SXYB, XPWZB,
DOTB, SCALB, VSETB, COPYB

Usage:

The argumentsin the calling sequences below are defined as follows:

W (INTEGER) Number of elementsto process. Theindex i below runsfrom 1 to Nw.
Y,X,V,W (REAL) Arrays of length NW at |east.

IX,IY (INTEGER) Arrays of length NW at |east.

S,T (REAL) Variables or expressions.

IS,IT (INTEGER) Variables or expressions.

BV,BV1,BV2 Arraysof length (NW — 1)/32 4 1 at least, used to contain the bit vectors.

IFOUND (INTEGER) Number of elements which satisfy the condition, or set-bit count, for BV.

The expression X (BV) indicates al these elements of the vector X for which the corresponding bit is set
in the bit array BV. BV(i) indicates the i-th bit of the array BV, counted across words boundaries. The
expression BV (i) = 1 meansthat the i-th bit of the array BV is set.

Vector to scalar comparison:

Two SUBROUTINE subprograms are provided for REAL and INTEGER comparison. The subprogram YLOSB
isfor vectors with REAL elements and the subprogram IYLOSB for vectors with INTEGER elements.

CALL YLOSB(NW,Y,S,BV,IFQUND,’EQ’) BV(i)=1 if Y(i) =8
CALL YLOSB(NW,Y,S,BV,IFQUND,’NE’) BV(i) =1 if Y(i) #8S
CALL YLOSB(NW,Y,S,BV,IFQUND,’GT’) BV(i) =1 if Y(i) > S
CALL YLOSB(NW,Y,S,BV,IFQUND,’LT’) BV(i) =1 if Y(i) < S
CALL YLOSB(NW,Y,S,BV,IFQUND,’GE’) BV(i)=1 if Y(i) > S
CALL YLOSB(NW,Y,S,BV,IFQUND,’LE’) BV(i) =1 if Y(i) < s
CALL IYLOSB(NW,Y,S,BV,IFOUND, EQ’) BV(i) =1 if IY(i) = IS
CALL IYLOSB(NW,Y,S,BV,IFOUND, NE’) BV(i) =1 if IY(i) # IS
CALL IYLOSB(NW,IY,IS,BV,IFQUND,’GT’) BV(i)=1 if I¥(i) > IS
CALL IYLOSB(NW,IY,IS,BV,IFQUND,’LT’) BV(i)=1 if I¥(i) < IS
CALL IYLOSB(NW,IY,IS,BV,IFOUND,’GE’) BV(i)=1 if I¥(i) > IS
CALL IYLOSB(NW,IY,IS,BV,IFQUND,’LE’) BV(i)=1 if I¥(i) < IS

T
[y
N
w
|
=

208

Vector to vector comparison:

Two SUBROUTINE subprograms are provided for REAL and INTEGER comparison. The subprogram YLOXB

isfor vectors with REAL elements and the subprogram IYLOXB for vectors with INTEGER elements.

CALL YLOXB(NW,Y,X,BV,IFOUND,’EQ’)
CALL YLOXB(NW,Y,X,BV,IFOUND,’NE’)
CALL YLOXB(NW,Y,X,BV,IFOUND,’GT’)
CALL YLOXB(NW,Y,X,BV,IFOUND,’LT’)
CALL YLOXB(NW,Y,X,BV,IFOUND,’GE’)
CALL YLOXB(NW,Y,X,BV,IFOUND,’LE’)
CALL IYLOXB(NW,Y,X,BV,IFOUND,’EQ’)
CALL IYLOXB(NW,Y,X,BV,IFOUND,’NE’)
CALL IYLOXB(NW,IY,IX,BV,IFOUND,’GT’)
CALL IYLOXB(NW,IY,IX,BV,IFOUND,’LT’)
CALL IYLOXB(NW,IY,IX,BV,IFOUND,’GE’)
CALL IYLOXB(NW,IY,IX,BV,IFOUND,’LE’)

Scatter/gather operations:

CALL GTHRB(NW,X,BV,Y)
CALL SCTTB(NW,Y,BV,X)

w
<

W W W W w W
< S S <<

w
<

W W w
=< < < <
P T N T T e N e T e e

w
<

Y=X(BV)
Y(BV)=X

He e e He He He He e e e
e e e e S S S S e S S S

[R

nn 1l
L e e e T = T = S SN S N S =
]

IANIV AV

ba bd b4 DE b4 b

Elements are gathered or scattered from vector X into vector Y according to the bit mask contained in BV.
Only words for which the corresponding bit is set are moved.

Logical operations:

CALL ANDB(NW,BV1,BV2,BV,IFOUND)
CALL ORB(NW,BV1,BV2,BV,IFQUND)

CALL XORB(NW,BV1,BV2,BV,IFOUND)

CALL NANDB(NW,BV1,BV2,BV,IFOUND)

CALL NORB(NW,BV1,BV2,BV,IFOUND)

CALL NOTB(NW,BV1,BV,IFOUND)

Miscellaneous operations:

CALL BINVEC(NW,BV,IVEC)

isequivalent to

DO J = 1,NW

IF bit J of BV is set THEN

IVEC(IFOUND)=J

ENDIF
ENDDO

F123-2

if BV1(i
if BV1(i

)=
)
(

1 ABV2(i
1V BV2(i

if BV1(i) =0V BV2(i

if

(BV1(i) = 1 ABV2

(BV1(i) = 0 A BV2
if BV(i) =1 — BV1(i)

)
)
(

)
(1
(1

2

(BV1i(i) =1V BV2 1)
—(BV1(i) = 1 ABV

(i

)=
)=

)=
0

1>

209

CALL ZEROB(NW,BV) BV(i)=0

CALL ONEB (NW,BV) BV(i) =1
CALL CNTOB(NW,BV,IFOUND) IFOUND = Number of set bits
CALL CNTZB(NW,BV,IFOUND) IFOUND = Number of clear bits

CALL RANGB(NW,Y,S,T,BV,IFOUND) BV(i)=1 if S<Y(i)<T
CALL INTGB(NW,Y,V,W,BV,IFOUND) BV(i) =1 if V(i) < Y(i) < W(i)

CALL RJCTB(RAN,X,FREJ,Y,BV,NW,NWOUT,ISWTCH)

RAN Array of random numbers uniformly distributed between zero and the maximum of the rejection
function.
X Array of points where the rejection function is computed.

FREJ Array of values of the rejection function.

Y Array of accepted values of X.
BV Bit vectorsof length (NW — 1) /32 + 1 at least.
NW Initial number of valuesto extract.

NWOUT Current number of values |eft to extract.
ISWTCH Switchto besetto 1 for thefirst call.

Linear algebra operations:

Let H bean NW x NC matrix. The FUNCTION subrogram DOTB isof type REAL.

CALL SXPYB(NW,BV,Y,X,S) Y(BV) = Y(BV) + S * X(BV)

CALL VXPYB(NW,BV,X,Y,V) Y(BV) = Y(BV) 4 V(BV) * X(BV)

CALL SXYB(NW,BV,X,Y,S) Y(BV) = Y(BV) V(BV) * S

CALL XYPWZB(NW,BV,S,X,Y,T,W,Z) Y(BV) =S X(BV) % Y(BV) 4 T * W(BV) * Z(BV)
RES = DOTB(NW,BV,X,Y) DOTB = 3" X(BV) Y(BV)

CALL SCALB(NW,BV,Y,S) Y(BV) = Y(BV) * S

CALL VSETB(NW,BV,Y,S) Y(BV) =S

CALL COPYB(NW,BV,Y,X) Y(BV) = X(BV)

210 F123-3

MXDIPR CERN Program Library F150

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.09.1978
Language : Fortran Revised:

Direct or Tensor Matrix Product

Subroutine subprogram MXDIPR computesthe direct (sometimes called tensor, or Kronecker) product C = A x B
of twomatricesAandB.Let A = (a;), (1 =1,2,..., [;k=1,2,...K);B=(bj1), (1 =1,2,...,J;1 =
1,2,... ,L); thenC = (Cij;kl) with Cijikl = aikbﬂ. Chas! x Jrowsand K x L columns. If,in particular,

A and B are square matrices, C is also square.

Structure:

SUBROUTINE subprogram
User Entry Names: MXDIPR

Usage:

CALL MXDIPR(A,B,C,IAD,JBD,IJD,IA,KA,JB,LB)

A,B (REAL) Matrices A and B.

C (REAL) On exit, C containsthe direct product A x B.
IAD (INTEGER) First dimension of A.

JBD (INTEGER) First dimension of B.

I1JD (INTEGER) First dimension of C.

IA,KA (INTEGER) Number of rows, columns of A.

JB,LB (INTEGER) Number of rows, columns of B.

Restrictions:

A, B, C must not overlap.

Error handling:

If TA or XA or JB or LB are equal to zero, the subprogram acts as do-nothing.

Examples:

DIMENSION A(2,2),B(2,2),C(4,4)

CALL MXDIPR(A,B,C,2,2,4,2,2,2,2)

assuming
A:(an 012) B:(bn 512)7
a1 G322 ba1 b2
would set
ai1bir arbiz ai2bin ar2bi Ci1;11 C11;12 C11;21 C11322
C— aiibar aribaz aiabar aizabas _ C12;11 €C12;12 €12;21 €12;22
aznbir azibiz azbin azebio C21;11 €C21;12 €21;21 €21;22
axbar agibay @by agebay C22;11 C22;12 C22:21 €22;22

211 F150-1

References:

1. E.P. Wigner, Group Theory, (Academic Press, New York 1959) 17

2. W.I. Smirnow, Lehrgang der hoheren Mathematik, Vol. 111.1, (Deutscher Verlag der Wissenschaften,
Berlin 1954) 221

F150-2 212

RBEQN CERN Program Library F406

Author(s) : G.A. Erskine Library: KERNLIB
Submitter: Submitted: 01.09.1983
Language : Fortran Revised:27.11.1984

Banded Linear Equations

Subroutine subprograms RBEQN and DBEQN solve asystem of N simultaneouslinear equationswith K right-
hand sides, the coefficient matrix being a band matrix with bandwidth 24 + 1:

N
Zai]w]‘k:bik, (iZl,Q,...,N,kZl,Q,...,I(); (aij:0f0r|i—j|>M).
J=1

Only those coefficients a;; for which | — j| < M need be supplied on entry (see Usags.
Structure:

SUBROUTINE subprograms

User Entry Names: RBEQN, DBEQN

Files Referenced: Printer

External References: KERMTR (NOOL), ABEND (Z035)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tBEQN(N,M,ABAND,IDIM,IFAIL,K,B)

N (INTEGER) Number of equations.

M (INTEGER) Band parameter M.

ABAND (typeaccording to t) Two-dimensional array whosefirst dimension has the value IDIM.

IDIM (INTEGER) First dimension of array ABAND (and of array B if K > 1).

IFAIL (INTEGER)Onexit, IFAIL will besetto-1 if the coefficient matrix issingular, and to 0 otherwise.
K (INTEGER) Number of right-hand sidesin array B.

B (type according to t) In general, a two-dimensional array whose first dimension has the value
IDIM. B may be one-dimensional if K = 1.

On entry, ABAND must contain the packed form of the coefficient matrix as described below, and array B must
contain the matrix of right-hand sides b;;.. Then, provided the coefficient matrix isnon-singular, IFAIL will
be set to 0 and the solution z ;5. will replace b;;. in B. The contents of ABAND are destroyed. If the coefficient
matrix issingular, IFAIL will be set to -1. In this case the contents of ABAND and B are unpredictable.

The storage convention for ABAND isthat it must contain, on entry, those coefficientsa;; for which |i—j| < M,

stored " left-justified” as an array of N rowsand at most 2M + 1 columns. For example, if N =4 and M = 1,
the coefficient matrix

ayr app 0 0 ayr arp X

az; azy azz 0 : az; a2 423
isstored as

0 (37 (33 34 a3y (33 (34

0 0 (43 G44 a43 Q44 X

where X denotes €l ements whose value need not to be set.

213 F406 -1

If ALPHA(T, J) is afunction subprogram or statement function which computes «;;, the following Fortran
statementswill set ABAND correctly:

po 21 =1,N
L=1
DO 1 J = MAX(I-M,1),MIN(I+M,N)
ABAND(I,L) = ALPHA(I,J)
L =1L+1
1 CONTINUE
2 CONTINUE

Method:
Gaussian elimination with row interchanges. The storage organization is as described in the reference.

Error handling:

If the integer arguments do not satisfy the conditions1 < M+ 1 < N < IDIM, K < 0, amessage is printed
and program execution is terminated by calling ABEND (Z035).

References:

1. JH. Wilkinson and C. Reinsch (eds.), Handbook for automatic computation, Vol.2: Linear algebra
(Springer-Verlag, New York 1971) 54.

F406 — 2 214

RLHOIN CERN Program Library F500

Author(s) : K.S. Kalbig, F. Schwarz Library: MATHLIB
Submitter: Submitted: 01.07.1979
Language : Fortran Revised:01.12.1994

Linear Homogeneous Inequalities

Subroutine subprograms RLHOIN and DLHOIN find thebasisv;, (j = 1,2,...,.J), of the convex polyhedral
cone defining the solution of a system of homogeneous linear inequalities Ax > 0. A = a,,, iSagiven
M x N matrix, M > N,andrank(A) = N. x = (21, z9,...,2,) iSacolumn vector. Any solution x of
Ax > 0 can be expressed as

J
X = E AV
i=1

whereal A; > 0. The number .J of vectors v; depends on the matrix A in an unknown way, except when
M = N,whereJ = N.

On CDC and Cray computers, the double-precision version DLHOIN is not available.
Structure:

SUBROUTINE subprogram

User Entry Names: RLHOIN, DLHOIN

Obsolete User Entry Names: LIHOIN = RLHOIN

Files Referenced: Unit 6

External References: RVCPY (FO02), RVMPY (FO02), RVSCL (F002),

DVCPY (FO02), DVMPY (FO02), DVSCL (F002),
RMCPY (FOO3), RMSET (FO03), DMCPY (FO03), DMSET (F003),
RINV (FO10), DINV (FO10), MTLMTR (NOO2), ABEND (Z035)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tLHOIN(A,MA,M,N,MAXV,V,6NV,JVEC,EPS,IOUT,W,IW)

A (type according to t) Two-dimensional array, dimensioned (MA, > N), whose rows contain the
coefficients of the inequalities, arranged in such away that the upper left ¥ x N corner has anon-
vanishing determinant. Usually it is advisable to normalise the rows of A to unity before calling
this subprogram.

MA (INTEGER) First dimension parameter of A.
M (INTEGER) Number M of inegualities.
N (INTEGER) Number N of variables.

MAXV (INTEGER) Maximum number of basis vectors which may occur at any intermediate step, to be
chosen sufficiently large and in any case > N.

v (type according to t) Two-dimensional array, dimensioned (NV, > MAXV), whose columns con-
tain, on return, the basis vectors v ; of the solution cone.

Nv (INTEGER) First dimension parameter of V(> N).

JVEC (INTEGER) Number .J of basisvectors of thefina cone.

EPS (typeaccordingto t) A small parameter which discriminates small quantitiesagainst zero, chosen

to take into account the accuracy of the machine used.

215 F500-1

I0UT (INTEGER)
= 0 : Gives no intermediate printout,
= 1: Gives, for each iteration, the basis vectors of the respective cone, the matrix of scalar
productsand the index of the inequality taken into account in the next step.

W (type according to t) Two-dimensional array, dimensioned (MAXV, > M + 1), used as working
space.
Iw (INTEGER) Two-dimensiona array, dimensioned (MA, 5) whose columns serve as book-keepers

for certain properties of the system during the iteration procedure.

Method:

The Motzkin-Burger procedure is used to obtain the solutioniteratively. Ref. 1 should be consulted before
using this subprogram.

Restrictions:

The routine may fail if the matrix A is”ill-conditioned” in a certain sense.
Notes:

A given system of linear homogenousinequalities may have no solution.
Error handling:

Error F500.1: MAXV too small.

Error F500.2: Upper left N x N corner of A issingular.

Error F500. 3: Inequality k isinconsistent.

In all cases, amessageiswritten onUnit 6, unlesssubroutine MTLSET (N002) has been called.

References:

1. K.S. Kolbig and F. Schwarz, A program for solving systems of homogeneous linear inequalities.
Computer Phys. Comm. 17 (1979) 375-382.

F500 -2 216

PROB CERN Program Library

Author(s) : G. Folger, K.S. Kolbig
Submitter:
Language : Fortran

Upper Tail Probability of Chi-Squared Distribution

G100

Library: MATHLIB

Submitted: 21.08.1971

Revised: 15.01.1994

Function subprogram PROB computes the probability that a random variable having a y 2-distribution with
N > 1 degrees of freedom assumes avaluewhich islarger than agiven value X > 0, i.e.

_ 1 RS R NS

Structure:

FUNCTION subprogram
User Entry Names: PROB
External References: ERFC (C300), DERFC (C300), MTLMTR (N002), ABEND (Z035)

Usage:
In any arithmetic expression,
PROB(X,N) hasthevalue Q(X,N).
PROB and X are of typeREAL and N is of type INTEGER.
Method:
See Ref. 1, formulae Nr. 26.4.4, 26.4.5 and, for N > 300, No. 26.4.14.

Accuracy:

For N < 300, PROB has an accuracy of about six digits. For N > 300, the accuracy decreasesfor X > N with

increasing X.
Error handling:

Error G100.1: N < 1.
Error G100.2: X < 0.

In both cases, the function valueis set equal to zero, and a message iswrittenonUnit 6, unless subroutine

MTLSET (N002) has been called.

References:

1. M. Abramowitz and |.A. Stegun (eds.), Handbook of mathematical functionswith formulas, graphs,

and mathematcal tables, 9th printing with corrections, (Dover, New York 1972).

217 G100-1

CHISIN CERN Program Library G101

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.10.1976
Language : Fortran Revised: 15.03.1993

Inverse of Chi-Square Distribution

Function subprogram CHISIN calculates x?(P, N) for a given probability P(y?) and a given degree of
freedom NV, where

P(?IN) 1 /X2(P7N) ~5tEN =L gy
X = — e 2 2
V2NT(IN) Jo

and N > 1and0 < P(\?) < 1.
Structure:

FUNCTION subprogram

User Entry Name: CHISIN

Files Referenced: Unit 6

External References: GAUSIN (G105), MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
CHISIN(P,N) hasthevalue x?*(P,N),

where CHISIN and P are of type REAL, and N is of type INTEGER.

Method:

The method is described in Ref. 1. Notethat there the complementary integral istaken.
Accuracy:

Approximately three to six digitsare correct. The case N = 3 isthe least accurate.
Error handling:

Error G101.1: P < O o0rP > 1.
Error G101.2: N < 1.

In both cases, the function valueis set equal to zero, and a message iswrittenonUnit 6, unless subroutine
MTLSET (N002) has been called.

Source:
This subprogram is based on an Algol60 procedure published in Ref. 1.

References:

1. R.B. Goldstein, Algorithm 451, Chi-Square Quantiles, Collected Algorithmsfrom CACM (1972)

218 G101-1

PROBKL CERN Program Library G102

Author(s) : F. James, K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.10.1976
Language : Fortran Revised:15.03.1993

Kolmogorov Distribution

Function subprogram PROBKL cal cul ates the Kolmogorov distribution function

P(X) = =2) (=1) exp(=2j°X?)
J=1
for real arguments X.
Structure:

FUNCTION subprogram
User Entry Name: PROBKL

Usage:
In any arithmetic expression,
PROBKL(X) hasthevalue P(X),

where PROBKL and X are of type REAL.
Method:

Direct evaluation or using functional relations.
Accuracy:

Approximately seven digits are correct. Results smaller than 10~*° (correspondingto X > 6.8116) are set
to zero. Note that the above formula has a statistical meaning only for "large” N (> 10).

Notes:

1. For an experimental distribution with NV events and a maximum deviation AN from a hypothetical
distribution, P(X) withX = AN+/N givesthe confidence level for the null hypothesis.

2. To compare two experimental distributions with M and N events, respectively, one may use X =

VMN/(M+ N)AN.

219 G102-1

TKOLMO CERN Program Library G103

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 15.02.1991
Language : Fortran Revised:

Kolmogorov Test

Subroutine subprogram TKOLMO tests whether two one-dimensional sets of pointsare compatible with com-
ing from the same parent distribution, using the Kolmogorov test. That is, it is used to compare two experi-
mental distributions of unbinned data.

Structure:

SUBROUTINE subprogram
User Entry Name: TKOLMO
External routine referenced: PROBKL (G102)

Usage:

CALL TKOLMO(A,NA,B,NB,PROB)

A,B (REAL) One-dimensional arrays of length NA, NB, respectively. The elements of A and B must be
given in ascending order. (This can be accomplished, for example, by using FLPSOR (M 103)).

NA,NB (INTEGER) The number of pointsin A and B, respectively.
PROB (REAL) A calculated confidence level which gives a statistical test for compatibility of A and B.

Values of PROB close to zero are taken as indicating a small probability of compatibility. For two point
sets drawn randomly from the same parent distribution, the value of PROB should be uniformly distributed
between zero and one.

Method:

The Kolmogorov test isused. The test statistic is the maximum deviation between the two integrated distri-
bution functions, multiplied by the normalizing factor /M N /(M + N), where M and N are the numbers
of pointsin the two samples.

Accuracy:
Approximately seven digits are correct.
Notes:

Probabilities smaller than 10~%° are set to zero. However, the method has a statistical meaning only for
"large” M and N (> 10).

References:

1. W.T. Eadie, D. Drijard, FE. James, M. Roos and B. Sadoulet, Statistical Methods in Experimental
Physics, (North-Holland, Amsterdam 1971) 269-271.

220 G103-1

STUDIS CERN Program Library G104

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.02.1994
Language : Fortran Revised:

Student’s t-Distribution and Its Inverse

Function subprogram STUDIS calculates the value of the Student ¢-distribution function
1
r 1 1 t 2 —5(n+1)
F(t,n) = L—Fl)) / (1 i x_) da
VvrnT(gn) J_o n

for a given degrees of freedom n > 1.
Function subprogram STUDIN calculatesthe inverse t(F, n).

Structure:

FUNCTION subprogram

User Entry Names: STUDIS, STUDIN

Files Referenced: Printer

External References: GAUSIN (G105), MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
STUDIS(T,N) or STUDIN(F,N) hasthevalue F(T,N) or ¢(F,N),

respectively. STUDIS, STUDIN, F and T are of type REAL, N is of type INTEGER.
Error handling:

Error G104.1: N < 0.
Error G104.2: F < O Or F > 1.
In both cases, amessage iswritten on Unit 6, unless subroutine MTLSET (N002) has been called.

Accuracy:

About six decimal places are usually correct. Accuracy islost for STUDIS when T << 0O and N > 4.
Notes:

The subprograms are based on algorithms given in the references.

References:

1. B.E. Cooper, Algorithm AS3 - Applied Statistics 17 (1968) 189.
2. G.W. Hill, Algorithm 396, Student’s¢-quantiles, Collected algorithmsfrom CACM (1970).

221 G104-1

GAUSIN CERN Program Library

Author(s) : K.S. Kolbig
Submitter:
Language : Fortran

Inverse of Normal Frequency Function

G105

Library: MATHLIB

Submitted: 01.12.1988

Revised: 15.03.1993

Function subprograms GAUSIN and DGAUSN calculate the inverse X (P) of the normal frequency function

(Gaussian distribution)
P(X LMY ey
= — e 2 dt
==/
for real arguments P, where0 < P < 1.
Structure:

FUNCTION subprogram

User Entry Name: GAUSIN, DGAUSN

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
GAUSIN(P) hasthevalue X (P),
where GAUSIN and P are of type REAL.
Method:
The method is described in Ref. 1.

Accuracy:

Accuracy:

GAUSIN (except on CDC and Cray computers) has an accuracy of about six digits. For most values of the
argument P, DGAUSN (and GAUSIN on CDC and Cray computers) has an accuracy of approximately one

significant digit less than the machine precision.
Error handling:

Error G105.1: P <0 o0rP > 1.

The function value is set equal to zero, and a message is written on Unit 6, unless subroutine MTLSET

(N002) has been called.
Source:
This subprogram is based on an Algol60 procedure published in Ref. 1.

References:

1. G.W. Hill and A.W. Davis, Algorithm 442, Norma Deviate, Collected Algorithms from CACM

(1973)

222 Gl105-1

GAMDIS CERN Program Library G106

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 01.05.1990
Language : Fortran Revised: 15.03.1993

Gamma Distribution
Function subprogram GAMDIS cal culates the gamma distribution function (incomplete gamma function)

1 xT
P(z,a) = F(a)/o et dt

for real argumentsz > 0 and e > 0.
Structure:

FUNCTION subprogram

User Entry Name: GAMDIS

Files Referenced: Unit 6

External References: GAMMA (C302), ALGAMA (C304), MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
GAMDIS(X,A) hasthevalue P(X,4),
where GAMDIS, X and A are of typeREAL.
Method:
The method is described in Ref. 1.
Accuracy:
Approximately six digitsare correct.
Error handling:

Error G106.1: X < 0 or A < 0.

Error G106 . 2: Difficulties of convergence (unlikely).

The function value is set equal to zero, and a message is written on Unit 6, unless subroutine MTLSET
(N002) has been called.

Notes:
1. For greater accuracy, or for the case a < 0, use GAPNC (C334). Note, however, that in this case the
arguments X and A must be interchanged.

2. Notethat, for integer N > 1, GAMDIS(X,N/2.) = 1 — PROB(2 x X, N), where PROB (G100) is the upper
tail probability of the chi-sguared distribution function. PROB (G100) isfaster than GAMDIS (G106) in
this case.

Source:
This subprogram is based on a Fortran program for the incomplete gamma functions published in Ref. 2.

References:

1. W. Gautschi, A computational procedure for incomplete gamma functions, ACM Trans. Math. Soft-
ware 5 (1979) 466-481.

2. W. Gautschi,Algorithm 542, Incompl ete gamma functions, Collected Algorithmsfrom CACM (1979).

223 G106 -1

LANDAU

Author(s) : K.S. Kolbig
Submitter:
Language : Fortran

CERN Program Library

Landau Distribution

G110

Library: MATHLIB

Submitted: 30.08.1985

Revised: 15.03.1993

The LANDAU function subprogram package contains six independent subprograms for the calculation of the

following functionsrelated to the Landau distribution:
The density
the distribution
the derivative
the first moment

the second moment ®,(z)

theinverse of ¢(z)

The function ¥ () can be used to generate Landau random numbers (see Usagg.

Structure:

FUNCTION subprograms

q)l($)

W)

1 c+i00

— exp(As + sln s)ds,

27

A
P(A)dA,

c—100

User Entry Names: DENLAN, DISLAN, DIFLAN, XM1LAN, XM2LAN, RANLAN

Obsolete User Entry Names: DSTLAN = DISLAN

Usage:

In any arithmetic expression,

where DENLAN, DISLAN, DIFLAN, XM1LAN, XM2LAN, RANLAN and X are of type REAL.

DENLAN(X)
DISLAN(X)
DIFLAN(X)
XM1LAN(X)
XM2LAN(X)
RANLAN(X)

has the value #(X),
has the value ¢

has the value ¢'(X),
has the value ¢4 (X),
has the value Oy (X)
has the value U(X),

To generate a set of Landau random numbers, RANLAN should be referenced repeatedly, using as argument a
random number from a uniform distribution over theinterval (0,1).

Method:

Approximation by rational functions. For reason of speed, RANLAN proceeds mainly by table look-up and

quadratic interpol ation.

Accuracy:

At least six significant digits (five for RANLAN) are correct.

224

G110-1

Restrictions:

1. Underflow may occur for DENLAN, DISLAN and DIFLAN if X isnegative and (moderately) large.

2. No test is made whether X for RANLAN lies outside the interval (0,1), and hence no error message is
printed.

Notes:
This program packageis a version of the CPC Program Librarypackage LANDAU (Ref. 1).

References:

1. K.S. Kolbig and B. Schorr, A program package for the Landau distribution, Computer Phys. Comm.
31(1984) 97-111.

G110-2 225

VAVLOV CERN Program Library G115

Author(s) : A. Rotondi, P Montagna, K.S. Kolbig Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 10.12.1993
Language : Fortran Revised:

Approximate Vavilov Distribution and its Inverse

The VAVLOV package contains subprograms for fast approximate calculation of functions related to the
Vavilov distribution.

For x > 0 and 0 < 3? < 1, the Vavilov density function is mathematicallylefined by

vk, 7) = - / T f (s,) d,

278 J oo

where ¢ isan arbitrary real constant and
A2y 2 2 S EAYE _5
f(si, 0% = C(k, %) exp{sln/@—l— (s + rG7) {ln (H) + F; (H)} K exp(H)}
Ey(z) = [y t7! (1—e™") dt istheexponentia integral, C'(x, %) = exp{x(1+3%y)}, andy = 0.57721 ...
is Euler’s constant.
The Vavilov distribution function is defined by

A
byOin) = [ov(nm 5 dy

anditsinverseby Wy (z; &, 3%) = (I>‘_/1($; K, 3%).

The function ¥y (z; , %) can be used to generate Vavilov random numbers (see Usags.

Structure:

SUBROUTINE and FUNCTION subprograms

User Entry Names: VAVSET, VAVDEN, VAVDIS, VAVRND, VAVRAN
External References: LOCATR (E106), DENLAN (G110), DISLAN (G110)
COMMON Block Names and Lenghts: /G115C1/ 226

Usage:

CALL VAVSET(RKAPPA,BETA2,MODE)

setsauxiliary quantitiesused in VAVDEN, VAVDIS and VAVRND; this call has to precede a reference to any of
these entries.

RKAPPA The variable « (the straggling parameter); (0.01 < x < 12).

BETA2 The variable 3? (the square of velocity inunit ¢); (0 < 3% < 1).

MODE =1;
= 0 inthe particular case that VAVDEN only isreferenced after the call to VAVSET.

In any arithmetic expression,

VAVDEN (X) has an approximate val ue of ¢v (X; RKAPPA, BETA2),
VAVDIS(X) has an approximate value of &y (X; RKAPPA, BETA2),
VAVRND (X) has an approximate value of Uy (X; RKAPPA, BETA2),

226 Gl15-1

RKAPPA and BETA2 are defined by thelast call to VAVSET prior to areferenceto VAVDEN, VAVDIS, or VAVRND.

To generate a setof Vavilov random numbers with identical ~ and 32, VAVSET should be called once and
then VAVRND be referenced repeatedly, using as argument X a random number from a uniform distribution
over theinterval (0,1).

In any arithmetic expression,
VAVRAN (RKAPPA ,BETA2,X) has an approximate value of Wy (X; RKAPPA, BETA2).

To generate one Vavilov random number for given values of x and 3%, VAVRAN should be used, using as
argument X arandom number from a uniform distribution over theinterval (0,1).

VAVDEN, VAVDIS, VAVRND, VAVRAN and X, RKAPPA, BETA?2 are of type REAL, and MODE is of type INTEGER.
Method:

The method is discribed in Ref. 1.

Accuracy:

The accuracy depends on the parameters. Although often rather poor from a mathematical point of view, it
isusualy sufficient for the intended application in physics (see Notes.

Restrictions:
No test is made whether the parameters « and 32 are in the specified ranges.

Notes:

1. Representing the Vavilov functions by approximations which are both fast and accurate is a difficult
task. In view of the requirements in physics, speed is much more important than accuracy. Thisis
taken into account for the present routines.

2. For amore accurate, but much slower, calculation of the Vavilov density and distribution functions,
use VVILOV (G116).

3. For x < 0.01, the Vavilov distribution can be replaced by the Landau distribution (LANDAU (G110)),
taking into account that Ay = (A, — In k) /k.

4. For x > 10, the Vavilov distribution can be replaced by the Gaussian distribution with mean
p=v—1-p%—1Inkandvariance o* = (2 — 5%)/(2k).

References:

1. A. Rotondi and P. Montagna, Fast calculation of Vavilov distribution, Nucl. Instr. and Meth. B47
(1990) 215-224.

Gl15-2 227

VVILOV CERN Program Library G116

Author(s) : B. Schorr, K.S. Kolbig Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 10.12.1993
Language : Fortran Revised:

Vavilov Density and Distribution Functions

The VVILOV package contains subprogramsfor the calculation of the Vavilov density and distribution func-
tions. Though generally more accurate, these routinesare considerably slower than thosein VAVLOV (G115).

Forx > 0 and 0 < 3% < 1, the Vavilov density function is mathematicallylefined by
1 c+i00
¢V(A;H7ﬁ2) = 5 6/\Sf(8;,‘{7ﬁ2) d87

271 c—100

where ¢ isan arbitrary real constant and

f(s;k, 8% = C(k, %) exp{slnm—l—(s—l—mﬁz) {ln()—I—E1()} — K exp (—i)}

S S

KR KR KR
Ey(z) = [y t7! (1—e™") dt istheexponentia integral, C'(x, %) = exp{x(1+3%y)}, andy = 0.57721 ...
is Euler’s constant.

The Vavilov distribution function is defined by

A
byOin) = [ovinm iy

Structure:

SUBROUTINE and FUNCTION subprograms

User Entry Names: VVISET, VVIDEN, VVIDIS

Internal Entry Names: G116F1, G116F2

External References. RZERO (C205), RSININ (C336), RCOSIN (C336), REXPIN (C337)
COMMON Block Names and Lenghts: /G116C1/ 322

Usage:

CALL VVISET(RKAPPA,BETA2,MODE,XL,XU)

sets auxiliary quantities used in VVIDEN and VVIDIS; thiscall has to precede a reference to either of these
entries.

RKAPPA The variable « (the straggling parameter); (0.01 < x < 12).

BETA2 The variable 3? (the square of velocity in unit ¢); (0 < 3% < 1).
MODE = 0 if VVIDEN isreferenced after the call to VVISET;

= 1if VVIDIS isreferenced after the call to VVISET.
XL,XU On exit, XL and XU contain alower and upper limit as defined below.

In any arithmetic expression,

VVIDEN(X) hasthevalue ¢y (X;RKAPPA, BETA2),
VVIDIS(X) hasthevalue ®y (X;RKAPPA,BETA2),

228 Gl16-1

By definition

VVIDEN(X) =

if X<XL, VVIDIS(X)=0 if X <XL;
VVIDEN(X) = =1

if X>XU, VVIDIS(X) if X > XU

RKAPPA, BETA2, XL and XU are defined by the last call to VVISET (with MODE = 0) prior to a reference to
VVIDEN, or (with MODE = 1) prior to areference to VVIDIS.

VVIDEN, VVIDIS and X, RKAPPA, BETA2, XL, XU are of type REAL, and MODE is of type INTEGER.
Method:

The method, based on Fourier expansions, is described in Ref. 1.

Accuracy:

About five significant digits are usually accurate.

Error handling:

Error G116.1: K < 0.01 0or s > 10.

Error G116.2: 52 > 1.

These errors can occur when calling VVISET. In both cases, amessageiswrittenonUnit 6, unless subrou-
tine MTLSET (N0O2) has been called.

Notes:

1. Representing the Vavilov functions by approximations which are both fast and accurate is a difficult
task. Theseroutines, though rather accurate, are slow. If speed is of higher importance than accuracy,
and for calculating Vavilov random numbers, use VAVLOV (G115).

2. For k < 0.01, the Vavilov distribution can be replaced by the Landau distribution (LANDAU (G110)),
taking into account that Ay = (A, — In k) /k.

3. For x > 10, the Vavilov distribution can be replaced by the Gaussian distribution with mean
p=v—1-p%—1Inkandvariance o* = (2 — 5%)/(2k).

References:

1. B. Schorr, Programs for the Landau and the Vavilov distributions and the corresponding random
numbers, Computer Phys. Comm. 7 (1974) 215-224.

Gl16-2 229

RANF CERN Program Library G900

Author(s) : CDC Library: KERNLIB or Fortran intrinsic
Submitter: H. Lipps (not CDC or Cray) Submitted: 02.06.1980
Language : Fortran or Assembler Revised: 24.06.1985

Random Number Generator

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 215. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement:
RANMAR (V113) or RANECU (V114) or RANLUX (V115)

Function subprograms RANF and DRANF return pseudo-random values uniformly distributed in the interval
(0,2), the end points excluded. The multiplicative congruential method is used.

Subroutine subprogram RANGET makes the current seed value of RANF and DRANF available to the user, and
subroutine RANSET restores a seed value for further use by RANF and DRANF.

On CDC computers, the subprograms other than DRANF are part of Control Data's Fortran execution-time
library.

The non-CDC versions of RANF and DRANF use the same multiplier (2875 A2E7 B175), the same initial
seed value (2BC6 8CFE 166D), and the same modulus (2**48). They thus generate, within the limitations
of machine accuracy, the same random sequence as the CDC versions.

DRANF isidentical to RANF except that it returns a function value of type DOUBLE PRECISION.
Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: RANF, DRANF, RANGET, RANSET

Usage:
In any arithmetic expression,
RANF () or DRANF ()

is set to a value greater than zero and less than one. RANF is of type REAL, DRANF is of type DOUBLE
PRECISION.

CALL RANGET(SEED)
CALL RANSET(SEED)

SEED (REAL for CDC, DOUBLE PRECISION otherwise). On exit from RANGET,SEED will be set to a
value that determines the current position in the sequence of random numbers. This value may
be used later as an actual argument in acall to RANSET in order to restart the random sequence at
this point.

References:

1. Fortran Version 5 Reference Manual (Control Data Corporation, 1981).

230 G900-1

RSMPLX CERN Program Library H101

Author(s) : M. Gyr Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 15.02.1994
Language : Fortran Revised:

Linear Optimization Using the Simplex Algorithm

Subroutine subprograms RSMPLX and DSMPLX calculate the quantities = 1, x», . . . , 2, for which the linear
form, or objective function,
Z=zy— Z by,
=1

assumes a maximumval ue subject to the ny inequality constraints

m

Zaikxigck (k:1727"'7n1)

=1
and the n — ny equality constraints

Zaikwi:ck (k=nm+1,n+2,...,n).

=1
A number m; < m of thevariablesz;, (i = 1,2,...,mq) can berestricted to non-negativevalues(z; > 0).
Theremaining m — my variablesz;, (i = my + 1,...,m) arethen unrestricted (—oco < z; < o0). Inthe
case my = 0, all variables z; are unrestricted. These subprograms can also be used for the so-called
degenerate case.

On computers other than CDC or Cray, only the double-precision version DSMPLX isavailable. On CDC and
Cray computers, only the single precision version RSMPLX isavailable.

Structure:

SUBROUTINE subprograms

User Entry Names: RSMPLX, DSMPLX

Internal Entry Names: H101S1, H101S2

Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tSMPLX(A,B,C,Z0,IDA,M,M1,N,N1,LW,IDW,W,X,Z,ITYPE)

A (type according to t) Two-dimensional array of dimension (IDA, > N). Contains, on entry, the
coefficientsa; , (¢ = 1,2,...,m; k= 1,2,...,n). Destroyed during execution.

B (type according to t) One-dimensional array of dimension > M. Contains, on entry, the coefficients
b;, (1 =1,2,...,m). Destroyed during execution.

C (type according to t) One-dimensional array of dimension > N. Contains, on entry, the coefficients
ck, (k=1,2,...,n). Destroyed during execution.

Z0 (type according to t) Contains, on entry, theinitial value of the objective function.

IDA (INTEGER) Declared first dimension of A in the calling program (IDA > M).

M (INTEGER) Thetotal number m of variables z; (M > 0).

231 H101-1

M1

N1

LW
IDW

ITYPE

Method:

(INTEGER) The number m; of restricted variables z; > 0 (0 < M1 < M).

(INTEGER) Thetotal number » of constraints(N > 0).

(INTEGER) The number n; of inequality constraints (0 < N1 < N).

(INTEGER) Two-dimensional array of dimension (IDW, > 5). Used asworking space.

(INTEGER) Declared first dimension of LW in the calling program (IDW > M + 2 « N).

(type according to t) One-dimensional array of dimension > M + N. Used as working space.
(type according to t) One-dimensional array of dimension > M + N. If ITYPE = 1 or ITYPE = 2,

itsfirst m elementsX (1), ... ,X(M) contain, on exit, theor asolutionxy, . .. , z,,, respectively.
The next n elements X(M+1), ... ,X(M+N) contain the values of the so-called dack variables
Tpt1s- -« Lmyn. T ITYPE = 3 Or ITYPE = 4, theelementsX(1), ..., X(M + N) are undefined.

(type accordingtot) If ITYPE = 1 or ITYPE = 2, Z contains, on exit, the result = of the objective
function. Undefined for ITYPE = 3 and ITYPE = 4.

(INTEGER) Defines, on exit, the type of the result:
= 1 : There isexactly one finite solution.

= 2 : There ismore than one solution.

= 3 : Thereisno finite solution.

= 4 : Thereisno feasable initial solution.

The method is described in Ref. 1 and Ref. 2.

Error handling:

ErrorH101.1: M < 0 or N < 0.
ErrorH101.2: M1 < OorM1 > Mor N1 < Oor N1 > N.
In both cases, amessage iswritten on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. H.P. Kiinzi, H.G. Tzschach and C.A. Zehnder, Numerical methods of mathematical optimization,
(Academic Press, New York 1968)

2. E. Stiefel, Einfuhrung in die Numerische Mathematik, (B.G. Teubner, Stuttgart 1965)

H101-2 232

ASSNDX CERN Program Library H301

Author(s) : F. Bourgeois Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 15.02.1994
Language : Fortran Revised:

Assignment Problem

Subroutine subprogram ASSNDX solves the so-called Assignment problen@Given an n x m matrix A of rea
numbers a(z, j), find either

1 aset {k(1),k(2),...,k(n)} € {1,2,...,m,0,...,0}, where 0, ..., 0 indicates max(n — m,0)
zeros, and where for non-zero elements k(p) # k(q) for p # ¢, which minimizes

3

S = ali, k(i)

=1
assuming that a(z,0) = 0, or

2. aset {k(1),k(2),...,k(m)} € {1,2,...,n,0,...,0}, where0,...,0 indicates max(m — n,0)
zeros, and where for non-zero elements k(p) # k(q) for p # ¢, which minimizes
§ = alk(i).J)

J=1

assuming that «(0, j) = 0.

Structure:

SUBROUTINE subprogram
User Entry Names: ASSNDX
Files Referenced: Unit 6

Usage:

CALL ASSNDX(MODE,A,N,M,IDA,K,SMIN,IW,IDW)

MODE (INTEGER) Must be set either 1 (for case (1)), or 2 (for case (2)).

A (REAL) Two-dimensional array of dimension (IDA, > M). Must contain, on entry, the matrix A.
Destroyed during execution.

N (INTEGER) Number » of rowsof A.

M (INTEGER) Number m of columnsof A.

IDA (INTEGER) Declared first dimension of A in the calling program (IDA > N).

K (INTEGER) One-dimensiona array of length > max (N, M). Contains, on exit, the assigned set of

integers {k(1), ..., k(n)} or {k(1),...,k(m)}, respectively.
SMIN (REAL) The calculated minimum value of 5.

Iw (INTEGER) Two-dimensional array of dimension (IDW, > 6). Used as working space.
IDW (INTEGER) Declared first dimension of IW in the calling program (IDW > max(N, M)).
Method:

The subprogram is based on the Algol procedure given in Ref. 3.

233 H301-1

Error handling:

ErrorH301.1: N < 1 0rM < 1.
A messageiswrittenonUnit 6, unlesssubroutine MTLSET (N002) has been called.

Examples:

The following example illustrates a possible use of the subprogram. A workshop hasto carry out N jobs,
each of which can be performed on any of M (> N) available machines. The cost of performing job I on
machine .J is A(I, J). Itisrequired to assign jobs to machinesin such away as to minimize the total cost.
The solution is obtained by calling the subprogram with MODE = 1 and then assigning job / to machine
K(I), (I=1,2,...,N).

References:

1. J. Munkres, Algorithmsfor the assignment and transportation problems, J. SIAM 5 (1957) 32—38.
2. R. Silver, An agorithm for the assignment problem, Comm. ACM 3 (1960) 605-606.
3. R. Silver, Algorithm 27 ASSIGNMENT, Collected Algorithmsfrom CACM (1960).

H301-2 234

EPIO CERN Program Library 1101

Author(s) : H. Grote, |. McLaren Library: PACKLIB
Submitter: Submitted: 01.12.1981
Language : Fortran, Assembler Revised:01.02.1982

EP Standard Format Input/Output Package

The EP format off-line package isintended to be used for all data (at least on tape) in an experiment, in such
away that from the raw data tape to the DST, the tape (or file) format isidentical. This makes the transport
of data between computers easier, and simplifies the task of passing the files or tapes at different stages of
the production chain through any other part of the production chain. EPIO0 is designed to make almost al
features of the very flexible EP format available to the user.

Structure:

SUBROUTINE package
User Entry Names: EPINIT, EPREAD, EPOUTS, EPOUTL, EPCLOS, EPRWND, EPDROP, EPEND,
EPUREF, EPGETW, EPGETA, EPGETC, EPSETW, EPSETA, EPSETC, EPADDH,

EPUPDH, EPSTAT
Files Referenced: User defined
External References: UZERO (V300), UCOPY (V301), IOPACK (Z300) (IBM only)
COMMON Block Names and Lengths: /EPCOMM/ 136

Usage:

See Long Write-up .

235 1101-1

KUIP CERN Program Library 1202

Author(s) : R. Brun, P. Zanarini Library: PACKLIB
Submitter: Submitted: 10.02.1988
Language : Fortran Revised: 17.12.1991

KUIP - Kit for a User Interface Package

The KUIP package is part of PAW (Q121) (Physics Analysis Workstation), but can be used independently.
KUIP isan interface program for any application based on interactive input of commands. From the appli-
cation it is seen as a slave which suppliesthe next command with its associated parameters. It takes care of
program input in various (e.g., graphics or menu) forms and performs preliminary checking on command
syntax and parameters.

Structure:
SUBROUTINE subprograms
Usage:

See Long Write-up .

236 1202 -1

FFREAD CERN Program Library 1302

Author(s) : See below Library: PACKLIB
Submitter: J.C. Lassalle Submitted: 30.01.1980
Language : Fortran Revised: 17.12.1991

Format-Free Input Processing

Authors: R. Brun, R. Hagelberg, M. Hansroul, I. Ivanchenko, J.C. Lassalle, G. Misuri, J. Vorbrueggen

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 219. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: KUIP (1202)

FFREAD provides the user with a facility for free-format data input, providing a suitable tool to transmit
and/or modify variables at run-time without recompilation.

Structure:

SUBROUTINE subprograms

User Entry Names: FFREAD, FFINIT, FFSET, FFKEY, FFGO, FFGET

Internal Entry Names: FFCARD, FFFIND, FFGOR, FFSKIP, FFUPCA

Files Referenced: Input, Output (both default or user defined)

External References: UCOPY (V301), UCTOH (M409), UHTOC (M409), FFUSER (()optionally user-supplied)

Usage:

See Long Write-up .

237 1302 -1

VIZPRI CERN Program Library J200

Author(s) : J. Zall Library: KERNLIB
Submitter: Submitted: 19.09.1991
Language : Fortran Revised:

Print Large Characters

VIZPRI printsone line of large characters to make banner pages. A large line occupies 12 text lines; each
large character is 12 columns wide with 2 blank columns to separate.

Structure:

SUBROUTINE subprogram
User Entry Names: VIZPRI
Files Referenced: Parameter

Usage:

CALL VIZPRI(LUN,CHTEXT)
with:

LUN Fortran logical unit number for printing, if zero: use’standard output’.
CHTEXT (CHARACTER) text to be printed.

Examples:

CALL VIZPRI(0,’e=mc2’)

gives:
ceeeceeeceeceee mm mm cccccccccc 2222222222
ceeeceeeceeceee mmm mmm CCCCccccccce 222222222222
ee mmmm mmmm CcC cc 22 22
ee ========== mm mm mMm Mmoo CC 22
ee ========== mm mmmm Mmoo CC 22
ceeeeeee mm mm mm cc 22
ceeeeeee mm mm cc 22
ee ========== mm mm cc 22
ee ========== mm mm cc 22
ee mm mm cc cc 22
ceeeceeeceeceee mm mm ccccccccccce 222222222222
ceeeceeeceeceee mm mm cccccccccc 222222222222

238 J200-1

XBANNER CERN Program Library J403

Author(s) : J. Zall Library: KERNLIB
Submitter: Submitted: 19.09.1991
Language : Fortran Revised:

Print Banner Text

XBANNER can be used to create either abanner page or to print simple banner text. For a banner page printing
may be repeated to make a recto-verso page; for simple text printing is done only once without page gject.
The current date and timeis always printed.

Structure:

Complete program, executable module normally on /cern/pro/bin
User Entry Names: XBANNER

External References: VIZPRI (J200), DATIME (Z007)

Files Referenced: User controlled

Usage:

The command line
xbanner where argl arg2 arg3 ...

printsthetext strings’arg;’ aslarge characters, normally on oneline each, onto thefile selected by "where'.

'where' specifies the output file, pre—fixed by zero, one, or two control characters. If no file nameis given,
standard output is assumed, in which case exactly one control character, 1 or 0, must be given.

The pre-fix control characters select the following actions:

2 create arecto-verso banner page;

1 create asingle banner page; page-gject is Fortran stylewith’1" in column 1.
0 print banner text only, default.

+ append to existingfile.

= overwritefileif existing.

If afile-nameis given without '+ or ’=" anew file (cycle) is created on the VAX, and on Unix machines’=’
isassumed.

The parameters’arg;’ specify thetext to be printed, each’arg;’ givingriseto one or morelines: Normally
aparameter givesjust oneline. But if itsfirst character is not alphabetic andequal to itslast character each
such character, except the first, indicates a line break.

Typing xbanner without parameters causes a display of the help information.

239 JA03-1

Examples:

xbanner 1

xbanner 1+y.lis

KERN UPDATE /// 1.18 APOLLO
xbanner 1=y.lis ’/KERN/UPDATE/oct 89//1.18/APOLL0O/’
KERN UPDATE "oct 89" // 1.18 APOLLO

all create a single banner page of 6 large lines; the first example prints to standard output, the other two
ontofiley.1lis, either overwriting or appending. In these examples // causesone blank lineand /// gives
2 blank lines. Notethat a blank within a parameter has to be protected so as not to break it into 2 parameters.

The next example adds one largelineto y . 1is:

Xxbanner

giving:

/!
/!

/!
/!
/!
/!

/!
/!

+y.lis /fzcopy

19/09/91 16.06

o i
o i
ff

ff

ff

ffffffff
ffffffff

ff

ff

ff

ff

ff

ZZZZZZZZZZZZ
ZZZZZZZZZZZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZZZZZZZZZZ
ZZZZZZZZZZZZ

19/09/91 16.06

cceececececccc
cceececececcececccce
ccC ccC
ccC
ccC
ccC
ccC
ccC
ccC
ccC ccC
cceececececcececccce
cceececececccc

JA03 -2

000000000000
000000000000
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
000000000000
000000000000

PPPPPPPPP
PPPPPPPPP
pp
pp
pp
PPPPPPPPP
PPPPPPPPP
pp
pp
pp
pp
pp

240

BINSIZ CERN Program Library J530

Author(s) : F. James Library: KERNLIB
Submitter: Submitted: 01.10.1974
Language : Fortran Revised:

Reasonable Intervals for Histogram Binning

BINSIZ determines reasonable lower and upper limits and bin width for a histogram, given the lower and
upper limitsof the dataand the desired maximum number of bins. The output bin widthisalwaysan integral
power of 10 x 1,2, 2.5 or 5, and the output lower and upper limits are the nearest multiples of the bin width
containing the specified range. Another option allows the bin width to be imposed and determines only the
new limits.

Structure:

SUBROUTINE subprogram
User Entry Names: BINSIZ

Usage:

CALL BINSIZ(AL,AH,NA,BL,BH,NB,BWID)

AL (REAL) Lower limit of datato be histogrammed.

AH (REAL) Upper limit of datato be histogrammed.

NA (INTEGER) Maximum number of bins desired.

BL (REAL) Lower limit determined by BINSIZ (BL < AL).

BH (REAL) Upper limit determined by BINSIZ (BH > AH).

NB (INTEGER) Number of binsdetermined by BINSIZ (NA/2 < NB < NA).

BWID (REAL) Binwidth (BH — BL)/NB.

If NA = 0 or NA = —1, BINSIZ always makes exactly one bin.
If NA = 1, BINSIZ takes BWID asinputand determines only BL, BH, and NB. Thisis especially useful when
it is desired to have the same bin width for several histograms (or for the two axes of a scatter-plot).

If AL > AH, BINSIZ takes AL to be the upper limit and AH to be the lower limit, so that in fact AL and AH
may appear in any order. They are not changed by BINSIZ. If AL = AH, BINSIZ takesthelower limit as AL,
and the upper limit isset to AL + 1.

241 J530-1

COMIS CERN Program Library L210

Author(s) : V. Berezhnoi, R. Brun, S. Nikitin, Y. Petrovykh, V. Sikolenko Library: PACKLIB
Submitter: R. Brun Submitted: 10.02.1988
Language : Fortran Revised:

COMIS - Compilation and Interpretation System

The COMIS package is part of PAW (Q121) (Physics Analysis Workstation), but can be used independently.
It isa Fortran interpreter with which the user can interactively define, edit and execute any Fortran routines
without recompiling and relinking. A small user interface system is part of COMIS and an interface with the
local editor isalso provided.

Structure:
SUBROUTINE subprograms
Usage:

See Long Write-up .

242 L210-1

PATCHY CERN Program Library L400

Author(s) : J. Zall Library: none
Submitter: Submitted: 31.01.1972
Language : Fortran Revised: 15.01.1977

Source Code Maintenance

PATCHY and the associated auxiliary programs serve in devel opment, maintenance, and inter-computer trans-
port of source programs. Suitably structured source files containing several versions of a given program
permit code selection and code modification (down to single-statement-level) by simple control cards to
YPATCHY. Compacting and structuring of card files for efficiency (YTOBIN), maintenance of compacted
filesat the deck level (YEDIT), creation of machine-independent, transportablefiles (YTOCETA) and listing
of compacted files (YLIST) and othersare simple auxiliary operationsin this environment.

Structure:

Complete programs; executable modules exist on all machines at CERN where the CERN Program Library

isinstalled, normally in the directory /cern/pro/bin.

User Entry Names: YPATCHY, YEDIT, YTOBIN, YTOBCD, YLIST, YTOCETA, YFRCETA, YCOMPAR,
YSEARCH, YSHIFT

Usage:

See Long Write-up (PATCHY Reference Manual).

243 L400-1

SORTzZV CERN Program Library M101

Author(s) : H. von Eicken Library: KERNLIB
Submitter: Submitted: 14.08.1985
Language : CDC: Compass, IBM: Fortran Revised:

Sort One-Dimensional Array

SORTZV will sort a one-dimensional array containing Hollerith or numerical integer or real information. The
user may specify his own collating sequence for characters; otherwise that of the display code will be used.
The array to be sorted is not changed. The output of SORTZV is an integer array containing the ordered
indicesindicating the order of the original array (see Examples.

Structure:

SUBROUTINE subprogram
User Entry Names: SORTZV

Usage:
CDC:

CALL SORTZV(A,INDEX,N,MODE,NWAY,NSORT,M,CARSET)
Others:

CALL SORTZV(A,INDEX,N,MODE,NWAY,NSORT)

A One-dimensional array of elementsto be sorted.

INDEX One-dimensional array of indices. After execution it contains the indices denoting the desired
order of A. Oninput it may contain (depending on NSORT) indices denoting which elements of
A areto be sorted (see Examples.

N Number of wordsto be sorted.
MODE Type of sort required:

< 0 : Integer,

= 0 : Hollerith,

> 0 : Red.
NWAY Order of sort:

= 0 : Ascending order,
0 : Descending order.

NSORT Elements to be sorted:
— 0 : Sort thefirst N elementsof 4,
0 : Sort N words of A asindicated by array INDEX.

M Character set to be used: (CDC only)
= 0 : Usedisplay code (only applicableto Hollerith sort),
= K : Use collating sequence specified in CARSET (K < 64).

CARSET Defines the collating sequence for a Hollerith sort. Thisarray must be at least 64 elementsin
length. On entering SORTZV the K characters for which the user wishes to specify the order,
must be in the first K words of CARSET (one character/word, left-adjusted and blank-filled).
Any characters found during the sort which have not been defined in CARSET will be added to
CARSET.

Restrictions:

The input order of equal elementsis not necessarily retained. The parameters M and CARSET are only used
inthe CDC version.

244 M101-1

Examples:

1. Assumethearray I contains0,1,-1,4,-2,0,4,5,7,8. Then the statement
CALL SORTZV(I,INDEX,5,-1,0,0)

(M and CARSET omitted) setsthe array INDEXt05,3,1,2,4.

2. With the same array I and the array INDEX containing1,3,5,6,7,8,
CALL SORTZV(I,INDEX,6,-1,0,1)
setsthe array INDEX t05,3,1,6,7,8.

For more details, see Long Write-up .
Source:
Based on an Algol procedure described in Ref. 1.

References:

1. R.S. Scowen, Algorithm 271 QUICKERSORT, Collected Algorithmsfrom CACM (1965).

M101 -2 245

FLPSOR CERN Program Library M103

Author(s) : H. von Eicken Library: KERNLIB
Submitter: Submitted: 15.09.1978
Language : Fortran Revised:

Sort One-Dimensional Array into ltself

TheFLPSOR package containstwo entry pointsfor sorting aone-dimensional array, containing either floating
point number or integers, into itself. The sort is donein ascending order.

Structure:

SUBROUTINE subprogram
User Entry Names: FLPSOR, INTSOR

Usage:

CALL FLPSOR(A,N)

sortsthefirst N elements of the REAL array A in ascending order into itself.
CALL INTSOR(IA,N)

sortsthefirst N elements of the INTEGER array IA in ascending order into itself.
For more details, see Long Write-up for SORTZV (M101).

Source:
Based on an Algol procedure described in Ref. 1.

References:

1. R.S. Scowen, Algorithm 271 QUICKERSORT, Collected Algorithmsfrom CACM (1965).

246 M103 -1

SORCHA CERN Program Library M104

Author(s) : H. Renshall Library: KERNLIB
Submitter: Submitted: 27.11.1984
Language : Fortran Revised:

Sort One-Dimensional Character Array into Itself

SORCHA doesadow linear sort of atype CHARACTER array into itself in either ascending or descending order.
The sort is done on any user specified substring of the elementsin a CHARACTER array.

Structure:

SUBROUTINE subprogram
User Entry Names: SORCHA

Usage:

CALL SORCHA(A,ICH1,ICH2,NPOINT,ITYPE)

A (CHARACTER) One-dimensional array of dimension NPOINT to be sorted into itself. The maxi-
mum length of the elementsin A is 256 characters.

ICH1 (INTEGER) Variable or constant giving the first character position in each element of A of the
substring upon which the array shall be sorted. ICH1 should be 1 if the whole length of the
elements of A isto be used.

ICH2 (INTEGER) Variable or constant giving the last character position analogously to ICH1 above.
IcH2 should be equal to thelength of the elements of A if the sort should be on the entire length
of theelements of A.

NPOINT (INTEGER) Variable or constant. Thefirst NPOINT elements of A will be sorted.

ITYPE (INTEGER) Variable or constant controlling the type of the sort. It is possibleto sort in ascend-
ing or descending order; in addition it is possible to use either the Fortran collation sequence
ordering viathe LLE and LGE functions, or the machine interna relational sequence ordering
viathe LE and GE relations (see Notes.
= 1 : Ascending sort, i.e. A(1) will be lower than A(2), using collation sequence.
= 2 : Descending sort, i.e. A(2) will belower than A(1), using collation sequence.
= 3 : Ascending sort, i.e. A(1) will be lower than A(2), using relational sequence.
= 4 : Descending sort, i.e. A(2) will belower than A(1), using relational sequence.

Notes:

On the machines and compilers tested (CDC with FTN5, VAX VMS with Fortran, ND500 with FORT-5,
IBM with VS-Fortran and Siemens compilers) the collating sequence orders are the same and give blank
less than numbers and numbers less than |etters (this matches the ASCI I internal representations).

On IBM with both compilers the relational sorts give blank less than letters and letters less than numbers
(the EBCDIC sequence).

On CDC, VAX and ND500 collation and relational orders are the same.

On al machines the relational sort is faster than the collation sequence sort.
[J

247 M104-1

SORTR CERN Program Library M107

Author(s) : F. Carminati Library: KERNLIB
Submitter: Submitted: 09.02.1989
Language : Fortran Revised:

Sort Rows of a Matrix

SORTR re-arranges the row order of amatrix in such away that the elements of a selected column are either
in increasing or decreasing order as described. When these elements are equal, the rows are kept in their
original order.

Structure:

SUBROUTINE subprogram
User Entry Names: SORTR, SORTI, SORTD
External References: VECMAN (F121), USWOP (V301) (not on all machines)

Usage:

For t = I (type INTEGER), t = R (typeREAL), t = D (type DOUBLE PRECISION),
CALL SORTt(MX,NC,NR,NCS)

performs an ordering operation on the matrix MX of type t, dimensioned (NC,NR), using the NCS-th element
of each row as ordering criterion.

The matrix MX is stored by rows, the first element of a row following immediately after the last element of
the preceding row.

Obviously, 1 < |NCS| < NCisacondition. If thisisnot met or if NR < 1, SORTX will do nothing.

If NCS > 0, the subroutine re-orders the rows of MX in such a way that the NCS-th element of each row is
greater than or equal to the NCS-th element of the preceding row. If NCS < 0, the rows of MX are re-ordered
in such a way that the NCS-th element of each row is smaller than or equal to the NCS-th element of the
preceding row.

[]

248 M107 -1

SORTRQ CERN Program Library M109

Author(s) : T. Lindel of Library: MATHLIB
Submitter: F. Carminati Submitted: 15.09.1978
Language : Fortran Revised:09.02.1989

Sort Rows of a Matrix

SORTRQ rearranges the row order of amatrix in such away that the elements of a selected column are either
inincreasing or decreasing order, asdesired. Row orders are not necessarily preserved in case these elements
are equal. Otherwise, SORTRQ doesthe same job as SORTR (M107), but SORTRQ is sometimes faster.

Structure:

SUBROUTINE subprogram
User Entry Names: SORTIQ, SORTRQ, SORTDQ
External References: USWOP (V301) (not on all machines)

Usage:

For t = I (type INTEGER), t = R (typeREAL), t = D (type DOUBLE PRECISION),
CALL SORTtQ(MX,NC,NR,NCS)

performsan ordering operation on the matrix MX of typet, dimensioned (NC,NR), using theNCS-th elements
of each row as ordering criterion.

The matrix MX is stored by rows, the first element of a row following immediatly after the last element of
the preceding row.

Obviously, 1 < |NCS| < NC isacondition. If thisisnot met, or if NR < 1, SORTtQ will do nothing.

If NCS > 0, SORTRQ reorders the rows of MX in such a way that the NCS-th element of each row is > the
NCS-th element of the preceding row. If NCS < 0, the rows of MX are reordered in the strict reverse order to
that for NCS > 0.

Source:
Based on an Algol procedure described in Ref. 1.

References:

1. R.S. Scowen, Algorithm 271 QUICKERSORT, Collected Algorithmsfrom CACM (1965).

249 M109 -1

PSCALE CERN Program Library M215

Author(s) : J. Zall Library: KERNLIB
Submitter: C. Letertre Submitted: 01.09.1969
Language : Fortran Revised:15.09.1978

Find Power-of-Ten Scale for Printing

PSCALE gives the power of ten by which it is necessary to multiply a REAL number A for the purpose of
obtaining anew REAL number B having afixed number of digitson the left of the decimal point.

Structure:

FUNCTION subprogram
User Entry Names: PSCALE

Usage:

FACT=PSCALE(N,NMAX,A,IDIG)

returnsthe largest N and its power FACT = 10.0**N, such that FACT*A has at most IDIG digitsto the left
of the decimal point. N islimited to < NMAX, however.

Examples:

Suppose we have an array B(100), which we want to print withaFORMAT (10F10.3). Using VMAXA (F121)
we find the smallest number BMAX, such that BUAX > |B(I)| for al I. Then

FACT=PSCALE(N,9,BMAX,4)

allows us to print the vector FACT*B (I) with the above FORMAT. The following sample values of BMAX give
valuesfor FACT as indicated below:

BMAX FACT
1234567800. 10.0%%(-6)
1234567 .8 10.0%%(-3)
1234 .5678 1
1.2345678 10.0%%3
0.0012345678 10.0%*6
1234 .5678%10.0%*(-9) 10.0%%9
1234.5678%10.0**(-12) 10.0%%9
0.0 10.0**9

All FACT+BMAX but the two last ones, will be printed as 1234 . 567.

250 M215-1

IESCONV CERN Program Library M220

Author(s) : J. Zoll, M. Jonker, M. Roethlisberger Library: KERNLIB
Submitter: Submitted: 30.11.1986
Language : Fortran or Assembler Revised:01.04.1994

Conversion To and From IEEE Number Format

These routines convert vectors of single- or double- precision numbers between theinternal and the standard
IEEE representations.

Structure:

SUBROUTINE subprograms
User Entry Names: IE3F0S, IE3FOD, IE3T0S, IE3TOD

Usage:

IEEE for/to internal, single precision:

CALL IE3FOS(VSINGL,VIEEES,NV,JCODE)
CALL IE3TOS(VIEEES,VSINGL,NV,JCODE)

VSINGL Vector of NV wordswith floating point numbersin internal representation.
VIEEES Vector of NV wordswith the same floating point number in IEEE representation.
nv Size of the vectors.

JCODE Error code returned, normally zero,otherwise VSINGL (JCODE) is the last number which had
conversion problems, such as overflow and not-a-number.

IEEE for/to internal, double precision:

CALL IE3FOD(VDOUBL,VIEEED,NV,JCODE)
CALL IE3TOD(VIEEED,VDOUBL,NV,JCODE)

VDOUBL Vector of 2xNV words with NV double-precision floating point numbersininternal representa-

tion.
VIEED Vector of 2*NV words with the same floating point numbersin IEEE representation.
nv Size of the vectors.
JCODE Error code returned, normally zero, otherwise VDOUBL (JCODE) is the last number which had

conversion problems, assuming the declaration DOUBLE PRECISION VDOUBL(NV).

Notes:

The IEEE format providesfor representing exceptions, both for single and for double precision:

a) Not-a-number: single 7F8nnnnn,
double 7FFnnnnn... .

b) Positiveinfinity: single 7F800000,
double 7FF00000. .. .

c) Negativeinfinity: single FF800000,
double FFF00000... .

251 M220-1

Depending on the machine, mapping is done either naturally or artificially:

CDC Indefinite maps to not-a-number, overflow to infinity.

CRAY Overflow maps to infinity, not-a-number gives overflow.

IBM Positiveinfinity mapsto internal 7FFFFFFO,
not-a-number maps to internal 7FFFFFFF.

NORD Positiveinfinity mapstointernal 177...70,
not-a-number mapstointernal 177...77.

VAX Positiveinfinity mapsto internal 00007F81,
not-a-number maps to internal 00008001.

Underflow gives exact zero in all cases.

Onthe VAX: if afile has been imported from a big-endian machine, byte-inversion (see VXINV (M434)) has
to be done before calling IE3T0x; similarly byte-inversion has to be done after calling IE3F0x and before
exporting thefile.

On machines where the internal representation is IEEE (Apollo, Sun, Silicon Graphics, etc) these routines

are simple copy operations.
[J

M220 -2 252

CHTOI CERN Program Library M400

Author(s) : H. Renshall Library: KERNLIB
Submitter: M. Metcalf Submitted: 27.11.1984
Language : Fortran Revised: 12.03.1985

Portable Conversion Between Type CHARACTER and Type INTEGER

CHTOI converts between a CHARACTER*1 value in a 95—character set and INTEGER valuesin the range 32—
126 viaalook-up table.

Structure:

SUBROUTINE subprogram
User Entry Names: CHTOI, ITOCH

Usage:

CALL CHTOI(CHAR,INTGR,*label)

CHAR (CHARACTER#*1) Variable or constant (may be a substring of a longer string) containing on
input the character for which the integer equivalent is required.

INTGR (INTEGER) Variable which will contain on output the integer equivalent from alook-up table
of the input character argument. A zero will be returned if the character was not found in the
table.

label (INTEGER) Label of an executable statement within the calling program to which control will

be transferred should the input character not be found in the table.
CALL ITOCH(INTGR,CHAR,*label)

CHAR (CHARACTER#1) variablewhichwill contain on output the character equivalent from alook-up
table of the input integer argument. A question mark will be returned if the integer is outside
therange 32 — 126 inclusive.

INTGR (INTEGER) variable or constant containing on input an integer in therange 32 — 126 for which
the character equivalent isrequired.

label (INTEGER) Labe of an executable statement in the calling program to which control will be
transferred should the input integer be outside the range 32 — 126.

Method:

A look-up table containing 95 entries is mapped consecutively into integers 32 — 126. The table is as
follows:

32- 47: rr s % e () x+, - ./ (32 is a blank)
48- 57: 0 ...
8- 64: : ; <
65- 90: A ...
91- 96: [\ 1]
97-122: a ...
123-126: { |

YN I ©
A\
~
(&)

N

2

253 M400 -1

Restrictions:

Thisroutine is typed in Fortran on a system which includes all the above characters. Systems with fewer
characters available usually make some local translation when they read the source for example on CDC
NOS/BE the lower case letters are trandated to upper case. Exact reproducibility of other than the subset of
characters is not guaranteed.

Notes:

These integer values are the same as for the 8-bit ASCIT set.
[J

M400 -2 254

UBUNCH CERN Program Library M409

Author(s) : J. Zall Library: KERNLIB
Submitter: Submitted: 01.03.1968
Language : Fortran or Assembler Revised:09.09.1991

Concentrate and Disperse Character Strings

PARTIALLY OBSOLETE
Please note that this routine has been partially obsoleted in CNL 219. Users
are advised not to use the entriesrefering to Hollerith any longer and to replace
them in older programs. No maintenancefor thispart will take place and it will
eventually disappear.

Suggested replacement: CHPACK (M432)

The concept string of n Hollerith characterss machine independent, but its usual representation in Am
format (withm = character capacity of amachine word: A10, A8, A6, A4) iSnot.

Supposing any computer to have a character capacity of at least A4, string representationsin A4, A3, A2 or
A1 are transportable. Representations A1 and A4 are particularly interesting.

Fortran 77 defines anew datatype CHARACTER though most compilersal so support Hollerith strings (without
a clear definition of the differences). A set of routines has been added to this package in its Fortran 77
implementation to convert between CHARACTER strings and Hollerith strings.

The routines UBLOW, UBUNCH and UTRANS work on Hollerith only and so should be considered obsolete
while UCTOH, UCTOH1 and UHTOC and UH1TOC copy between CHARACTER and Hollerith. Unpredictable
results will be obtained if wrong data types are passed to these routines. On most machines text strings
passed in quotes are implicitly of type CHARACTER while a string preceeded by nH is not.

The routines of this package perform transformations between different representations.
Structure:

SUBROUTINE subprograms
User Entry Names: UBUNCH, UBLOW, UTRANS, UCTOH, UCTOH1, UHTOC, UH1TOC
COMMON Block Names and Lengths; /SLATE/ NI,NJ,DUMMY(38)

Usage:

CALL UBLOW(IVM,IV1,NCH)

dispersesthe string of NCH Hollerith characters from IVM into IV1.

IVM Input vector, continuous string of NCH Hollerith charactersin Am form (i.e. A10, A8 or A4 depend-
ing on the machine).

Ivi Output vector, NCH wordsin A1 form, i.e. asingle Hollerith character per word with blank-fill.

NCH Number of Hollerith characters to be copied.

CALL UBUNCH(IV1,IVM,NCH)

concentrates the string of NCH Hollerith characters from IV1 into IVM.

Iv1 Input vector, NCH wordsin A1 form (one Hollerith character per word).

IVM Output vector, continuous string of NCH Hollerith characters in Am form (i.e. A10, A8 or A4
depending on the machine), with blank-fill of trailing characters in the last word, if any.

NCH Number of Hollerith characters to be copied.

255 M409 -1

CALL UTRANS(IVI,IVJ,NCH,I,J)

copiesthe string of NCH Hollerith characters from IVI into IVJ.

IVI Input vector of NCH Hollerith characters with I characters per machine word in Ai form. The
variableNTI in /SLATE/ is set to the number of machine wordsused from IVI.

IvJ Output vector of NCH Hollerith characters with J characters per machine word in Aj form, with
blank-fill. The variableNJ in /SLATE/ is set to the number of machine words builtin IvJ.

NCH Number of Hollerith characters to be copied.

I,J Number of Hollerith characters per word in IVI and IVJ. If either I or J is greater than the
maximum possible number of characters storable in a machine word then this maximum is used
instead.

CALL UCTOH(MCH,IVJ,J,NCH)

copiesthe CHARACTER-type string in MCH into Hollerith charactersin IvJ in Aj form.

MCH Input vector of NCH characters, either of type CHARACTER or of type INTEGER holding Hollerith
in Am form.

IvJ Output vector of NCH Hollerith characters with J characters per machine word in Aj form, with
blank-fill.

J Number of Hollerith characters to put in each word of IVJ. If J is larger than the maximum

possible number of Hallerith characters per word this maximum will be used instead.
NCH Number of characters to copy.

CALL UCTOH1(MCH,IV1,NCH)

disperses the CHARACTER—type string in MCH into Hollerith charactersin IV1 in A1 form.

MCH Input vector of NCH characters, either of type CHARACTER or of type INTEGER holding Hollerith
in Am form.

Ivi Output vector, NCH wordsin A1 form, i.e. asingle Hollerith character per word with blank-fill.

NCH Total number of charactersto copy.

CALL UHTOC(IVI,I,CHV,NCH)

copiesthe Hollerith charactersin IVI into the CHARACTER variable CHV.

IVI Input vector of NCH Hollerith characters with I characters stored per word in Ai form.

I Number of Hollerith characters to take from each word of IVI. If I islarger than the maximum
possible number of Hallerith characters per word this maximum will be used instead.

CHV Output variable of type CHARACTER to receive NCH characters.

NCH Number of charactersto copy. If the CHARACTER variable CHV isof length greater than NCH trailing

characters will not be changed.
CALL UH1TOC(IV1,CHV,NCH)

concentrates a Hollerith string in A1 form into the CHARACTER variable CHV.
Iv1 Input vector of NCH words containing one Hollerith character each in A1 form.

M409 -2 256

CHV Output variable of type CHARACTER to receive NCH characters.
NCH Total number of characters to copy. If the variable CHV is of length greater than NCH trailing

characters will not be changed.
Error handling:
NCH < 0 acts as do-nothing.
Examples:
(b = blank).
1) CALL UBLOW(11HABCDEFGHIJK,V,11)
fillsv: V(1) = 1HA, ..., V(11) = 1HK, with blank padding of each word.
2) CALL UBUNCH(V,X,11)
givesthe inverse transformation, thus on the CDC 7600 (m = 10):
X(1) = 10ABCDEFGHIJ, X(2) = 10HKbbbbbbbb
3) CALL UTRANS(X,Y,11,99,4)
copiesthe continuousX string to A4 representationinY:
Y(1) = 4HABCD, Y(2) = 4HEFGH, Y(3) = 4HIJKb
with blank padding if m > 4.
4) CALL UTRANS(Y,X,11,4,99)
givestheinverse of example 3) .
5) CALL UTRANS(V,X,11,1,99)
gives the same result as example 2), but is much slower.

6) DIMENSION V(4)
CHARACTER*14 C/’THIS IS A TEST’/
CALL UCTOH(C,V,4,14)

copiesthe CHARACTER string in C into V such that
V(1) = 4HTHIS, V(2) = 4HbISb, V(3) = 4HALTE, V(4) = 4HSTbb

7) DIMENSION V(4)
CHARACTER*14 C
DATA V /14HTHIS IS A TEST/ or DATA V /4HTHIS,4H IS ,4HA TE,2HST/
CALL UHTOC(V,4,C,14)

copiesthe Hollerith stringsin vV into C such that C=>THIS IS A TEST’.

8) DIMENSION V(4)
CHARACTER*4 C/’TEST?’/
CALL UCTOH1(C,V,4)

copiesthe CHARACTER—stringin C into V such that
V(1) = 4HTbbb, V(2) = 4HEbbb, V(3) = 4HSbbb, V(4) = 4HTbbb

9) DIMENSION V(4)
CHARACTER*4 C
DATA V/1HT,1HE,1HS,1HT/
CALL UH1TOC(V,C,4)

copiesthe Hollerith charactersin V into the CHARACTER string C such that C="TEST”.
[]

257 M409 -3

BITBYT CERN Program Library M421

Author(s) : C. Letertre, J. Zall Library: KERNLIB
Submitter: Submitted: 28.01.1971
Language : Fortran or Assembler Revised: 12.06.1987

Package for Handling Bits and Bytes

This package manipulatesindividual bits and bytesin aword.

A bitin aword is specified by givingits position J (= 1,2,...,32][,...,64]) intheword, bit 1 being the
least significant bit.

A bytein aword is a group of NBITS consecutive bits. The byte is specified by giving NBITS and the bit
position J of the least significant bit of the byte.

Structure:

SUBROUTINE and FUNCTION subprograms

User Entry Names: JBIT, SBITO, SBIT1, SBIT, MSBITO, MSBIT1, MSBIT,
JBYT, SBYT, MSBYT, CBYT, MCBYT, JBYTET, JBYTOR,
SBYTOR, MBYTOR, MBYTET, JRSBYT

Usage:
IX = JBIT(IW,J) returns IX = 0 or 1, thevalueof bit Jin IW.
CALL SBITO(IX,J) sets 0 into bit J of IX.
CALL SBIT1(IX,J) sets 1 into bit J of IX.
CALL SBIT(IA,IX,J) copiesbit 1 of IA into bit J of IX.
IX = MSBITO(IW,J) returns IW in IX with bit J setto 0.
IX = MSBIT1(IW,J) returns IW in IX with bit J setto 1.
IX = MSBIT(IA,IW,J) returns IW in IX with bit J set to the value of bit 1 in IA.
IX = JBYT(IW,J,NBITS) returnsin IX right-justified the byteat J in IW.
CALL SBYT(IA,IX,J,NBITS) copiesthebyteat 1 of IA intothe byteat J of IX.
IX = MSBYT(IA,IW,J,NBITS) returns IW in IX withthe byteat J replaced by the byte at

1 of IA.
CALL CBYT(IA,JA,IX,J,NBITS) copiesthebyteat JA of IA intothebyteat J of IX.
IX = MCBYT(IA,JA,IW,J,NBITS) returnsIWinIX withthebyteat J replaced by the byteat

JA of IA.

IX = JBYTET(IA,IW,J,NBITS) returnsin IX thelogical AND of IA andthe byteat J of IW
right-justified.

IX = JBYTOR(IA,IW,J,NBITS) returnsin IX thelogical OR of IA and the byteat J of IW
right-justified.

CALL SBYTOR(IA,IX,J,NBITS) replacesthe byteat J in IX by thelogical OR of thisbyte
and the byte at 1 of TA.

IX = MBYTOR(IA,IW,J,NBITS returns IW in IX withthe byte at J replaced by the logical
OR of thisbyte and the byte at 1 of IA.

IX = MBYTET(IA,IW,J,NBITS) returns IW in IX withthe byte at J replaced by the logical
AND of thisbyte and the byteat 1 of IA.

IY = JRSBYT(IA,IX,J,NBITS) read and reset byte; equivaent to
IY = JBYT(IX,J,NBITS)
CALL SBYT(IA,IX,J,NBITS).

258 M421 -1

Notes:

The subroutines

SBITO SBIT1 SBIT SBYT CBYT SBYTOR
are duplicated by the functions

MSBITO MSBIT1 MSBIT MSBYT MCBYT MBYTOR

to allow implementation by statement functions. Such implementations can be picked up from the ZEBRA
CDE Pam-file for different machines as sequence definitions

Q$JIBIT : JBIT, JBYT

Q$SBIT : MSBITO, MSBIT1, MSBIT

Q$SBYT ¢ MSBYT

Q$CBYT ¢ MCBYT

Q$JBYTET : JBYTET, JBYTOR, MBYTET, MBYTOR

M421 -2 259

PACBYT CERN Program Library M422

Author(s) : J. Zall, C. Letertre Library: KERNLIB
Submitter: Submitted: 28.01.1971
Language : Fortran or Assembler Revised: 16.09.1991

Handling Packed Vectors of Bytes

PACBYT alows handling of packed vectors of bytes. Any such vector consists of a string of bytes, all of
NBITS bits, INWORD of them packed into one computer word, stored from right to | eft.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: PKBYT, UPKBYT, JBYTPK, SBYTPK
External References: JBYT (M421), SBYT (M421) (Fortran version)

Usage:
The 2—word vector MPACK specifies the packing parameters:

MPACK (1)
MPACK(2)

NBITS
INWORD

MPACK(1) = 0 isaccepted as specifying both NBITS = 1 and INWORD equal to the number of bits per word
on the given compuiter.

CALL PKBYT(IB,MX,JX,N,MPACK)
packs the N—word vector IB of small integersinto the bytes JX,JX+1, ... ,JX+N-1 of the byte-vector MX.
CALL UPKBYT(MA,JA,IY,N,MPACK)

unpackstheN bytes JA,JA+1, ... ,JA+N-1 of the packed byte-vector MA into the vector IY of small inte-
gers.

IX = JBYTPK(MA,JA,MPACK)
fetches the JA-th byte from the packed byte-vector MA.
CALL SBYTPK(IT,MX,JX,MPACK)
setsthefirst byte from IT into the JX'th byte of the packed byte vector MX.
Notes:
1. These routines, and the manner of packing byte-vectors, is compatible with the routines JBYT and

SBYT (M421), except that there the location of a byte in the word is specified, whereas here the
ordinal numberof a bytein the vector has to be given. The conversionisasfollows:

The byte with ordinal number J isfound in word JW = (J — 1) /INWORD + 1,
onbyte JB = J — (JW — 1) + INWORD starting at bit L = (JB — 1) * NBITS 4 1.

2. Bitsand bytesare numbered from right to left within one and the same computer word; across aword
boundary there isajump from the most significant part of the current word to the least significant part
of the next word.

260 M422 -1

INCBYT CERN Program Library M423

Author(s) : J. Zall, P. Rastl Library: KERNLIB
Submitter: Submitted: 28.01.1971
Language : Fortran or Assembler Revised: 16.09.1991

Increment a Byte of a Packed Vector

INCBYT alowsincrementing a specified byte of a packed byte vector (cf. PACBYT (M422)).
Structure:

FUNCTION subprogram
User Entry Names: INCBYT

Usage:

LOST = INCBYT(INC,MX,JX,MPACK)

The 3-word vector MPACK specifies the packing parameters (much like for PACBYT (M422), but NBITS = 0
isnot allowed):

MPACK(1) = NBITS, number of bits per byte.
MPACK(2) = INWORD, number of bytesper word.
MPACK(3) = MAXCAP, the maximum capacity of any byte, < 2**NBITS—1.

INCBYT adds the increment INC into the JX’th byte of the packed byte-vector MX and returns any byte
overflow, i.e. the part of INC which cannot be added into the byte, because it now containsMPACK (3).
[J

261 M423 -1

BLOW CERN Program Library M426

Author(s) : CDC: J. Blake, G. Beltz, IBM: A. Berglund Library: KERNLIB
Submitter: Submitted: 12.06.1972
Language : Fortran or Assembler Revised:01.02.1982

Unpack Full Words into Bytes

BLOW convertsasource array containing arecord consisting of a continuousstring of NBYTES bytes of NBITS
bits per byte into a target array of NBYTES full words, right-adjusted with zero-fill. BLOW is the inverse of
BUNCH (M436).

Structure:

SUBROUTINE subprogram
User Entry Names: BLOW
External References: UPKCH (M427)

Usage:

CALL BLOW(SOURCE,TARGET,NBYTES,NBITS)

SOURCE Source array containing the string of NBYTES bytes.

TARGET Target array, which must be at least NBYTES full words long.

NBYTES Number of bytesin the source record (0 < NBYTES).

NBITS Number of bits per byte (0 < NBITS < nbpw, Wherenbpw = 60 on CDC and = 32 on IBM).

Restrictions:

The two arrays SOURCE and TARGET must not overlap in any way.
Error handling:

BLOW ignores calls with erroneous parameter values.

Examples:

CDC:
CALL BLOW(SOURCE,TARGET,200,18)

The array SOURCE containsarecord of 200 18-bit bytes, stored contiguously in 60 60-bit words, i.e., astring
of 3600 bits. After the completion of the call to BLOW, the array TARGET will contain 200 60-bit words, each
containing one 18-hit byte, right-justified with zero-fill.

262 M426 -1

PKCHAR CERN Program Library M427

Author(s) : J. Zall Library: KERNLIB
Submitter: Submitted: 01.06.1973
Language : Fortran or Assembler Revised: 16.09.1991

Pack/Unpack Continuous Byte-strings

PKCHAR allows packing of integersinto continuous byte-stringan zoned memory across word boundaries.
The term continuous byte-strings used here to designate n-bit bytes, stored from left to right, as opposed
to the objects handled by PXBYT (M422), which are stored right to left within each word. The inverse
unpacking is performed by UPKCH. Leading and trailing bits of each zone can be ignored.

Structure:

SUBROUTINE subprograms

User Entry Names: PKCHAR, UPKCH

External References: JBYT (M421), SBYT (M421), CBYT (M421)
COMMON Block Names and Lengths. /SLATE/ NWU,DUMMY (39)

Usage:

CALL PKCHAR(INT,MPK,N,IPAR)
CALL UPKCH (MPK,INT,N,IPAR)

PXCHAR packs the N—word vector INT of integers into the continuous byte-string supported by the vector
MPK according to the packing specifications given in IPAR.

UPKCH isthe exact inverse of PKCHAR.
The packing parameters are given in the 5-element vector IPAR:

IPAR(1) Number of bits per byte, must be > 1.

IPAR(2) Number of bytesto be used in each zone (starting with the left-most);
if IPAR(2) = 0, the maximum possible number is used.

IPAR(3) Number of bits per zone. If IPAR(3) = 0, azone equals 1 word.

IPAR(4) Number of leading bits of each zone to be ignored.

IPAR(5) Each new word handled by PKCHAR is preloaded with IPAR(5).

MPK is seen as a continuous string of bits, starting with the most significant bit of MPK (1), ignoring word
boundaries. This string is divided into a number of consecutive and contiguous zones, each of IPAR(3)
bits; the first zone starts with the most significant bit of MPK (1). Each zone contains IPAR (4) leading bits,
anumber of bytes (each of IPAR(1) bits), and trailing bits, if any.

On return from either routine, NWU in COMMON block /SLATE/ indicates the number of wordsinMPK actually
used. PKCHAR setsto IPAR(5) each word of MPX before filling it, but it does not clear any trailing unused
wordswhich logically belong to the last zone.

263 M427 -1

Examples:

1. To convert, on the CDC 7600, 6-bit Hollerith text to 7-bit ASCII—code, to be held in 36-bit words on
the PDP10, with 5 characters per word.

DATA IPACK6 /6,0,0,0,0/
DATA IPACK7 /7,0,36,0,0/
CALL UPKCH(HOLL,INT,N,IPACKS6)

unpacks the Hollerith string HOLL into INT, where INT(I) isasmall integer giving the display-code
value of the I-th character. After conversionto ASCII, one may pack:

CALL PKCHAR(INT,MPK,N,IPACK7)

giving the vector MPX ready to be written out. If for some reason one required the first and the last
(5th) character in each 36-bit PDP10 word to be zero, one could use:

DATA IPACK7 /7,3,36,7,0/
2. To unpack 8-character bytes read with the CDC 7600 from 9-track tapes:

DATA IPACK /8,0,120,0,0/
CALL UPKCH(A,INT,N,IPACK)

3. To unpack on the CRAY 32-hit integers, read one each into one 64-bit machine word, into 16-bit
integers, one each in one machine word, right-justified with zero-fill:

DATA IPACK /16,2,0,32,0/
CALL UPKCH(I32,I16,N,IPACK)

The same operation on the Apollo, which has 32-bit words, could be done with
DATA IPACK /16,0,0,0,0/

4. The Fortran implementaion of BLOW (M426) executes.

IPACK(1) = NBITS

IPACK(2) = 0

IPACK(3) = NBYTES*NBITS + 127
IPACK(4) = 0

IPACK(5) = 0

CALL UPKCH(SOURCE,TARGET,NBYTES,IPACK)

M427 -2 264

LOCBYT CERN Program Library M428

Author(s) : J. Zall Library: KERNLIB
Submitter: Submitted: 01.06.1973
Language : Fortran or Assembler Revised:15.09.1978

Search for Byte-Content

LOCBYT searches through a vector in steps of 1 or more words looking for the first word which has a certain
bit configuration in a certain part of the word.

Structure:

FUNCTION subprogram
User Entry Names: LOCBYT

Usage:

J = LOCBYT(IT,VECT,N,INC,L,NBITS)

searches through the N element vector VECT, but only looking every INC words for the first word which
containsIT inthebyte (L,NBITS), and returnsitsaddressin J whichmay be 1, INC+1, 2+INC+1, 3*INC+1,
etc.

IT must contain the desired byte value right-justified with zero-fill.

J = o isreturned if such aword isnot found, or if N = 0.

The byte (L,NBITS) is a byte of NBITS bits, occupying the bitsL,L+1, ... ,L+NBITS-1. The bits are
numbered as with the routines of BITBYT (M421) / PACBYT (M422): L =1,2,3,...; bit 1 is the least

significant bit of the word.
[J

265 M428 -1

NUMBIT CERN Program Library M429

Author(s) : M. Metcalf Library: KERNLIB
Submitter: Submitted: 01.06.1973
Language : Assembler Revised: 15.09.1978

Number of One-Bits in a Word

NUMBIT countsthe one-bitsin aword.
Structure:

FUNCTION subprogram
User Entry Names: NUMBIT

Usage:

In an arithmetic expression,
NUMBIT(X)

has the INTEGER value giving the number of one-bitsin X.

Examples:

J=NUMBIT(5)

sets J to 2 as the binary representation of 5 has 2 one-bits.
[J

266 M429 -1

IFROMC CERN Program Library M431

Author(s) : M. Metcalf Library: KERNLIB
Submitter: Submitted: 15.01.1986
Language : Fortran Revised: 16.05.1986

Convert Between Character String and Packed ASCII Form

IFROMC and CFROMI provideasimple, portablefacility for storing character stringsof 1-4 characters packed
into integers.

Structure:

FUNCTION subprograms
User Entry Names: IFROMC, FROMI
External References: CHTOI (M400), ITOCH (M400)

Usage:

I=IFROMC(’string’)

storesin I apacked ASCII representation of the 4 leftmost charactersof ’string’. If there are fewer than
4 characters, blanks are stored in the empty positions.

CHARACTER*4 STRING
STRING=CFROMI(I)

storesin STRING the four characters stored packed in I intheir ASCII representation.

References:

1. CERN Computer Newsletter 179 (April-May 1985) 11-14.

267 M431-1

CHPACK CERN Program Library M432

Author(s) : J. Zall Library: KERNLIB
Submitter: Submitted: 02.06.1989
Language : Fortran Revised:01.04.1994

Utility Routines for Character String Parsing and Construction

The routines of this package analyse and manipulate Fortran CHARACTER strings.
Structure:

SUBROUTINE and FUNCTION subprograms

User Entry Names. CKRACK, CCOPYL, CCOPYR, CCOPIV, CCOSUB, CENVIR, CFILL, CLEFT,
CRIGHT, CSQMBL, CSQMCH, CLTOU, CUTOL, CSETDI, CSETHI, CSETOI,
CSETVI, CSETVM, CTRANS, ICDECI, ICHEXI, ICOCTI, ICEQU, ICFIND,
ICFILA, ICFMUL, ICFNBL, ICLOC, ICLOCL, ICLOCU, ICLUNS, ICNEXT,
ICNTH, ICNTHL, ICNTHU, ICINQ, ICINQL, ICINQU, ICNUM, ICNUMA,

ICNUMU, ICTYPE, LNBLNK, NCDECI, NCHEXI, NCOCTI
COMMON Block Names and Lengths. /SLATE/ 40

Summary: CALL CKRACK Read integer or real number from character
CALL CCOPYL Copy string, left shift allowed if overlap
CALL CCOPYR Copy string, right shift allowed if overlap
CALL CCOPIV Copy string, with characters front-to-back
CALL CCOSUB Copy string, replacing a token by text
CALL CENVIR Copy string, replacing environment variables
CALL CFILL Fill
CALL CLEFT Left justify
CALL CRIGHT Rightjustify
CALL CSQMBL Squeeze multiple blanks
CALL CSQMCH Squeeze multiple character
CALL CLTOU Convert low to up
CALL CUTOL Convert up to low
CALL CSETDI Set decimal integer to character
CALL CSETHI Set hexadecimal integer to character
CALL CSETOI Set octal integer to character
CALL CSETVI Set avector of integersto character
CALL CSETVM Set aseries of generated integers to character
CALL CTRANS Character tranglation
IX = ICDECI Read decimal integer from character
IX = ICHEXI Read hexadecimal integer from character
IX = ICOCTI Read octal integer from character
IX = ICEQU Compare two strings for equality
JX = ICFIND Find first occurrence, single
JX = ICFILA Find last occurrence, single
JX = ICFMUL Find first occurrence, multiple
JX = ICFNBL Find first non-blank

268 M432 -1

continue: JX = ICLOC L ocate case sensitive
JX = ICLOCL L ocate case insensitive, up to low
JX = ICLOCU Locate case insensitive, low to up
JX = ICLUNS L ocate unseen characters
JX = ICNEXT Delimit next word

JX = ICNTH Identify choice case sensitive

JX = ICNTHL Identify choice case insensitive, up to low

JX = ICNTHU Identify choice case insensitive, low to up

JX = ICINQ Inquire presencein alist, case sensitive

JX = ICINQL Inquire presencein alist, case insensitive, up to low
JX = ICINQU Inquire presencein alist, case insensitive, low to up
JX = ICNUM Verify numeric

JX = ICNUMA Verify apha-numeric

JX = ICNUMU Verify apha-numeric or underscore

JX = ICTYPE | dentify type

NX = LNBLNK Find last non-blank character

IX = NCDECI Read decimal integer from character

IX = NCHEXI Read hexadecimal integer from character
IX = NCOCTI Read octal integer from character

Usage:
General Remarks:

For what follows, |et the CHARACTER variable LINE contain a string of » characters assuming the following
declaration:

CHARACTER LINE*(n),COL(n)*1
EQUIVALENCE(LINE,COL)

thus COL(j) is the j-th character LINE(j:j). A sub-string of LINE is specified by JL and JR, where
COL (JL) isthefirst or left-most, and COL (JR) isthelast or right-most character.

COMMON /SLATE/ ND,NE,NF,NG,NUM(2) ,DUMMY (34)

returns certain search parameters, which are set by some of the routines.

Thetypesof all variablesand functionsfollow from the Fortran default typing convention, except that LINE,
COL, and variables starting with the | etters CH are of type CHARACTER.

Convention

Typing rulesfor datato beinterpreted by CKRACK:

Binary: String of zeros or ones prefixed by #B or #b.

Octal: String of octal digits prefixed by #0 or #0 or #o.
Hex: String of hexadecimal digits prefixed by #X or #x.
Integer: String of decimal digitsoptionally prefixed by + or -.
Real: [(+|-]1 [int] [.] [fract] [E] [+I-] [exp]

int, fract, exp arestringsof decimal digits, either the decimal dot or the letter E (or e)
must be present.

Double: [(+|-] [int] [.] [fract] D [+|-] [exp]
the letter D (or d) must be present.

M432 -2 269

Read integer or real number from character:
CALL CKRACK(LINE,JL,JR,IFLD)

reads the number whose character representation startswith the first non-blank character at or after COL (JL)
and ends at COL (JR) or at thefirst blank after the number (normal terminatioi), or at the first character after
the number which cannot be part of it (special terminatioh

CKRACK detectsthe type of the number (bit-pattern, integer, real single, real double) from its representation.
Thetyping rules for data to be interpreted by CKRACK are given in the note on the previous page.

The number read isreturned in /SLATE/ in NUM(1) or ANUM(1) or DNUM, for which one will need:

REAL ANUM(2)
DOUBLE PRECISION DNUM
EQUIVALENCE (ANUM(1),NUM(1)),(DNUM,NUM(1))

Theflag in the last parameter is normally given as zero; IFLD > 0 demands that single-precisionreal num-
bers be handled and returned as double precision numbers; IFLD < 0 demands that double-precision num-
bers be returned in single precision.

Apart from NUM, the following parameters are returned in /SLATE/:

ND Number of numeric digits seen.
COL(NE) Terminating character inthefield; NE = JR + 1 if terminated by end-of-field.
NF Type of the number read:

< 0 : error code for bad data;

= 0 : thewholefield is blank;

= 1 : bit pattern (binary, octal, or hexadecimal);
= 2 :integer

= 3 :singleprecisionred;

= 4 : double precision real.

NG = 0 for normal termination; special termination otherwise.
Copy string, left shift allowed if overlap:
CALL CCOPYL (CHFROM,CHTO,NCH)

copies NCH characters from CHFROM(1:NCH) to CHTO(1:NCH); the characters are copied in order, thus the
end of the target may overlap the beginning of the source.

Copy string, right shift allowed if overlap:
CALL CCOPYR (CHFROM,CHTO,NCH)

copies NCH characters from CHFROM(1:NCH) to CHTO(1:NCH); the characters are copied in reverse order,
thus the beginning of the target may overlap the end of the source. These two routines are useful to copy
stringsfrom or into a very large array of type CHARACTER*1.

Copy string, with characters front-to-back:
CALL CCOPIV(CHFROM,CHTO,NCH)

copiesNCH characters from CHFROM (1 :NCH) to CHTO(1:NCH) inverting the order of the characters such that
the last becomes the first, etc.

270 M432 -3

Copy string, replacing a token by text:
CALL CCOSUB(CHFROM,NFR,LINE,JL,JR,CHTOKEN,CHSUB)

copies CHFROM(1:NFR) to LINE starting at COL (JL) and not going beyond COL (JR), substituting each
occurrence of CHTOKEN by CHSUB.

The following parameters are returned in /SLATE/:

ND Number of characters stored;

COL(NE) isthefirst character after thelast stored;

NF Non-zero if LINE(JL: JR) too small to receive the complete copy;
NG Zero if no substitution was done, i.e. CHTOKEN did not occur.

Copy string, replacing environment variables:
CALL CENVIR(CHFROM,NFR,LINE,JL,JR,IFLAG)

copies CHFROM(1:NFR) to LINE starting at COL (JL) and not going beyond COL (JR), substituting each
occurrence of ${name} by the value of the environment variable "name" obtained by calling GETENVF
(Z 265); on machines running UNIX the form "$name" is also recognized. The handling of undefined
environment variablesis defined by IFLAG: if zero the string ${name} is skipped from the copy; if non-zero
the string is copied through as is.

The following parameters are returned in /SLATE/:

ND Number of characters stored;
COL{NE) isthe first character after the last stored;
NF Bit 1 isset if undefined env/v have been encountered;

Bit 2 isset if syntax error (missing closing bracket);
Bit 3issetif LINE(JL:JR) istoo small to receive the copy;
NG Zero if no substitution was done.

Fill:
CALL CFILL(CHI,LINE,JL,JR)

fillsLINE (JL: JR) with as many copies of CHI as possible; if JL + 1 — JR isnot a multiple of LEN (CHI)
as many characters of CHI as necessary to fill up to JR will be taken for the last copy.

Left justify:
CALL CLEFT(LINE,JL,JR)
left-justifiesLINE (JL: JR) squeezing blanksto theright.

ND Number of non-blank charactersin thefield.
COL(NE) First blank character after left-justifying (or NE = JR + 1 if there are no blanks).

Right justify:
CALL CRIGHT(LINE,JL,JR)
right-justifiesLINE (JL: JR) sgueezing blanks to the | eft.

ND Number of non-blank charactersin thefield.
COL(NE) Last blank character after right-justifying (or NE = JL — 1 if there are no blanks).

M432 -4 271

Squeeze multiple blanks:
CALL CSQMBL(LINE,JL,JR)
left-justifiesLINE (JL : JR) replacing any string of several consecutive blanks by a single blank.

ND Number of characters retained (vacated trailing characters, if any, are blanked).
COL(NE) First blank character after (or NE = JR + 1 if there are no multiple blanks).

Squeeze multiple characters:
CALL CSQMCH(CHIS,LINE,JL,JR)

left-justifies LINE(JL : JR) reducing any multiple occurrence of the character CHIS to this character just
once. CHIS isof type CHARACTER*1.

ND Number of characters retained (vacated trailing characters, if any, are blanked).
COL(NE) First character after the squeezed string (or NE = JR + 1 if there are no multiple occurrences).

Convert low to up:
CALL CLTOU(LINE(JL:JR))

converts lower case lettersin LINE(JL: JR) to upper case.

Convert up to low:
CALL CUTOL(LINE(JL:JR))

converts upper case lettersin LINE (JL: JR) to lower case.

Set decimal integer to character:
CALL CSETDI(INT,LINE,JL,JR)

writesthe integer INT into LINE (JL: JR) right-justified. If INT istoo large, the most significant characters
are lost. Unused positions are not cleared to blank, so that they may be pre-loaded with default characters,
such as leading zeros. (One normally clears the whole of LINE initially with LINE = ’, one could clear
the substringwith LINE(JL:JR)=" * or preset it before calling CSETDI).

ND Number of digitswhich have been set.
COL(NE+1) Most significant digit set.

COL(NF+1) Most significant character set. NF = NE if INT is positive, NF = NE — 1 if INT is negative
and no overflow.

NG = 0 normally, non-zero if field too small.
Set hexadecimal integer to character:
CALL CSETHI(INT,LINE,JL,JR)

actslike CSETDI, except that the hexadecimal rather than the decimal representation of INT is stored.

Set octal integer to character:
CALL CSETOI(INT,LINE,JL,JR)

actslike CSETDI, except that the octal rather than the decimal representation of INT is stored.

272 M432 -5

Set a vector of integers to character:
CALL CSETVI(NI,INTV,NBIAS,LINE,JL,JR,NCOL,IFLSQ)

setsthe NI integers INTV(J) -+ NBIAS into LINE(JL:JR) in decimal representation, every NCOL columns,
each right-justified within its field of NCOL — 1 columns; squeeze multiple blanks to single blanks in the
resulting LINE(JL:JR) if IFLSQ non-zero. Like the other CSETxx routines, this routine does not clear
unused positionsto blank.

COL(NE) Last character of the last integer stored.
NG = 0 normally, = N > 0 if there isnot enough room to store INTV(N).

Set a series of generated integers to character:

CALL CSETVM(NI,INC,IGO,LINE,JL,JR,NCOL,IFLSQ)
actslike CSETVI, but the NI integersare IGO0+ n + INC,n = 0,1,... NI — 1.
Character translation:

CALL CTRANS(CHO,CHN,LINE,JL,JR)

replaces each occurrence in LINE(JL: JR) of the character CHO by the character CHN. CHO and CHN are of
type CHARACTER*1.

Read decimal integer from character:
IX = ICDECI(LINE,JL,JR)

reads the decimal integer whose character representation starts at COL (JL) and stops on the first non-
numeric character or at COL (JR+1), returning its valuein IX. Leading blanks are ignored, a leading minus
or plussign isrecognized. Note that a blank after the number, or after >+’ or -, istaken asterminator.

ND Number of digitsread (*-? or *+? do not count).

COL(NE) Terminating character in thefield; NE = JR + 1 if pure numeric or if the whole field is blank
(inwhich case ND = 0).

NG = 0 if the number isterminated by 'blank’ or by end-of-field, non-zero otherwise.
Read hexadecimal integer from character:
IX = ICHEXI(LINE,JL,JR)
actslike ICDECI, but reads a hexadecimal rather than a decimal representation.
Read octal integer from character:
IX = ICOCTI(LINE,JL,JR)
actslike ICDECI, but reads an octal rather than a decimal representation.
Compare two strings for equality:
IX = ICEQU(CHA,CHB,N)

checksthat CHA(1:N) and CHB(1:N) are identical and returns zero if so, otherwise the ordinal number of
the first non-matching character is returned.

Note: this and many other routines of this package are handy when manipulating text stored in an area
declared with CHARACTER TEXT(big)#*1, which will explain some of the maybe unexpected calling se-
quences.

M432 -6 273

Find first occurrence, single:
JX = ICFIND(CHIS,LINE,JL,JR)
returnsin JX the positionin LINE of thefirst occurrence of the single character CHIS in LINE (JL:JR).

JX = JR -+ 1if CHIS isnot contained in LINE(JL:JR), or if JL > JR.
NG = 0 if not found, = JX otherwise.

Find last occurrence, single:
JX = ICFILA(CHIS,LINE,JL,JR)
returnsin JX the positionin LINE of the last occurrence of the single character CHIS inLINE(JL:JR).

JX = JR -+ 1if CHIS isnot contained in LINE(JL:JR), or if JL > JR.
NG = 0 if not found, = JX otherwise.

Find first occurrence, multiple:
JX = ICFMUL(CHI,LINE,JL,JR)

returns in JX the position in LINE of the first occurrence in LINE(JL:JR) of any one of the characters
CHI(j:j),wherej =1,2,...,n=LEN(CHI).

JX = JR -+ 1if noneof CHI isfound in LINE(JL:JR), or if JL > JR.
ND = j,1.e. COL(JX) iSCHI(j:j) if found.
NG = 0 if not found, = JX otherwise.

Find first non-blank:
JX = ICFNBL(LINE,JL,JR)
returnsin JX the positionin LINE of thefirst non-blank character in LINE(JL: JR).

JX = JR 4+ 1if LINE(JL:JR) isal blank, or if JL. > JR.
NG = 0 if adl blank, = JX otherwise.

Locate, case sensitive:
JX = ICLOC(CHI,NI,LINE,JL,JR)

locates the first occurrence of the complete string CHI(1:NI) within LINE(JL:JR), it returnsin JX the
positionin LINE of thefirst character of the string found. JX = 0 if CHI isnot contained in LINE (JL: JR).

Locate, case insensitive, up to low:

JX = ICLOCL(CHI,NI,LINE,JL,JR)
actslike ICLOC, but upper case characters from LINE are converted to lower case for the comparison.
Locate, case insensitive, low to up:

JX = ICLOCU(CHI,NI,LINE,JL,JR)
actslike ICLOC, but lower case characters from LINE are converted to upper case for the comparison.
Locate unseen characters:

JX = ICLUNS(LINE,JL,JR)

returnsin JX the position in LINE of thefirst unseen’ character in LINE(JL:JR), i.e. any character which
will not show on the terminal, except 'blank’. JX = 0 if LINE(JL: JR) does not contain unseen characters.

274 M432 -7

Delimit next word:
JX = ICNEXT(LINE,JL,JR)

returnsin JX the positionin LINE of thefirst non-blank character in LINE(JL: JR) and in NE the position of
thefirst blank character after COL (JX), if any.

JX Position of thefirst character of the ' word'.
NE Position of thefirst 'blank’ after the 'word’ or NE = JR + 1.

ND Number of charactersin the word'.
JX=NE =JR+ 1,ND = 0if LINE(JL:JR) isdl blank.

Identify choice, case sensitive:
JX = ICNTH(CHACT,CHPOSS,NPOSS)

compares the character string CHACT against the strings stored in the character array CHPOSS (NPOSS), and
returns in JX the ordinal number of the first match found, or JX = 0 if no match. Neither the strings of
CHPOSS nor of CHACT may contain embedded blanks: the first blank, if any, isthe string terminator.

To alow matching a shortened key-word given in CHACT one may insert (ala VAX) a ’>*’ in the text of
CHPOSS (J) to mark the separation between the obligatory and further possible characters; a second ’ *°
may be given to signal that CHACT may have any other characters beyond this point, thisis implied if the
string in CHPOSS (J) isnot blank terminated.

For example:

PARAMETER (NPOSS=6)

CHARACTER#8 CHPOSS(NPOSS)

DATA CHPOSS /’del*ete ’, ’add ’, ’adb*efor’,
+ ’rep*lace’, ’ch*ange ’, ’c*olx* */

Calling the above with the following stringswill give these results:

CHACT = ’add’ JX =2 exact match
’delete’ 1 exact match
’del’ 1 short match
’del 1
’delphi’ 0 wrong optional characters
’deleted’ 0 CHPOSS(1) is terminated
’replaced’ 4 CHPOSS(4) is not terminated
’chan’ 5 short match
’channel’ 0 wrong optional characters
’c’? 6 short match
’columns’ 6 abritrary trailing characters allowed
’cols’ 6

Identify choice, case insensitive, up to low:
JX = ICNTHL(CHACT,CHPOSS,NPOSS)

acts like ICNTH converting upper case characters from CHACT to lower case for the comparison, hence the
CHPOSS array must be given in lower case.

Identify choice, case insensitive, low to up:
JX = ICNTHU(CHACT,CHPOSS,NPOSS)

acts like ICNTH converting lower case characters from CHACT to upper case for the comparison, hence the
CHPOSS array must be given in upper case.

M432 -8 275

Inquire presence in a list, case sensitive:
JX = ICINQ(CHLOOK,CHHAVE,NHAVE)

like ICNTH this compares the character string CHLOOK against the strings stored in the character array
CHHAVE (NHAVE), and returns in JX the ordina number of the first match found, or JX = 0 if no match.
Again, neither the strings of CHHAVE nor of CHLOOK may contain embedded blanks: the first blank, if any, is
the string terminator.

Asopposedto ICNTH, a ’*’ may be given in CHLOOK, but notin CHHAVE (J), to allow wild-card checking on
the presence of astringin thelist of CHHAVE (J). The * *’ dividesthe string into the characters which must
be present in the looked-for object of CHHAVE (J), and additional restricting characters which can be absent,
but if present they must be right. Again a second ’** can be given in CHLOOK, but thisis not useful, since
any characters beyond the string terminator both in CHLOOX and in CHHAVE (J) are assumed to be allowed
anyway, unlikeaswith ICNTH.

For example:

PARAMETER (NHAVE=7)

CHARACTER#8 CHHAVE(NHAVE)

DATA CHHAVE /’apo ', ’apol >, ’apollo ’, ’irs6000 ’,
+ *decral ’, ’decra2 ’, ’decra3 '’/

Calling the above with the following stringswill give these results:

CHLOOK = ’apo’ JX =
)apo*)
*ap*ollo’
)ap*)

)ap)
*apol’
’apoll’
’apoll#’
’ir*s60’
’ir*s70’
decx’
’dec*ra’
’dec*rax’
’dec*ra3’

~N 010001 O WO NO R P

In spite of the similarity, the operations of ICINQ and ICNTH servereally very different functions:

With ICNTH we have a key word CHACT which we try to identify; CHPOSS(N) is most likely a fixed table
built into the program which gives the possible key words and allowed abbreviationsala VAX. The return
value from ICNTH tells us which key word we have.

With ICINQ we inspect a table CHHAVE (N), which most likely has been built up at execution time, to see
whether it contains an object according to the specifications given in CHLOOK. The interesting thing about
the return value from ICINQ is mainly whether it is zero or not, the position of the found object in the table
isof secondary importance.

Inquire presence in a list, case insensitive, up to low:
JX = ICINQL(CHLOOK,CHHAVE,NHAVE)

acts like ICINQ converting upper case characters from CHLOOK to lower case for the comparison, hence
CHHAVE must be held in lower case.

276 M432 -9

Inquire presence in a list, case insensitive, low to up:
JX = ICINQU(CHLOOK,CHHAVE,NHAVE)

acts like ICINQ converting lower case characters from CHLOOK to upper case for the comparison, hence
CHHAVE must be held in upper case.

Verify numeric:
JX = ICNUM(LINE,JL,JR)

returnsin JX the positionin LINE of the first non-numeric character in LINE(JL: JR); blanks are ignored.

Notethat >’+?, ’-’ or ’.’ are not considered numeric.
JX = JR 4+ 1if LINE(JL:JR) isal numeric.

ND Number of digitsseenin LINE(JL:JX-1).

NG = 0 if al numeric, = JX otherwise.

Verify alpha-numeric:
JX = ICNUMA(LINE,JL,JR)

returns in JX the position in LINE of the first non-alphanumeric character in LINE (JL: JR); blanks are
ignored. Notethat *+°, ’-’ or’.’ are not considered al pha-numeric.

JX = JR+ 1if LINE(JL: JR) isal apha-numeric.

ND Number of alpha-numeric characters seen in LINE (JL: JX-1).
NE Position of the first numeric character, = 0 if none.

NF Position of the first aphabetic character, = 0 if none.

NG = 0 if al alpha-numeric, = JX otherwise.

Verify alpha-numeric or underscore:
JX = ICNUMU(LINE,JL,JR)

actslike ICNUMA, but the character ”underscore” is considered a phabetic.
Identify type:

JX = ICTYPE(CHIS)
returnsin JX the type of the single character CHIS:

JX = 0 : Unseeni.e. acharacter not showing on an ASCII terminal.
= 1 : Anything else.
= 2 : Numeric character.
= 3 : Lower case character.
= 4 : Upper case character.

Find last non-blank character:
NX = LNBLNK(CHV)

returns the non-blank length of the stringin CHV (1:LEN(CHV)), i.e. the characters NX+1 to LEN(CHV) are
al blank. (Note that thisis an intrinsic function of several compilers.) If there are many trailing blanks the
routine LENOCC of M507 isfaster; depending on the machine the break-even point with LENOCC isaround 25
trailing blanks.

M432 - 10 277

Read decimal integer from character:
IX = NCDECI(CHTEXT)

actslike ICDECI, with JL = 1 and JR = LEN(CHTEXT).

Read hexadecimal integer from character:
IX = NCHEXI(CHTEXT)

actslike ICHEXI, with JL = 1 and JR = LEN(CHTEXT).

Read octal integer from character:
IX = NCOCTI(CHTEXT)

actslikeICOCTI, with JL = 1 and JR = LEN(CHTEXT).

278 M432 - 11

INDEXX CERN Program Library M433

Author(s) : M. Goossens, A. Petrilli, M. Marquina Library: KERNLIB
Submitter: Submitted: 11.02.1986
Language : Fortran Revised: 28.09.94

Utility Package for Character Manipulation

M433 is a comprehensive package for the manipulation of type CHARACTER strings.
Structure:

SUBROUTINE and FUNCTION subprograms

User Entry Names: INDEXA, INDEXB, INDEXC, INDEXN, INDEXS, INDXAC, INDXBC, INDXNC
ISCAN, REPEAT, SPACES, STRIP, SUBWORD, VERIFY, WORD, WORDS,
WORDSEP

Usage:

In what follows, the parameters STR, SSTR, SET, the functions REPEAT, SPACES and the variables CHD,
CHOPT and H are of type CHARACTER. The function VERIFY is of type INTEGER.

I = INDEXA(STR)

sets I equal to the position of the first aphabetic character (upper or lower case) in STR. I = 0 if no such
character is present.

I = INDEXB(STR,SSTR)

sets I equal to the position of thefirst occurrence of string SSTR in string STR scanning backwards. I = 0 if
no such string is present.

I = INDEXC(STR,SSTR)

sets I equal to the leftmost position where string SSTR does not match a substringin STR. I = 0 if thereis
no such mismatch.

I = INDEXN(STR)
sets I equa to the position of the first numeric character in STR. I = 0 if no such character is present.
I = INDEXS(STR)

sets I to the position of the first special (i.e. non-alphanumeric) character in STR. I = 0 if no such character
is present.

I = INDXAC(STR)

sets I egual to the position of the first non-alphabetic character (upper or lower case) in STR. I = 0 if no
such character is present.

279 M433 -1

I = INDXBC(STR,SSTR)

sets I equal to the position of the first mismatch of string SSTR with respect to string STR scanning back-
wards. I = 0 if thereisno such mismatch.

I = INDXNC(STR)
sets I equal to the position of the first non-numeric character in STR. I = 0 if no such character is present.
I = ISCAN(STR,SET)

sets I to the leftmost position where any of the characters in SET matches acharacter in STR. I = 0 if there
isno such match.

H = REPEAT(STR,NTIMES)
setsH equal to NTIMES concatenated copies of the string STR.
H = SPACES(STR,NSPACE)

sets H equal to a character string equivalent to STR with leading blanks removed and each occurence of one
or more blanksinside STR replaced by NSPACE blanks.

H = STRIP(STR,CHOPT,CHD)

sets H to a character string equivalent to STR with leading and trailing occurances of the character CHD
removed. If CHOPT isegual to ’L’, only leading characters will be removed. If CHOPT isequal to *T’, only
trailing characters will be removed.

H = SUBWORD(STR,IW,NW)
setsH equal to the character string starting with word IW of STR and containing NW words.
I = VERIFY(STR,SET)
sets I to the leftmost position of any character in STR which is not part of SET.
H = WORD(STR,IW)
setsH equal to theword IW of STR.
I = WORDS(STR)
sets I to the number of wordsin STR.
CALL WORDSEP(STR)
sets the word separator for SUBWORD, WORD and WORDS to the first character of the string STR.
Examples:
Assume the following declarations:

CHARACTER STR*41,REP10*10,REP17%*17
CHARACTER REPEAT*16,SPAC17%17 ,SPAC30%30,SPACES*20
INTEGER VERIFY

and a string STR defined as:
DATA STR /’ABC123ABC123ABC123ABC’/

The following results are obtained:

Statement/ Expression Yieldsthe value
REP10 = REPEAT(’ABC’,5) » ABCABCABCA’
REP17 = REPEAT(’ABC’,5) » ABCABCABCABCABC °
REP17 = REPEAT(’ABC’,6) > ABCABCABCABCABCAB’

M433 -2 280

INDEXB(STR,’ ’) 40

INDEXC(STR,’ ’) 1
INDXBC(STR,’ ’) 41
INDEXA(STR) 1
INDXAC(STR) 2
INDEXN(STR) 7
INDXNC(STR) 1
INDEXS(STR) 2
ISCAN(STR,’) 2
VERIFY(STR,’) 1
INDEXB(STR,’1 2 37) 31
INDEXC(STR,’1 2 37) 1
INDXBC(STR,’1 2 37) 37
ISCAN(STR,’1237)

VERIFY(STR,’1237) 1
INDEXB(STR,’A B C?) 31
INDEXC(STR,’A B C?) 2
INDXBC(STR,’A B C?) 36
ISCAN(STR, ’ABC?) 1

VERIFY(STR,’ABC’)

SPAC17=SPACES(STR,0) *ABC123ABC123ABC12’°
SPAC30=SPACES(STR,2) ‘A B €1 2 3 A B C 1 2

281 M433 -3

VXINV CERN Program Library M434

Author(s) : F. Carminati, M. Jonker, J. Zoll Library: KERNLIB, VAX and DECSTATION only
Submitter: Submitted: 05.10.1987
Language : Fortran or Assembler Revised:

Fast VAX Byte Inversion

These routines do VAX byte inversions 1-2-3-4 to 4-3-2-1 in each word of an array, either in-place or
copied.

Structure:

SUBROUTINE subprogram
User Entry Names: VXINVB, VXINVC

Usage:

CALL VXINVB(IXV,N)

invertsfour bytesin each of theN words at array IXV, in-place.
CALL VXINVC(IV,IXV,N)

copiesthe N wordsat array IV to array IXV, with the bytesinverted in each word.

On DEC machines bytes read from a disk file are loaded in memory in reverse order. One of the above
routines, applied to the result of a binary read from a disk file, causes the bytes to be stored in each 32 bits
word in the same order than in the disk file. Thisis useful when reading a binary file transferred through a
network from aforeign system, in order to preserve the order of the bytesin each 32 bits word. Please note
that several network utilities include the possibility to perform a bytes inversion in the network protocol.

Note also that when reading or writing from a magnetic tape, the bytes may be swapped in pairs and not in
groups of 4.

282 M434-1

BUNCH CERN Program Library M436

Author(s) : CDC: J. Blake, IBM: A.Berglund Library: KERNLIB
Submitter: Submitted: 20.10.1975
Language : Fortran or Assembler Revised:01.02.1982

Pack Bytes into Full Words

BUNCH converts a source array containing NBYTES bytes of NBITS hits per byte (where each byte is stored
right-adjusted in a full word), into atarget array in which the bytes follow each other contiguously without
intermediate padding. The last word of the target array, if incomplete, is however padded with binary zero.
BUNCH isthe inverse of BLOW (M426).

Structure:

SUBROUTINE subprogram
User Entry Names: BUNCH
External References: PKCHAR (M427)

Usage:

CALL BUNCH(SOURCE,TARGET,NBYTES,NBITS)

SOURCE Source array containing NBYTES bytes, each right-adjusted in a full word.

TARGET Target array, which must be at least NBYTES * NBITS/nbpw (rounded up to an integral value)
wordslong, where nbpw = 60 on CDC and nbpw = 32 on IBM.

NBYTES Number of bytesin the source array (NBYTES > 0).
NBITS Number of bits per byte (0 < NBITS < nbpw).

Restrictions:

The arrays SOURCE and TARGET must not overlap in any way.
Error handling:

BUNCH ignores callswith erroneous parameter values.
Examples:

IBM:
CALL BUNCH(SOURCE,TARGET,200,16)

The array SOURCE contains 200 words, each containing an 16-bit byte, right-adjusted. After returning from
BUNCH, the array TARGET will contain 100 32-bit words, in which the 200 16-bit bytes are stored contigu-
ously.

283 M436 -1

GETBIT CERN Program Library M437

Author(s) : R. Matthews Library: KERNLIB
Submitter: H. Grote Submitted: 01.07.1979
Language : Assembler Revised:

Set or Retrieve a Bit in a String

GETBIT/SETBIT find or set the value of asinglebit inabit-string which may extend acrossword boundaries.
Structure:

SUBROUTINE subprogram
User Entry Names: GETBIT, SETBIT

Usage:

CALL GETBIT(I,M,L)
CALL SETBIT(I,M,L)

Position of the selected bit, starting on the left with 1.
M A word or an array, considered as a continuous string of bits.

L I nteger whose right-most bit will contain thevaluefound by GETBIT or thevalueto be set by SETBIT
in the I-th position of the bit-string starting at the left-most bit of the first word of M.

284 M437 -1

BTMOVE CERN Program Library M438

Author(s) : H. Grote Library: KERNLIB
Submitter: Submitted: 01.12.1980
Language : CDC: Fortran and Compass, IBM: Assembler Revised:

Move Bit String

BTMOVE moves a contiguous string of N bits from any position in memory to any other position. Bits are
numbered from left to right (most significant to least significant within words) and may be across word
boundaries.

Structure:

SUBROUTINE subprogram
User Entry Names: BTMOVE
External References: UCOPY (V301) (CDC only)

Usage:

CALL BTMOVE(SOURCE,ISRC,TARGET,ITGT,N)
moves the string of N contiguous bits starting at position ISRC in word or array SOURCE to position ITGT in
word or array TARGET. The other bitsin TARGET are not changed, nor is SOURCE.
Notes:
Source and target strings must not overlap in storage, else the results may be unpredictable.
Examples:

IBM:
Move the highest bit (sign-bit) in word A to the lowest position of I so that it can be treated as an integer:

REAL A

INTEGER*4 I

I=0

CALL BTMOVE(A,1,I,32,1)

CDC:
Pack the five integers of array 15(5) into one word IPACK, using 12 bits per packed integer:

DIMENSION I5(5)

IPOS=1

DO11I=1,5

CALL BTMOVE(I5(I),49,IPACK,IP0S,12)
1 IPOS=IP0S+12

Move astring of 20 characters from positions41-60in array A to positions7-26 in array B:

DIMENSION A(6),B(3)
CALL BTMOVE(A,241,B,37,120)

285 M438 -1

GETBYT CERN Program Library M439

Author(s) : T. Lindel6f, R. Matthews, A. Shevel Library: KERNLIB
Submitter: T. Lindel of Submitted: 01.07.1979
Language : Assembler Revised:

Set or Retrieve a Bit String

GETBYT extracts and right-adjustsa group of bits of any length up to a full word from abit string which may
extend acrossword boundaries. SETBYT istheinverse of GETBYT.
Structure:

SUBROUTINE subprogram

User Entry Names: GETBYT, SETBYT
Internal Entry Names: SHRERR
Files Referenced: Printer

Usage:

CALL GETBYT(ADDR,IBEG,ILEN,IRES)

ADDR Name of an array containing the desired group of bits.

IBEG The bit position within ADDR of the left-most bit of the group (bits are numbered starting at 1 with
theleft-most or most significant bit in ADDR(1)).

ILEN Length of the group in bits (at most one word).
IRES Will contain the desired group, right-justified and zero-filled.

CALL SETBYT(ADDR,IBEG,ILEN,IBYT)

causes the ILEN right-most bits of IBYT to replace the group of bits of length ILEN starting at the IBEG-th
bitin the array ADDR (bits are numbered starting at 1 with the left-most or most significant bitin ADDR(1)).
Replacement goes across word boundaries, i.e. the most significant (left-most) bit of ADDR (N+1) isadjacent
to the least significant (right-most) bit of ADDR(N).

Error handling:

Calling either GETBYT or SETBYT with IBEG < 1 or ILEN > the number of bits in one word (errors) will
result in a diagnostic message. After more than 20 such errors the job will come to a STOP.

Examples:

IBM:
If ADDR(1) and ADDR(2) contain the 32-bit configurations 0. ..001110001°> and *110100...0° respec-
tively, then

CALL GETBYT(ADDR,27,10,IRES)

will set IRESto ’0...001100011101° or decimal 797
If IBYT containsthe integer value 3 (binary > 11°) and ADDR(1) = ADDR(2) = 0, then

CALL SETBYT(ADDR,32,2,IBYT)

will set ADDR(1) t00...001° and ADDR(2) t0 *100...0°.

286 M439 -1

BITPAK CERN Program Library M441

Author(s) : M. Metcalf Library: KERNLIB or Fortran library
Submitter: Submitted: 10.12.1984
Language : Fortran with | SA extensions Revised:18.10.1985

Handling Bits and Bytes, Bit Zero the Least Significant

BITPAK handles bitsand bytesin asingle word, with bit zero being the least significant bit.
Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: IOR, IAND, NOT, IEOR, ISHFT, ISHFTC, IBITS, MVBITS,
BTEST, IBSET, IBCLR

Usage:

A numeric storage unit is considered to consist of a string of bits numbered from right to left, starting
a zera The standard MIL-STD-1753 defines Il bit manipulation functions on such units, 8 of which are
the ANSI/ISA functions found as intrinsic functions in many compilers. This package complements the
functions available in compilers, ensuring that the full range is available on all machines. This description
includes all the functionsfor the sake of completeness.

Logical operations:

I0OR(M,N) provides the inclusive OR of the two integer arguments.
IAND(M,N) provides the logical AND of the two integer arguments.
NOT (M) provides the logical complement of the integer argument.

IEOR(M,N) provides the exclusive OR of the two integer arguments.
Shift operations:

aleft shift fork > 0
A shift count X specifies{ no shift fork =0

aright shift forK < 0.

ISHFT(M,X) provides the value of the integer argument M with the bits shifted. Bits shifted out
totheleft or right are lost, and zeros are shifted in from the opposite end.
ISHFTC(M,K,IC) providesthe value of the integer argument M with the rightmost IC bits shifted,

and the remaining bits untouched. The shiftis circular; no bitsare lost.
Bit subfields:

IBITS(M,I,LEN) provides, right justified, the value of the LEN bitsof the integer argu-
ment M, starting from position I.

CALL MVBITS(M,I,LEN,N,J) movesLEN bits of integer argument M, starting at position I, to the
integer argument N, starting at position J. All other bits of N are left

untouched. The arguments M and N may refer to the same numeric
storage unit.

287 M441 -1

Bit testing:

BTEST(N,I) hasthevalue.TRUE. if bit I of theinteger argument N isset, and . FALSE. otherwise.
Note that many compilers require BTEST to be declared type LOGICAL.

IBSET(N,I) hasthevalue of theinteger argument N with bit I setto 1.

IBCLR(N,I) hasthevalue of theinteger argument N with bit I setto 0.

Notes:

If bits are specified outside the range of one numeric storage unit, or if fields are specified which are longer
than one numeric storage unit or zero, or if shiftsare specified which are longer than the fiel ds being shifted,
then the results are undefined.

[J

M441 -2 288

NAMEFD CERN Program Library M442

Author(s) : J. Shiers Library: KERNLIB
Submitter: Submitted: 25.07.91
Language : Fortran Revised:

Fortran Emulation of VM/CMS NAMEFIND Command

NAMEFD is a Fortran callable routine providing an emulation of the VM/CMS NAMEFIND command.
Structure:

SUBROUTINE subprogram
User Entry Names: NAMEFD

Usage:

CHARACTER*255 CHIN(NIN),CHOUT(NOUT)
CALL NAMEFD(LUN,CHFILE,CHIN,NIN,CHOUT,NOUT,IRC)

NAMEFD scansthe specified file for entriesthat match the specified input tags and values. It returnsthe values
of the specified output tags. Thus, given the example file shown below, one might call NAMEFD with input
tag :NICK, value SNIFFLES and output tags : PHONE and : ADDRESS. If no match isfound for the specified
input, a code IRC isreturned.

CHIN(1,1) = ’:NICK’
CHIN(2,1) = ’SNIFFLES’
NIN =1
CHOUT(1,1) = ’:PHONE’
CHOUT(1,2) = ’:ADDRESS’
NOUT =2

CALL NAMEFD(1,’TEST.NAMES’ ,CHIN,NIN,CHOUT,NQOUT,IRC)

Return codes: 32 - nomatch for input tags and values,
4 - not all requested output tags found,
other - IOSTAT from FORTRAN OPEN of specified namesfile.

Format of a Names File

A names file isacollection of entries, with each entry identied by a nickname A nickname tag plus a series
of other tags with associated values make up an entry.

The format of datalinesin anamesfileisasfollows:
tag.value (:tag.value...)

Theonly tag that isrequired isa : NICK tag, e.g.
:NICK.fatuser

Thisisthe primary tag, one for each entry. It identifies the beginning of an entry and must be the first word
onaline. Any tagsthat follow relate to the preceding : NICK tag.

289 M442 -1

Examples:

An example of a NAMES file.

:nick.

:nick.

:nick.

:nick.

:nick.

:nick.

:nick.

:nick.

:nick.

:nick.

:nick.

SNOW

SNOOZY

DUMMY

BOSS

SNIFFLES

GROUCHY

SMILEY

WISTFUL

WITCH

GORGEQOUS

DWARFS

:userid.SNOWHITE :node.FOREST
:name.Snow White

raddr.Forest Primeval
:userid.SNOOZY :node.COTTAGE
:name.Il. M. Dozing

:addr.Dwarf Cottage;Forest
:userid.DUMMY :node.COTTAGE
:name.S. A. What

:addr.Dwarf Cottage;Forest
:userid.BOSS :node.COTTAGE
:name.T.0.P. Banana
:addr.Dwarf Cottage;Forest
:userid.SNIFFLES :node.COTTAGE
:name.A. H. Choo

:addr.Dwarf Cottage;Forest
:userid.GROUCHY :node.COTTAGE
:name.E. B. Scrooge
:addr.Dwarf Cottage;Forest
:userid.SMILEY :node.COTTAGE
:name.H. A. Haas

:addr.Dwarf Cottage;Forest
:userid.WISTFUL :node.COTTAGE
:name.R. U. Shy

:addr.Dwarf Cottage;Forest
:userid.QUEEN :node.CASTLE
:name.Bad Queen

raddr.Vanity Lane;Mirror City
:userid.PRINCE :node.ATLARGE
:name.Prince Charming

:1ist.SNOOZY DUMMY BOSS SMILEY

M442 -2

:phone.Z27272-7777

:phone.777-7777

:phone.777-7777

:phone.777-7777

:phone.777-7777

:phone.777-7777

:phone.777-7777

:phone.777-7777

:phone.UGLY-1111

:notebook .PRIVATE
:phone.Area 111 111-1111

GROUCHY SNIFFLES WISTFUL

290

IUSAME CERN Program Library M501

Author(s) : C. Letertre Library: KERNLIB
Submitter: Submitted: 21.08.1971
Language : Fortran or Assembler Revised: 15.09.1978

Locating a String of Same Words

TUSAME locates the first of a continuous sequence of identical words occuring at least a given number of
times. It returns the number of contiguousidentical wordsin the sequence.

Structure:

FUNCTION subprogram
User Entry Names: TUSAME

Usage:

NSAME = IUSAME(VECT,JL,JR,MIN,JSAME)

VECT(JL) Start of the portion of the vector to be analysed.
VECT(JR) End of the portion of the vector to be analysed.
MIN Minimum length of a string to be considered a string.

The function returns the length of the string as function value, and also the position of the first element of
the string: VECT (JSAME).

If no string of at least MIN elements has been found starting at or after VECT (JL), the function returns
NSAME = 0 and JSAME = JR + 1.

291 M501-1

UOPTC CERN Program Library M502

Author(s) : J. Zall, P. Rastl Library: KERNLIB
Submitter: Submitted: 21.09.1971
Language : Fortran or Assembler Revised: 16.09.1991

Decoding Options Characters

UOPTC and UOPT compare a string of actual option-characters against a similar string of possibleoption-
characters filling an INTEGER vector with 1’sand 0’s, indicating for each possible option whether or not it
was taken.

Structure:

SUBROUTINE subprogram
User Entry Names: UOPTC, UQPT

Usage:

CALL UOPTC(CHACT,CHPOSS,IOPT)

CHACT (CHARACTER) String of actual option-characters.
CHPOSS (CHARACTER) String of possible option-characters.

I0PT (INTEGER) Vector of at least LEN (CHPOSS) words, the j-th word of whichissetto 1 or 0, de-
pending on whether the j-th possible character does or does hot occur in CHACT.

CALL UOPT(IACT,IPOSS,IOPT,N)

IACT Hollerith string of actual option-characters. It isterminated by thefirst character not occuring in
the string of possibilities.

IPOSS Hollerith string of N possible option-characters (N < 30).

I0PT A vector of at least N words, the j-th word of which is set to 1 or 0, depending on whether the
Jj-th possible character does or does not occur in the TACT string.

Examples:

CALL UOPTC(’+AB’,’ABC+/Y’,I0OPT)
CALL UOPT (4H+AB.,6HABC+/Y,I0OPT,6)

will set thefirst 6 elements of I0PTt01,1,0,1,0,0.
Notes:

UOPT was written for Fortran 4 and should no longer be used for new programs.
[J

292 M502 -1

UBITS CERN Program Library M503

Author(s) : M. Metcdf, R. Matthews Library: KERNLIB
Submitter: Submitted: 01.02.1982
Language : Fortran or Assembler Revised: 20.06.1985

Locate the One-Bits of a Word or an Array

UBITS locates and countsthe 1-bitsin theright-most NBITS bitsin aword or full-word array, returning their
positions. Bit numbering isright to |eft, bit number 1 being the least significant bit in the first full word, bit
number NBPW+1 being the least significant bit in the second full word, where NBPW is the number of bits per
machine word.

Structure:

SUBROUTINE subprogram
User Entry Names: UBITS
External References: UPKBYT (M422) (Fortran version only)

Usage:

CALL UBITS(IWORDS,NBITS,IXV,NX)

IWORDS Word or full-word array to be analysed.

NBITS Bits 1to NBITS of array IWORDS are inspected.

IXV Bit positions of the 1-bitsin IWORD are placed into IXV(1) through IXV(NX) in increasing
order. IXV must be dimensioned to NBITS at least.

NX Number of 1-bitsfound.

Examples:

DIMENSION IXV(9)
IWORD=1676

C 1676 in base 2 is 11010001100
CALL UBITS(IWORD,9,IXV,NX)

sets

NX = 3, IXV(1) = 3, IXV(2) = 4, IXV(3) = 8.

293 M503 -1

LENOCC CERN Program Library M507

Author(s) : F. Rademakers, J. Zall Library: KERNLIB
Submitter: Submitted: 27.11.1984
Language : Fortranor C Revised: 05.05.1992

Occupied Length of a Character String

LENOCC returns the occupied length of a string of type CHARACTER.
Structure:

FUNCTION subprogram
User Entry Names: LENOCC

Usage:

In any arithmetic expression,
LENOCC(LINE)

has the value of the occupied length of the character string LINE, i.e. the length up to and including the last
non-blank character. LENOCC = 0 if LINE contains blanksonly. LINE isof type CHARACTER and LENOCC is
of type INTEGER.

For few trailing blanks LENOCC is slower than LNBLNK of M432, but it may be substantially faster for very
many trailing blanks; the break-even point depends on the machine and is usually around 25 trailing blanks.

Method:

On some machines LINE isfirst scanned backwards for machine words containing all blanks, and then the
remaining string is scanned for the last non-blank character.
[]

294 M507 -1

BITPOS CERN Program Library M508

Author(s) : M. Metcdf, R. Matthews Library: KERNLIB
Submitter: Submitted: 01.02.1982
Language : Fortran and CDC: COMPASS, IBM: Assembler Revised: 20.06.1985

Find One-Bits in a String

BITPOS locates and countsthe 1-bitsin theright-most NBITS bitsin aword or in afull-word array, returning
their positions. Bit numbering isright-to-left, bit number O being theleast significant bit in thefirst full word,
bit number NBPW being the least significant bit in the second full word etc., where NBPW is the number of bits
per machine word; this numbering is compatible with BITPAK (M441).

Structure:

SUBROUTINE subprogram

User Entry Names: BITPOS

External Entry Names: URKBYT (M422) (Fortran only)

COMMON Block Names and Lengths: /SLATE/ 40 (Fortran only)

Usage:

CALL BITPOS(IWORDS,NBITS,IXV,NX)

IWORDS Word or full-word array to be analysed.
NBITS Thefirst NBITS of array IWORDS are inspected.

IXV Bit positions of the 1-bitsin IWORD are placed into IXV(1) through IXV(NX) in increasing
order. IXV must be dimensioned to NBITS at least. The positionsare numbered from O.

NX Number of 1-bitsfound.

Notes:

The Fortran version contains a symbolic constant whose value must be set equal to the number of bitsin a
word (default 32).

Examples:

DIMENSION IXV(9)
IWORD = 1676

C 1676 in base 2 is 11010001100
CALL BITPOS(IWORD,9,IXV,NX)

NX = 3, IXV(1) = 2, IXV(2) = 3, IXV(3) = 7.

295 M508 -1

KERSET CERN Program Library NOO01

Author(s) : H. Lipps Library: KERNLIB
Submitter: Submitted: 22.10.1984
Language : Fortran Revised: 15.03.1993

Error Processing for Sections A-H of KERNLIB

PARTIALLY OBSOLETE
Please note that, as a consequence of transferring subprograms from KERN-
LIB to MATHLIB, this routine has been partially obsoleted in CNL 211. It
can, for atransitional period, still be used for sections D (D509 only), and for
sections E and F of KERNLIB. Users are advised not to use it any longer for
other cases and to replace it in older programs. With the foreseen transfer of
the subroutinesin sections D,E,F in KERNLIB to MATHLIB, it will eventu-

ally disappear.
Suggested replacement: MTLSET (N0O2)

Subroutine KERSET allows the user to redefine the action to be taken by subprogramsin the Fortran version
of sections A-H of KERNLIB when certain specified error conditions are detected. (This subroutine does
not exist in the Fortran 66 version.) Error recovery may be performed either on each occurrence of the error,
or only a specified number of times. Messages may be written either on each occurrence of the error, or
only a specified number of times. Error messages may be written (by default) onto the system output unit,
or may be re-routed to some other output file.

Structure:

SUBROUTINE subprogram

User Entry Names: KERSET

Internal Entry Names: KERMTR

Files Referenced: Printer or user-defined
External References: ABEND (Z035)

Usage:

CALL KERSET(ER,LGFILE,LM,LR)

ER (CHARACTER*6) A character string that identifiesthe range of error conditionsfor which action
is to be redefined.

LGFILE (INTEGER) Thelogical unit number to be used for error messages, or zero if error messages are
to be written onto the system output unit.

LM (INTEGER) The number of occurrences of each error condition in the range ER for which an
error message isto be written. LM < 0 istreated as zero, LM > 100 asinfinity.

LR (INTEGER) The number of timesthat error recovery isto be performed for each error condition
intherangeER. LR < O istreated aszero. LR > 100 istreated asinfinity. If any error condition
in the range ER occurs LR + 1 times a message is printed and the run is terminated by calling
ABEND (Z035).

296 NOO1 -1

Notes:

1. XERSET appliesto those KERNLIB error conditionswhich are specified by a six-character code (e.g.,
C204.2) inthe Error handling section of the Short Write-ups.

2. If the string ER consists of six characters specifying a single error condition
(e.g., ER="C204.2’), LM and LR apply only to thisone error condition.

If the six-character string ER ends with one or more blanks, LM and LR apply to al error conditions
whose |eftmost characters match the non-blank characters of ER.

ThusER = ’C2 > (four blanks) applies to all error conditionsin packages C200 to C299, and
ER = ° > (six blanks) appliesto all error conditionsunder the control of KERSET.

3. Thevalue of LGFILE appliesto all error messages written under the control of KERSET.

NO01-2 297

MTLSET CERN Program Library NO002

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised: 15.03.1993

Error Processing for MATHLIB

SubroutineMTLSET allowsthe user to redefine the action to be taken by certain subprogramsin MATHLIB
when certain specified error conditionsare detected. Error recovery may be performed either on each occur-
rence of the error, or only a specified number of times. Messages may be written either on each occurrence
of the error, or only a specified number of times. Error messages may be written (by default) onto the system
output unit, or may be re-routed to some other output file.

Structure:

SUBROUTINE subprogram

User Entry Names: MTLSET

Internal Entry Names: MTLMTR

Files Referenced: Printer or user-defined
External References: ABEND (Z035)

Usage:

CALL MTLSET(ER,LGFILE,LM,LR)

ER (CHARACTER*6) A character string that identifiesthe range of error conditionsfor which action
is to be redefined.

LGFILE (INTEGER) Thelogical unit number to be used for error messages, or zero if error messages are
to be written onto the system output unit.

LM (INTEGER) The number of occurrences of each error condition in the range ER for which an
error message isto be written. LM < 0 isignored, LM > 255 istreated asinfinity.

LR (INTEGER) The number of timesthat error recovery isto be performed for each error condition
intherangeER. LR < O isignored, LR > 255 istreated asinfinity. If any error conditionin the
range ER occurs LR + 1 timesamessage is printed and the run is terminated by calling ABEND
(2035).

Notes:

1. MTLSET appliesto those MATHLIB error conditionswhich are specified by a six-character code (e.g.
C204.2) inthe Error handling section of the Short Write-ups.

2. If the string ER consists of six characters specifying a single error condition
(e.g., ER="C204.2’), LM and LR apply only to thisone error condition.

If the six-character string ER ends with one or more blanks, LM and LR apply to al error conditions
whose |leftmost characters match the non-blank characters of ER.

ThusER = ’C2 > (four blanks) applies to all error conditionsin packages C200 to C299, and
ER =’ ? (six blanks) appliesto al error conditionsunder the control of MTLSET.

3. Thevalue of LGFILE appliesto all error messages written under the control of MTLSET.

298 NO02 -1

LOCF CERN Program Library N100

Author(s) : CDC Library: KERNLIB
Submitter: J.Zall Submitted: 01.03.1968
Language : Fortran or Assembler or C Revised: 16.09.1991

Address of a Variable
The function LOCB returns the absol ute address of the variable given as its argument.
LOCF returns the absol ute address measured in terms of Fortran machine words.
Structure:

FUNCTION subprogram
User Entry Names: LOCF, LOCB

Usage:

IAD = LOCB(X)

where X isthe name of avariable of any type, or aname declared EXTERNAL in the calling program.
IAD = LOCF(X)
where X isthe name of avariable of type INTEGER or REAL.

Notes:

On CDC, LOCF isincluded in the FTN library, and documented in the Fortran manual.
On al machines LOCF isintended to measure the displacement between variables, thusfor example for:

COMMON /X/ M(12),A(4),LAST
N = LOCF(LAST) - LOCF(M(1))

N will be set to contain 16 on all machines, whilst LOCB(LAST) - LOCB(M(1)) will give some multiple
of 16.

299 N100-1

IUWEED CERN Program Library N103

Author(s) : C. Letertre Library: KERNLIB
Submitter: J. Zall Submitted: 01.09.1969
Language : Fortran or Assembler Revised: 15.09.1991

Detect Indefinite and Infinite in an Array

TUWEED scans a vector and returns the address of the first quantity which is either 'indefinite’ or 'infinite'.
Structure:

FUNCTION subprogram
User Entry Names: TUWEED

Usage:
IW = IUWEED(IVEC,N)

sets IW to the relative address, in the N element vector IVEC, of the first element containing either an ’indef-
inite’ or 'infinite’. IW = 0 if there are no such elements. IVEC is not changed.
[J

300 N103 -1

TRACEQ CERN Program Library N105

Author(s) : J. Zall Library: KERNLIB
Submitter: Submitted: 01.12. 1973
Language : Fortran Revised:15.09.1978

Print Trace-Back

TRACEQ prints the Fortran trace-back leading to TRACEQ. The maximum number of trace-back levels is
specified asan argument. Fewer levels may be printed either because the main program has been reached or
because the trace-back linkage isinvalid.

Structure:

SUBROUTINE subprogram

User Entry Names: TRACEQ

Internal Entry Names: TRAC1Q, TRAC2Q

Files Referenced: User defined

COMMON Block Names and Lengths. /SLATE/ 40

Usage:

CALL TRACEQ(LUN,N)

LUN Logical unit number of the print file, LUN = 0 isaccepted to mean the standard print file.
N Maximum number of trace-back levelsto be printed.
Notes:

The implementation of TRACEQ depends on the machine; on some machines this cannot be done at al and
the routine is a dummy. On some other machines the unit for printing or the number of levels printed is not
under program control.

[]

301 N105-1

TCDUMP CERN Program Library N203

Author(s) : C. Letertre, J. Zall Library: KERNLIB
Submitter: C. Letertre Submitted: 31.01.1972
Language : Fortran Revised: 15.09.1978

Memory Dump

TCDUMP may be used for dumping sections of memory in octal (CDC) or hexadecimal (IBM), optionally
combined with any or all of the other modes (INTEGER, REAL, or Hollerith).

The dump shows 5 words per line. The address of the first word of each lineis given 3 times. The absolute
address in memory (using LOCF), the relative address within the vector in decimal, and in octal (CDC) or
hexadecimal (IBM).

Continous strings of identical content or strings of preset indefiniteproduce asingleline.
Structure:

SUBROUTINE subprogram

User Entry Names: TCDUMP

Files Referenced: Printer

External References: UBLOW (M409), TUCOMP (V304), IUSAME (M501), LOCF (N100)

Usage:

CALL TCDUMP(TEXT,VECTOR,N,MODE)

TEXT 1 word of text printed as heading.
VECTOR Variable address for start of dump.
N Number of wordsfor dumping.
MODE 1H dumpin octal,

1HI dumpin INTEGER and octal,

1HF dumpin floating and octal,

1HH dumpin Hollerith and octal,

2HIH dump in INTEGER, Hollerith and octal,
etc...

Examples:

COMMON /TOC /A,B(12),D
CALL TCDUMP(BH/TOC/,A,14,1HF)

dumps the common block TOC in octal and floating.
[]

302 N203 -1

ZEBRA CERN Program Library Q100

Author(s) : R. Brun, M. Goossens, B. Hall, O. Schaile, J. Shiers, J. Zall Library: PACKLIB
Submitter: Submitted: 18.04.1986
Language : Fortran Revised:

Dynamic Data Structure and Memory Manager

ZEBRA isadynamic data structure and memory manager. It allowsthe management of large amounts of data
in a computer store by providing the functions required to construct a logical graph of the data and their
interrelations.

The data are stored in Fortran COMMON blocks, called "stores’. Each store can be subdivided into up to 20
"divisions’. Relations between the basic units of data, or "banks’, are expressed by attaching a structural
significanceto part of abank. A bank is accessed by specifyingits addressin a given store. Such addresses
(called "links") are kept inside the banks or in"link areas’ inside a common block.

e The memory management part of ZEBRA is performed by the MZ package. Utilities are available for
reorganizing, sorting and del eting banks and data structures.

e Individual banks, data structures or complete divisionscan be output with the FZ package.

e Direct access files for data structures and the management of the data by keywords are provided by
theRZ package.

e Dumps and verification of ZEBRA structures and documentation tools are available in the DZ package.

Structure:

SUBROUTINE subprograms
User Entry Names: ZEBRA
External References: KERNLIB (Q100) routines

Usage:

See Long Write-up.

303 Q100-1

HIGZ CERN Program Library Q120

Author(s) : O. Couet Library: GRAFLIB
Submitter: Submitted: 10.02.1988
Language : Fortran and C Revised:01.11.1994

High Level Interface to Graphics and Zebra

The HIGZ package is part of PAW (Q121) (Physics Analysis Workstation), but can be used independently.
HIGZ containsentries which look and act like many of the entries of GKS (Graphics Kernel System) and, in
addition, has entries providing a higher level of functionality such as plotting whole histograms. HIGZ aso
contains an option to create a device independent metafile stored in ZEBRA (Q100) format which can hence
be ported, and re-interpreted, on other machines and operating systems.

The complete HIGZ facilitiesare availablein the PAW (Q121) system.
Structure:

SUBROUTINE subprograms

Usage:

See Long Write-up .

304 Q120-1

PAW CERN Program Library Q121

Author(s) : R. Brun, O. Couet, N. Cremel, A. Nathaniel, A. Rademakers, C. Vandoni Library: GRAFLIB
Submitter: R. Brun Submitted: 10.02.1988
Language : Interactive Revised:01.11.1994

PAW - Physics Analysis Workstation Package

PAW is a program package to assist physicists in the analysis and presentation of their data. It provides
interactive graphical presentation and statistical or mathematical analysis, working on objects familiar to
physicistslike histograms, event files (n-tuples) and vectors.

The PAW++ program provides a Motif interface to PAW.
Structure:

Interactive data analysis program.

Usage:

See Long write-up.

Notes:

The packages involved in the implementation of PAW and the platform availability are described in the
Reference Manual
[]

305 Q121-1

SIGMA CERN Program Library Q122

Author(s) : C. Vandoni Library: PAWLIB
Submitter: Submitted: 14.11.1988
Language : Fortran Revised:

SIGMA - System for Interactive Graphical Mathematical Applications

SIGMA can be considered a system for interactive on-line numerical analysis problem-solving which has
been designed essentially for mathemati cians and theoretical physicists. The major characteristics of SIGMA
are:

e The basic data units are scalars, one-dimensional arrays, and multi-dimensional rectangular arrays;
SIGMA provides automatic handling of these arrays.

e The calculational operators of SIGMA closely resembles the operations of numerical mathematics;
procedural operators are often analogous to those of Fortran.

e The system is designed to be used in interactive mode; it provides convenient facilities for graphical
display of arraysinform of (sets of) curves.

e The user can construct hisown programs within the system and has a so access to a program library;
he can store and retrieve his data and programs; he obtains on regquest hard copy of aphanumeric and

graphical type.

SIGMA was operational for many years on the CYBER computers at CERN. Most of its functionality has
been converted to run on other machines as part of the PAW (Q121) package.

Usage:

See Chapter 6 of the PAW Manual.

306 Q122-1

FATMEN

Author(s) : J. Shiers
Submitter:

Language : Fortran, C

CERN Program Library

Distributed File and Tape Management System

Q123

Library: PACKLIB

Submitted: 01.10.1991

Revised:

The FATMEN package is a set of Fortran callable routines and utilities for the management of disk and tape
files. In particular, the package provides location, operating system and medium transparency. A command

lineinterface also exists.

Structure:

SUBROUTINE subprograms and command line shell.

Usage:

See Long Write-up .

307

Q123-1

CSPACK CERN Program Library Q124

Author(s) : Various Library: PACKLIB
Submitter: J. Shiers Submitted: 01.10.1991
Language : Fortran, C, Pascal, Assembler Revised:

Client Server Routines and Utilities

The CSPACK package is a set of Fortran callable routines and utilities. In particular, it provides remote
file access and transfer with automatic conversion between data representations for commonly used HEP
formats, such asPAM files, ZebraFZ and RZ files. A command line interface also exists (ZFTP).

This package also includes TELNETG, an enhanced TELNET utility with graphics capabilties and the SYSREQ
facility, used at CERN for interaction with the Tape Management System.

Structure:
SUBROUTINE subprograms and command line shell.
Usage:

See Long Write-up .

308 Q124-1

HEPDB CERN Program Library Q180

Author(s) : L3, OPAL, CN Library: PACKLIB
Submitter: J. Shiers Submitted: 01.06.1992
Language : Fortran, C Revised:

Distributed Database Management System

The HEPDB package isa set of Fortran callable routines and utilitiesfor the management of database objects
such as calibration dataand detector geometry. One may store and retrieve objects such as Zebra structures,
vectors, text files and help information. The package is heavily based upon the DBL 3 and OPCAL systems,
devel oped by the L3 and OPAL collaborations respectively. A command lineinterface also exists.

Structure:
SUBROUTINE subprograms and command line shell.
Usage:

See Long Write-up .

309 Q180-1

ZBOOK

Author(s) : R. Brun, F. Carena, M. Hansroul, H. Grote, J.C. Lassalle, W. Wojcik
Submitter:
Language : Fortran

CERN Program Library

Q210

Library: PACKLIB

Submitted: 15.09.1978

Dynamic Memory Management

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 219. Usersare advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: ZEBRA (Q100)

Revised:17.12.1991

ZBOOK providesfacilitiesto create (at execution time) memory blocks of variable lengths, manage them and
perform the following operations on them:

e create a block

increase or decrease size of block
set block to zero

drop or delete block

write block to file

read from file

e print contents of block

Using ZBOOK, the total size of all blocks together cannot exceed the dimension of the array specified in the
user’s Fortran program. Using a subpackage YBOOX in connection with HBOOK (Y 250), however, dynamic
allocation of thetotal spaceis possible.

Structure:

SUBROUTINE package
User Entry Names: ZBOOK

Usage:

See Long Write-up .

310

Q210-1

INDENT CERN Program Library Q901

Author(s) : M. Metcalf Library: PGMLIB
Submitter: Submitted: 01.04.1983
Language : Fortran Revised:

Indent Fortran Source

The program reads Fortran source from a specified input file and writes the indented source code to a
specified output file.

Structure:

Complete PROGRAM
User Entry Names: INDENT
Files Referenced: Input and output units, either default or user defined.

Usage:

INDENT reads from the default input unit four integer valuesin asingle record. The default values are taken
if thisrecord is absent.

Indenting shift (Default = 3)
Maximal indenting level (Default = 10)
File number of source input (Default = 5)

File number of transformed source output (Default = 6)

Notethat the first column of the output file will be taken as carriage control information if the output unitis
aline printer.

Method:

The program detects the beginning and end of each DO— and IF—block, and indents each following source
line by a shift corresponding to the nesting level. Continuation lines are constructed when necessary, but
variable names are never split across two lines.

PATCHY control records are treated as comment lines, and so complete PAMS can be handled.
Restrictions:

Lines containing FORMAT statements, or character stringswith multiple embedded blanks are not indented.

Sequences of more than 200 comment lines may have their order with respect to the following statement
modified.

Assembler code gets destroyed.
Error handling:
Primitive syntax checks protect the program from most non-Fortran source input.

References:

1. M. Metcaf, FORTRAN Optimization, Academic Press London (1982), Appendix B.

311 Q901 -1

FLOP CERN Program Library Q902

Author(s) : H. Grote Library: PGMLIB
Submitter: Submitted: 29.11.1988
Language : Fortran Revised:

FLOP - Fortran Language Oriented Parser

FLOP isbest described as an "intelligent” editor that recognizes Fortran (ANSI 77) code, withafull coverage
of ANSI 66 and some of its extensions). To achieve this, FLOP has to perform part of the functions of a
compiler, mainly the declaration and syntax analysis. The knowledge resulting from this then allows FLOP
to edit the Fortran input file in various ways, and to provide useful information about its contents.

Structure:

Complete PROGRAM
FilesReferenced: Unit 11 (input), Unit 5 (commands), Unit 6 (output)
External References: TIMEL (Z007), TIMEX (Z007)

Usage:

See Long Write-up .
Refer alsoto theinteractive help files or tothe FLOP DECKS in the various Patches of the INSTALL Pam file
for examples of usage.

The source code can be found in the FLOP Pam file on the various machines.
®

312 Q9021

CONVERT CERN Program Library Q904

Author(s) : M. Metcalf Library: PGMLIB
Submitter: Submitted: 01.02.1992
Language : Fortran Revised:

Fortran 77 to Fortran 90 source form conversion tool

Usersof Fortran 90 can choose between two different styles of source form, the old (Fortran 77) and anew.

This program reads code written according to the Fortran 77 fixed source form from a specified input file
and writes it according to the Fortran 90 free source form to a specified output file. It also formats the code
by indenting the bodies of DO-loops and IF-blocks, and performs a small number of syntax conversions.

Structure:

Complete PROGRAM
User Entry Names: CONVERT
Files Referenced: Input and output units, either default or user defined.

Usage:

CONVERT has the following calling sequence on all systems:

convert [-b] [-id n] [-il m] [-sb] ifile[.f] [ofile[.£90]]
[+b] [+sb]

where the meaning of the argumentsis asfollows:

-id Indenting depth (default = 3).

-il Maximal indenting level (default = 10).
-sb Handle significant blanks (default).

-b Generate interface blocks only.

If no options are specified, significant blanks will be handled (-sb) and all code will be processed (+b). In
order to do nothing but change the source form, type e.g.:

convert -id 0 -il O +sb mysource.f

Method:

The program converts between the old fixed Fortran 77 source form to the new Fortran 90 free source form.
Note that blanks are significant in the new source form. In addition it is able to perform afew other useful
operationson thefly.

Statement keywords are followed if necessary by a blank, and blanks within tokens are suppressed; this
handling of blanksis optional, but the default (-sb).

If a CONTINUE statement terminatesa single DO loop, it isreplaced by END DO.
Procedure END statements have the procedure name added, if blanks are handled (-sb).

Statements like INTEGER#*2 are converted to INTEGER(2), if blanks are handled (-sb). Depending on the
target processor, a further global edit might be required (e.g. where 2 bytes correspond to KIND=1). Typed
functions and assumed-length character specifications are treated similarly. The length specification *4 is
removed for all data types except CHARACTER, asis *8 for COMPLEX. This treastment of non-standard type
declarationsincludes any non-standard IMPLICIT statements.

313 Q904 -1

Optionally, interface blocks only may be produced (-b); this requires blank processing to be requested
(-sb). Theinterface blocks are written in aform compatible with both the old and the new source forms.

The program is able to handle Patchy Card files, asa+ in column 1 is treated as a comment line
Restrictions:

The program does not indent FORMAT statements or any statement containing a character string with an
embedded multiple blank. The order of comment lines and Fortran statementsis slightly modified if there
are sequences of more than 200 comment lines. If there are syntax errors, continued lines do not have a
trailing &.

When producing interface blocks, a check is required that any dummy argument that is a procedure has a
corresponding EXTERNAL statement. Also, since no COMMON blocks or PARAMETER statements are copied,
part of an assumed-size array declaration may be missing. Similarly, parts of an assumed-length character
symbolic constant might be copied and have to be deleted. BLOCK DATA statements are copied and must be
deleted. These problemswould normally be detected by a compiler and are trivially corrected.

Within a given keyword, the case must be all upper or al lower, and lower case programs require blank
handling for correct indenting.

Error handling:
Primitive syntax checks protect the program from most non-Fortran source input.

References:

1. M. Metcalf and J.Reid, Fortran 90 explained, Oxford Science Publications (1990), Chapter 2

Q904 -2 314

WYLBUR CERN Program Library Q905

Author(s) : J. Zoll Library: None
Submitter: Submitted: 15.09.1994
Language : Fortran + C Revised:

Wylbur Phoenix — a Line Editor for ASCII Text Files

OBSOLETE
Please note that this routine has been obsoleted. Users are advised not to use
it any longer. No maintenance for it will take place and it will eventually

disappear.

Wylbur Phoenix is a portable command driven editor, capable of embedding a full-screen editor of the

user’s choice as a sub-system. It can operate with the simplest Telnet connection to some remote machine.

It is designed to give maximum power for the devel opment and maintenance of the source files of the large

programs used in particle physics, where it is neccessary to easily find in alarge volume what oneis looking

for. It has been written because no editor is available which combines all the features considered essential:
a) Easeof usefor the casual user;

b) ’'undo’ aseriesof mistaken edit operations;

c) globa changes displayed, and maybe confirmed individually;

d) column sensitive editing;

€) handling of program variable names, not only text strings, but without language syntax analysis;

f) direct handling of program units, ie. Fortran or C routines or Patchy decks.

g) 'master range’ automatically limiting edit operationsto an arbitrary fraction of the wholefile;

h) usage of windows as monitorsand for full-screen editing;

i) immediate, context-free, display of critical lines.

j) permanent line numbers, not hindering normal access to the files by programs other than the editor;

k) portability.
Although Wylbur Phoenix does have some aspects of 'full screen’ and interactive operations, these are
distinct features which can selectively be switched off in *batch mode’ or in 'nowindow mode’. Thus

Wylbur can be used in shell scriptsand across non-specialized computer links; indeed for some applications
Wylbur in batch mode isvery convenient.

Structure:
Complete program
Usage:

Shell command "use fn” calls the normal version of Wylbur into operation to act on file "fn”. Thisversion
istypically capable of handling 60000 lines. For bigger files one may use " useb” on some machines, which
allowsfor 120000 lines.

On the Unix machines "use” and "useb” are linksin /cern/pro/bin pointing to the executable modules.
On the Vax "use” should be asymbol like

$ USE :== $CERN_ROOT: [EXE]WYLBUR

Wylbur has not been made to work on IBM with VM/CMS.
To print the file used for delivering on-line help proceed as follows:

type”use” to call Wylbur into operation,
type”help -ptemp 84" to create file "temp” for printing,
type”help h” for instructionson how to print file "temp”.

315 Q9051

POISCR CERN Program Library T604

Author(s) : C. Isdin Library: PGMLIB
Submitter: Submitted: 01.02.1982
Language : Fortran Revised:27.11.1984

Solution of Poisson’s or Laplace’s Equation in Two-Dimensional Regions

The POISCR program package consists of a set of programs designed for the solution of Poisson’s or
Laplace’s equation in two-dimensional regions. The programs have originally been written to solve magne-
tostatic prablems, but they can equally well be used for other potential problems. Material properties may
be linear or non-linear. Polarized materia (like permanent magnet material) is allowed.

Structure:

Complete PROGRAM package
User Entry Names: FORCCR, LATTCR, POISCR, TRIPCR
Files Referenced: Asdefined inthe POISSON exec file. Unit 11, Unit 12

Usage:
See Long Write-up .
Source:

A program POISSON was originally written by R.F. Holsinger then working at LBL. It was based on an
earlier program TRIM by A. Winslow and on theoretical work by K. Halbach (LBL). The CERN Program
Library version POISCR isarevision of these programs by C. Iselin (CERN).

[]

316 T604-1

LOREN4 CERN Program Library U101

Author(s) : TC Library: KERNLIB
Submitter: J. Zall Submitted: 01.03.1968
Language : Fortran Revised:27.11.1984

Lorentz Transformation

This routine transforms momentum and energy of a particle from one L orentz-frame to another.
Seen from the reference system ¥, the other system X2 has the vel ocity 3, with 7= 75.
If arest mass M istied to system X/, with energy £’ and momentum P, we have:

3=P/E, = P/M, v =E/M.

The momentum and energy of aparticlewith massm is

insystem X P and e = +/p?+m?,
in system >’ P oand ¢ =+/p?+m
Structure:

SUBROUTINE subprogram
User Entry Names: LOREN4

Usage:

CALL LDREN4(S,A,X)

with the 4-vectorss = (P, E) and A = (j, ¢) calculates the transformed 4-vector X = (p/, ¢).
LOREN4 contains one square-root to derive M from P and F.

Method:

If we split = pr, + pr into components parallel and normal to 3, where

PL—F% pr=p—DpL,
we can write the transformations as
Pr=vpL—ie, Pr=pr, €=ve—ip
and get
po= p+(y-DpL—ei

= F+i((y = V)pi/n* —e)

= P+ T/ (v+1)—e) (becauseof n* =+ -1)

= p+PPP/(E+M)-e)/M,

6/

I
o

D

|
=3
3y

317 U101-1

Author(s) : V. Framery, L. Pape
Submitter:
Language : Fortran

Lorentz Transformations

LORENF CERN Program Library

U102

Library: KERNLIB

Submitted: 01.03.1968
Revised: 16.09.1991

LORENF transforms the momentum 4-vector of a particle from the Lorentz-frame X to the frame X' like
LOREN4 (U101); it isfaster than LOREN4 because the rest-mass M of 32/ is passed as an argument to save the

sguare root.
LORENB executes the inverse transformation.

Structure:

SUBROUTINE subprograms
User Entry Names: LORENF, LORENB

Usage:

CALL LORENF(SM,SP,PB,PF) forward transformation

CALL LORENB(SM,SP,PF,PB) backwardtransformation PF -> PB

with

SM Rest-mass M of system &/ with M? = E? — P2,
SP Momentum 4-vector (P, E) of ¥’ in X.

PB Momentum 4-vector (p, e) in X.

PF Momentum 4-vector (p', €’) in X'.

Method:

For LORENF (cf. LOREN4 (U101)):

¢ = (eFE—-pP)/M
po= p=Plete)/(E+ M)

because pP = elv — ¢/M and pP — e(E'+ M) = —M (e + €').

For LORENB:

e = (E+pP)/M
p = p+Plete)/(F+M)

318 u102-1

RWIG3J CERN Program Library U111l

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.10.1994
Language : Fortran Revised:

Wigner 3-j, 6}, 9-j Symbols; Clebsch-Gordan, Racah W-, Jahn U-Coefficients

Function subprograms RWIG3J, DWIG3J; RWIG6J, DWIG6J; RWIG9J, DWIGOJ; RCLEBG, DCLEBG; RRACAW,
DRACAW and RJAHNU, DJAHNU calculate the Wigner 3-7, 6-5 and 9-5 symbols, the Clebsch-Gordan coeffi-
cients, the Racah W -coefficients and the Jahn U-coefficients, respectively.

On CDC and Cray computers, the double-precision versionsDWIG3J etc. are not available.
Structure:

FUNCTION subprograms
User Entry Names. RWIG3J, RWIG6J, RWIG9J, RCLEBG, RRACAW, RJAHNU
DWIG3J, DWIG6J, DWIG9J, DCLEBG, DRACAW, DJAHNU

Usage:

In any arithmetic expression, for t = R (type REAL), or t = D (type DOUBLE PRECISION),

tWIG3J(A,B,C,X,Y,Z) has the val ue of (boe);

r oy z

a b ¢
tWIG6J(4,B,C,X,Y,Z) has the value of { }

r oy z

a b ¢
tWIG9J(A,B,C,P,Q,R,X,Y,Z) has the value of q r ¢

Ty z
tCLEBG(4A,B,C,X,Y,Z) has the value of (abzylabcez);
tRACAW(4A,B,C,D,E,F) has the value of Wi(abcd;e f);
tJAHNU(A,B,C,D,E,F) has the value of Ulabed;ef).

All the arguments must have integral or half-integral values (see Noteg. They have the same type as the
function name. For definitions and notations see References

The following relations hold (see Refs. 1 and 3):

Clebsch-Gordan coefficient (in terms of the Wigner 3-5 symbol):

T Yy —z

(abzylabez) = (—1)“_6_2\/20+1(a boe)?

Racah W -coefficient (in terms of the Wigner 6-; symbol):

Wi(abcd;ef) = (—1)“+b+c+d{z i ;}

Jahn U-coefficient (in terms of the Wigner 6-;5 symbol and the Racah W -coefficient):

d ¢ f
= V2e+1)2f+ 1) W(abed;ef).

Ulabed;ef) = <—1>“+”+C+W<2e+1><2f+1>{a : e}

319 Ulil-1

Method:

The Wigner 3-5 symbol and the Clebsch-Gordan coefficient are calculated from formulas (5.1) and (5.10) of
Ref. 1, respectively. The Wigner 6-; symbol, the Racah W - and the Jahn U-coefficient are calculated from
formulas (5.23) and (5.24) of Ref. 1. In both cases, the factorials are replaced by their logarithms during
the calculation. The Wigner 9-; symbol is calculated from formula (5.37) of Ref. 1 interms of Wigner 6-;5
symbols.

Notes:

A Wigner-3; symbol (Juo2 s) is considered to be zero unless simultaneously
mip Mo M3
(i) j; and m; have both either integral or half-integral values (each ?),
(i) Jji > |mi| > 0 (eachy),
@iii) my+ me+ m3z =0,
(iv) 71 — j2 — ms isaninteger,
(V) Ji1+Jj2+Js isanintegerand ji + j2 > js, J2+Js3 > J1, Js+ 1 > Je2
The conditions(v) are often denoted by (1 j» j3) and are called the triangle relations
For a Clebsch-Gordan coefficient (71 j2 my1 m2 | j1 j2 js ms), condition (iii) reads m; + my = mgs and
condition (iv) disappears.
J1 J2 Js

A Wigner-65 symbol { l } is considered to be zero unless simultaneously

1 2 13
(i) al j; and!; have non-negativeintegral or half-integral values,
(i) thefour triangle relations (j1j273), 0(j1lals), d(l1j2ls), d6(l1l273) hold.
jll j12 j13
A Wigner-95 symbol ¢ o, jys ja3 ¢ iSconsidered to be zero unless simultaneously
j31 j32 j33
(i) all j;x have non-negativeintegral or half-integral values,
(if) theargumentsin each row and in each column satisfy the triangle relations
Restrictions:
The sum of argumentsin any triangle relationmust not exceed 100. No test is made.

References:

1. R.D. Cowan, The theory of atomic structure and spectra, (Univ. of California Press, Berkeley CA
1981).

2. A.F. Nikiforov, V.B. Uvarov and Yu.L. Levitan, Tables of Racah coefficients (Pergamon Press, Oxford
1965).

3. M. Rotenberg, R. Bivins, N. Metropolis and J.K. Wooten, Jr., The 3-5 and 6-j symbols (Crosby
Lockwood, London 1959).

4. D.A. Varshalovich, A.N. Moskaev and V.K. Khersonskii, Quantum theory of angular momentum
(World Scientific, Singapore 1988).

Ul11-2 320

RTCLGN CERN Program Library ul1z

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.10.1994
Language : Fortran Revised:

Clebsch-Gordan Coefficients in Rational Form

Function subprogram RTCLGN calculates the (signed) sgquare of the Clebsch-Gordan coefficient in rational
form and in powers of prime numbers. In terms of the Wigner-3;5 symbol, this coefficient is defined by

my my —ms3

C = (jijemimal|jijejzms) = (—1)1752Fms \/2j3—|-1(g)

All 7; and m; must have integral or half-integral values (see Noteg. For definitions and notations see Ref.
1.

On computers other than CDC and Cray, only the double-precision version DTCLGN is available. On CDC
and Cray computers, only the single-precision version RTCLGN is available.

Structure:

SUBROUTINE subprogram
User Entry Names: RTCLGN
Files Referenced: Unit 6

Usage:

For t = R (typeREAL), t = D (type DOUBLE PRECISION),

CALL tTCLGN(JJ1,JJ2,JJ3,MM1,MM2,MM3,RNUM,RDEN,KPEX)

JJ1,332,33J3 (INTEGER) The j-parameters multiplied by two, i.e. JJ1= 2j; etc.
MM1,MM2,MM3 (INTEGER) The m-parameters multiplied by two, i.e. MM1= 2m, €tc.

RNUM (type according to t) Contains, on exit, the signed numerator of C'2.
RDEN (type according to t) Contains, on exit, the denominator of C'2.
KPEX (INTEGER) Array of length 40 at least. Contains, on exit, the exponents,, inthe expression
40
¢t = JI#k
n=1
wherep; =2, po =3, p3 =5,..., pyo = 173 arethefirst 40 prime numbers.
Notes:

A Clebsch-Gordan coefficient (51 j2 m1 ma2 | j1 j2 j3 ms) isconsidered to be zero unless simultaneously
(i) j; and m; have both either integral or half-integral values (each :),
(i) ji > |mi| > 0 (eachy),
@iit) my + ms = ms,
(V) Ji1+Jj2+Jjs isanintegerand ji + j2 > js, J2+J3 > J1, Js+J1 > J2
Inthiscase, RNUM = 0, RDEN = 1 or DNUM = 0, DDEN = 1, respectively, andKPEX(n) = 0, (n = 1,...,40).

321 ul1iz-1

Source:
Thissubroutineis based on an earlier version by H. Yoshiki.
Error handling:

Error U112.1: The calculation requires a prime number p,, withn > 40.
In this case, DNUM = 0, DDEN = 1, KPEX(n) = 0, (n=1,...,40). A message iswrittenon Unit 6 unless
subroutine MTLSET (N0O2) has been called.

References:

1. R.D. Cowan, The theory of atomic structure and spectra, (Univ. of California Press, Berkeley CA
1981) 142-144

ul12-2 322

RDJMNB CERN Program Library U501

Author(s) : K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.02.1989
Language : Fortran Revised:01.12.1994

Beta-Term in Wigner’s D-Function

Function subprograms RDJMNB and DDJMNB calculate the 5-term d2,,, (8) inthe matrix element of the finite
rotation operator (Wigner’'s D-function)

Dyl Boy) = €7 d (8) €™
by using the formula (Ref. 1, No. 4.3.1(3))

&, (8) = (1) G+m)G—m)(G+) — n)! x

L COSQk—m—n(lﬁ) Sin2j+m+n_2k(lﬁ)
zk: (=1) K+ m— k)!Q(j +n—k)\(k— - n)!

for arbitrary (either al integer or all half-integer) values of j, m,n suchthat j > 0,|m| < j and |n| < j.
The summation over & runsfrom max(0, m + n) tomin(j + m, j + n).

On computers other than CDC or Cray, only the double-precision version DDJMNB isavailable. On CDC and
Cray computers, only the single-precision version RDJMNB is available.

Structure:

FUNCTION subprograms

User Entry Names: RDJMNB, DDJMNB

Obsolete User Entry Names: DJMNB = RDJMNB
Files Referenced: Unit 6

External References: MTLMTR (NOO2), ABEND (Z035)

Usage:
In any arithmetic expression,
RDJMNB(AJ,AM,AN,BETA) or DDJMNB(AJ,AM,AN,BETA) hasthevaue dZnn(ﬁ),

where AJ = j, AM = m, AN = n and BETA = 3. RDJMNB is of type REAL, DDJMNB is of type DOUBLE
PRECISION, and AJ, AM, AN, BETA have the same type as the function name. BETA has to be given in
degrees.

Restrictions:

0 < AJ < 25, [AM| < AJ, |AN| < AJ, 0 < BETA < 360.

Accuracy:

Approximately full single- or double-precision machine accuracy, at least for small values of the indices.
Error handling:

Error U501. 1: If any of therestrictionsis not satisfied, the function valueis set equal to zero, and amessage
iswrittenonUnit 6, unlesssubroutineMTLSET (N0O2) has been called.

References:

1. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum theory of angular momentum,
(World Scientific, Singapore 1988) 76

323 us01-1

RNDM CERN Program Library V104

Author(s) : CDC: H. von Eicken, IBM: T. Lindel of Library: KERNLIB
Submitter: Submitted: 07.12.1970
Language : Assembler Revised: 15.09.1978

Uniform Random Numbers

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 215. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement:
RANMAR (V113) or RANECU (V114) or RANLUX (V115)

RNDM generates uniformly distributed pseudo-random numbers in the interval (0,1) in type REAL and in the
interval (1,247 — 1) (CDC) or (1,23! — 1) (IBM) in type INTEGER. The CDC version has a period of more
than 10'3. The IBM period, however, is only about 5 x 10% which may not be good enough for some
calculations. In that case RNDM2 (V107) should be used instead.

Structure:

SUBROUTINE subprogram
User Entry Names. IRNDM, RNDM, RDMIN, RDMOUT

Usage:

Y = RNDM(X)

where X isadummy argument (see Noteg), sets Y to a pseudo-random number intheinterval (0,1). X and Y
are of typeREAL.

I = IRNDM(X)

where X is a dummy argument (see Noteg, sets I to an integer pseudo-random number in the interval
(1,2*7 — 1) onCDC, (1,23 — 1) on IBM. X isof type REAL and I is of type INTEGER.

CALL RDMOUT(SEED)

replaces SEED by the current value of the integer pseudo-random number. This SEED may then be used to
restart the sequence at this point, by acall to RDMIN. SEED is of type REAL.

CALL RDMIN(SEED)

replacesthe current value of theinteger pseudo-random number by the value of the variable SEED. SEED is of
type REAL. The value of SEED should not be chosen by the user but should be obtained by a previouscall to
RDMOUT. If thisis not complied with, the numbers generated may have serious defectsin their randomness.

Method:
CDC:
Consider the sequence:
ri = ari_(mod2) fori=1,2,...
withrg = 2000 0000 0110 6047 16255

anda = 20000000 3432 7724 46153

324 V104 -1

where ry and « are the unnormalised floating-point representation of the starting number and 5'° respec-
tively. The j-thfloating-point number R ; isobtained by packing » ; with an exponent (—47) and normalising
it. Thisensuresthat R ; fallsin theinterval (0,1).

The product ar;_; isgenerated in a 96 bit accumulator. Theinteger number NV, returned isthe low order 47
bits of the contents of this accumulator, except that the right-most 11 bits are replaced by those occupying
bit positions 48-58. Thisreplacement isdone in order to increase the time period of the low order bits.

IBM: See write-up for RNDM2 (V107).
Notes:

While the argument is dummy, in the sense that the generator makes no use of it, it must be noted that if a
reference to RNDM occurs

e more than once within a Fortran statement, the argument to it should be different in each case;
e inaD0-loop, the argument must depend either directly or indirectly on the index of thisloop.
These rules must be observed since the compilers, in their attempt to optimise the object code, assume that

functions called with identical arguments return the same function value.
[J

V104 -2 325

NRAN CERN Program Library V105

Author(s) : T. Lindelof, F. James Library: MATHLIB
Submitter: Submitted: 15.06.1976
Language : CDC: Compass, IBM: Fortran Revised:

Arrays of Uniform Random Numbers

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 215. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement:
RANMAR (V113) or RANECU (V114) or RANLUX (V115)

NRAN on CDC is about 4 times faster than RNDM when "many’ uniformly distributed random numbers are to
be generated at once.

NRAN on IBM is not recommended. It is merely a Fortran interface to RNDM. Thus this description applies
only to the CDC version.

Structure:

SUBROUTINE subprogram
User Entry Names: NRAN, NRANIN, NRANUT

Usage:

CALL NRAN(VEC,N)

fillsthearray VEC (of length IV at least) with N independent pseudo random numbers uniformly distributedin
theinterval (0,1), the end-points excluded. The other two entries may be used to retrieve and set the *seed’
asfollows:

CALL NRANUT(SEED)

returnsin SEED the current value of a quantitity which is changed after each call to NRAN and upon which
the future random number sequence depends. Itsinitial default valueis
171700000000000000014.

CALL NRANIN(SEED)

presets the above-mentioned quantity to SEED. SEED may be any humber of theform
1717xxxxXXXXXXXXXXxXxys Where y must be 1 or 5 and the x’s any octal digits.

Method:

Multiplicative congruential method with the multiplier 20001170673633457725 5. The sequence generated
isindependent of that of RNDM (V104) so that both may be used together.

References:

1. Computing 6, (1970) 121.

326 V105-1

RANMAR CERN Program Library V113

Author(s) : G. Marsaglia, A. Zaman Library: MATHLIB
Submitter: F. Carminati, F. James Submitted: 08.06.1989
Language : Fortran Revised:

Fast Uniform Random Number Generator

RANMAR generates a sequence of 32-bit floating-point random numbers uniformly distributed in the interval
(0,2), the end points excluded. These numbers are returned in a vector. The period is about 103 and the
quality isgood but it fails some tests. For better quality use RANLUX (V115), which is slower.

Several independent sequences can beinitialized and used in the same run.
Structure:

SUBROUTINE subprograms
User Entry Names: RMMAR, RMMAQ, RANMAR, RMARIN, RMARUT
COMMON Block Names and Length: /RANMA1/ 104, /RANMA2/ 104

Usage:

For a single sequence:

CALL RANMAR(VEC,LEN)

VEC (REAL) Array of length LEN at least. On exit, it will contain the in (0,1) uniformly distributed
random numbers.
LEN (INTEGER) Number of random numbersto be generated. Unchanged on exit.

Theinitializationis made by

CALL RMARIN(IJKLIN,NTOTIN,NTO2IN)

IJKLIN (INTEGER) Seed from which to start the sequence. Every integer number from 1 to 900 000
000 originatesan independent sequence of random numbers with operand of 2144 (about 10%3).

NTOTIN (INTEGER) Number (mod 10?) of random number generated.
NTO2IN (INTEGER) Billions (10°) of random numbers generated.

The arguments NTOTIN and NTO2IN are used to restart the generation from a given point by skipping over
aready performed extractions. They are returned by RMARUT and should not be touched by the user.

CALL RMARUT(IJKLUT,NTOTUT,NTO2UT)

IJKLUT (INTEGER) Seed from which the sequence was started.
NTOTUT (INTEGER) Number (mod 10?) of random number generated so far.
NTO2UT (INTEGER) Billions (10?) of random numbers generated so far.

327 V113-1

For multiple sequences:

CALL RMMAR(VEC,LEN,ISEQ)

VEC

LEN
ISEQ

(REAL) Array of length LEN at least. On exit, it will contain the in (0,1) uniformly distributed
random numbers.

(INTEGER) Number of random numbers to be generated. Unchanged on exit.

(INTEGER) Number of the independent sequence from which the LEN numbers should be ex-
tracted. If < 0, thelast valid sequence explicitely defined is used. Unchanged on exit.

Several independent sequences can be defined and used. Each sequence must be initialized by the user,
otherwise the result is unpredictable. By default the routine contains a buffer of space to handle only one
sequence. If more sequences are needed, then a bigger buffer should be alocated in the main program
defining the COMMON block /RANMA2/ to the appropriate size. The space needed is 1 word + 103 words for
every random sequence initialized.

The sequences are initialized by

CALL RMMAQ(ISEED,ISEQ,CHOPT)

ISEED

ISEQ

CHOPT

(INTEGER) Array of length 3 or 103 according to the option specified in CHOPT. Thefirst location
contains the integer seed from which to start the sequence. Every integer number from 1 to 900
000 000 originates an independent sequence of random numbers, with a period of 2'4* (about
10*%). The second and the third location contain numbers used internally to re-initialize the
generator by skipping and should not be touched by the user. The other numbers are a snapshot
of the complete status of the generator. If saved, they can be used to restart the generator without
skipping over numbers already generated.

(INTEGER) This variable contains, on entry, the number of the independent random number se-
guence which should be addressed by the present call. If < 0, then the last valid sequence used
will be addressed either for a save or a store. If option *R’ is specified, on exit the variable will
contain the sequence actually used.

(CHARACTER) Specifies the action which RMMAQ should take. Possible optionsare:

> 2> (Blank) The sequence number 1 will be initialized with a default seed. All arguments are
ignored.

'R’ Get the present status of the generator. If option *V’ isaso present, then the complete
statusof the generator will be dumpedin thearray ISEED. Thisoptionswill use 103 words
in ISEED but has the advantage that the generator can be restarted immediately without
skipping numbers. If option *V? is not present, then only 3 words will be used but the
generator will have to be restarted by skipping the number of events generated so far.

’S? Set the status of the generator to a previoudy saved state. If option *V’ isalso present,
then an array ISEED of 103 wordsis expected, which comes from a previous call to the
routine with option *RV’. Thiskind of initializationis very fast. If the option vV’ isnot
specified then the generator will be restarted regenerating the same number of random
extractions it generated at the time the status was saved. In this case only the first 3
locations of ISEED will be used.

’V? Vector option. 103 words will be saved/restored. This alows to restart the generator
without skipping over numbers already generated.

V113-2 328

For RMMAR one seed is needed to initialize the random number, but it is a one-way initialization. The seed
cannot be output and used to restart the sequence. In order to restart the generation, the number of random
numbers generated is recorded by the generator. The sequence is restarted either generating this many
random numbers or saving and restoring a vector of 103 words. The number of generationsis stored in the
two array elements ISEED (2) , ISEED(3) asthe period is bigger than the maximum number which can be
represented by a 32-bit integer.

Timing:

Timein usec for extractions and skips:

Extractions 1000/10°
per call 1 4| 16 | 128 skips
APOLLO 10000 | 74 | 6.0 | 56| 55 15/4.6
APOLLO 4000 69| 55| 51| 50 120/73

IBM390E 431 25| 20| 19 7.4/1.2
CRAY X-MP/48 | 41 | 21| 17| 15 6.9/1.6
VAX8650 14|73 |59 | 58 4.7/14.6

References:

1. G. Marsagliaand A. Zaman, Toward a Universal Random Number Generator, Florida State University
FSU-SCRI-87-50 (1987).

2. F. James, A Review of Pseudorandom Number Generators, Computer Phys. Comm. 60 (1990) 329—
344.

329 V113-3

RANECU CERN Program Library V114

Author(s) : P. I’ Ecuyer Library: MATHLIB
Submitter: F. Carminati Submitted: 27.02.1989
Language : Fortran Revised:

Uniform Random Number Generator

RANECU generates a sequence of uniformly distributed random numbers in the interval (0,1). The numbers
are returned in a vector. Several independent sequences can be initialized and used in the same run.

Structure:

SUBROUTINE Subprograms
User Entry Names: RANECU, RANECQ
COMMON Block Names and Lengths: /RANEC1/ 402

Usage:

CALL RANECU(VEC,LEN,ISEQ)

VEC (REAL) Array of length LEN at least. On exit, it will contain the in (0,1) uniformly distributed
random numbers.
LEN (INTEGER) Number of random numbers wanted. Unchanged on exit.

ISEQ (INTEGER) Number of the independent sequence from which the LEN numbers should be ex-
tracted. If ISEQ < 0 then the extraction will be made from the sequence used last. Unchanged on
exit.

Several independent sequences can be defined and used. Each sequence MUST be initialized by the user,
otherwise the result is unpredictable. By default the routine contains a space buffer to handle only one
sequence. If more sequences are needed, then a bigger buffer should be alocated in the calling program
defining the COMMON block /RANEC1/ appropriately. Two words have to be allocated plus four words for
every sequence initialized.

Twointeger seedsare used toinitializeasequence. Not all pairs of integersdefine agood random sequence or
onewhichisindependent from others. Sections of the same random sequence can be defined as independent
sequences. The period of the generator is2° ~ 10'®. A generation has been performed in order to provide
the seeds to start any of the generated sections. There are 100 possible seed pairs and they are all 10°
numbers apart. Thus a sequence started from one of the seed pairs, after 10° numbers will start generating
the next one. Each of these sequencesis of the same order of magnitude as the basic sequence offered by
RNDM (V104). Longer sequences will be generated and the corresponding seeds made available to users.
Note that, while the numbers generated by the default sequence will aways be the same, the introduction of
more sequences may modify some of them. In order to handletheinitialization of the package, thefollowing
routineis provided:

330 V114-1

CALL RANECQ(ISEED1,ISEED2,ISEQ,CHOPT)

ISEED1 (INTEGER) On entry, it contains the first integer seed from which to start the sequence. Un-
changed on exit.

ISEED2 (INTEGER) On entry, it containsthe second seed from which to start the sequence. Unchanged
on exit.

ISEQ (INTEGER) On entry, it contains the number of the independent sequence of random numbers
to be addressed by thiscall. If ISEQ < 0, then the last valid sequence used will be addressed
either for a save or a store. In case the option *R’ is specified, on output the variable will
contain the sequence actually used.

CHOPT (CHARACTER=*1) A character specifying the action which RANECQ should take. Possible options
are:

» 2 |f 1 < ISEQ < 100, the sequence number ISEQ will be initialized with the default
seeds of the pre-computed independent sequence number ISEQ. ISEED1 and ISEED2
areignored.

If ISEQ < 0 or ISEQ > 100, then sequence number 1 will beinitialized with the default
seeds. ISEED1 and ISEED2 are ignored.

'R’ Get the present status of the generator. The two integer seeds ISEED1 and ISEED2 will
be returned for sequence ISEQ.

’S? Setthe statusof the generator to apreviously saved state. Thetwo integer seedsISEED1
and ISEED2 will be used to restart the generator for sequence ISEQ.

’Q’ Get the pre-generated seedsfor ISEQ (1 < ISEQ < 100). Thereare 100 pre-generated
sequences each one will generate 10° numbers before reproducing the following one.

Timing:

Timein usec for extractions:

Extractions
per call 1| 4| 16| 128
Apollo10000 | 6.2 (44|39 | 38
Apollo 4000 52 | 37| 34| 33
IBM 3090E 4929 |25| 24
IBM 3090EVF | 34| 23| 20| 18
Cray X-MP/48 | 4.2 | 22| 17| 15
VAX 8650 19| 13| 12 | 116

References:

1. P I"Ecuyer, Efficient and Portable Random Number Generators, Comm. ACM 31 (1988) 742.

2. F. James, A Review of Pseudorandom Number Generators, Computer Phys. Comm. 60 (1990) 329—
344.

V114 -2 331

RANLUX CERN Program Library V115

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 15.03.1994
Language : Fortran Revised:

Uniform Random Numbers of Guaranteed Quality

RANLUX generates pseudorandom numbers uniformly distributed in the interval (0,1), the end points ex-
cluded. Each call produces an array of single-precision real numbers of which 24 bits of mantissa are
random. The user can choose a luxury level which guarantees the quality required for his application. The
lowest luxury level (zero) gives afast generator which will fail some sophisticated tests of randomness; The
highest level (four) isabout five times slower but guarantees compl ete randomness. In all cases the periodis
greater than 10195, Independent subsequences can be generated. Entries are provided for initialization and
checkpointing.

Structure:

SUBROUTINE Subprograms
User Entry Names: RANLUX, RLUXGO, RLUXAT, RLUXIN, RLUXUT

Usage:

CALL RANLUX(RVEC,LEN)

returns a vector RVEC of LEN 32-hit random floating point numbers in the interval (0,1), the end points
excluded. RVEC isan array of type REAL and of length LEN at least.

Luxury levels:

For simplicity, five standard luxury levels may be chosen (¢ is the time factor relative to level zero; for the
definition of p, see Reference$. Ref. 1. explains the method, Ref. 2. describesthe Fortran implementation
in more detail.

Level | p
0 24 | 1 | Equivaenttothe original RCARRY of Marsaglia and Zaman, very

long period, but fails many tests.

1 48 | 1.5 | Considerableimprovement in quality over level O, now passesthe

gap test, but still fails spectral test.

2 97 | 2 | Passesall knowntests, but theoretically till defective.

3 223 | 3 | DEFAULT VALUE. Any theoretically possible correlations have

very small chance of being observed.

4 389 | 5 | Highest possibleluxury, al 24 bits chaotic.

Asarough indication of timing, RNDM (V104) isabout t=0.5, RANMAR (V113) ¢=1, and RANECU (V114) t=2.
Concerning the quality scale, RNDM is maybe good enough for moving fish around on a screen saver (if you
are not afraid of getting some diagonal lines on your screen), RANMAR and RANECU both have quality which
probably correspondsto aluxury level between 1 and 2, but thisis based only on empirical testing and true
quality may be lower.

No initializationis necessary if the user wants default values. Otherwise the following are available:

CALL RLUXGO(LUX,INT,K1,K2)

332 V115-1

When K1 = K2 = 0, this call initializes the RANLUX generator from one 32-bit integer INT and sets the
Luxury Level. If LUX isan integer between 0 and 4, it setsthe luxury level as defined above. If LUX > 24,
it istaken as the value of p, which then can take on other values than those given in the table. If INT = 0,
default initialization is used and only the luxury level is set by LUX. Otherwise, every possiblevalue of INT
givesrise to a vaid, independent sequence which will not overlap any sequence initialized with any other
value of INT. The integers K1 and K2 are used for restarting the generator from a break point saved by

RLUXAT.
CALL RLUXAT(LUX,INT,K1,K2)

dumps the four integers which can be used to restart the generator at this point by calling RLUXGO. RANLUX
will then skip over K1 + 10%xK2 numbers to reach the break point. A more efficient but less convenient
method for restarting is offered by RLUXIN and RLUXUT.

CALL RLUXIN(IVEC)

restartsthe generator from vector IVEC of 25 32-bit integers (see RLUXUT). IVEC isan array of type INTEGER
and of length 25 at least.

CALL RLUXUT(IVEC)

outputsthe current values of the 25 32-bit integer seeds, to be used for restarting.

References:

1. M. Luscher, A portable high-quality random number generator for lattice field theory simulations,
Computer Phys. Commun. 79(1994), 100-110.

2. F. James, RANLUX: A Fortran implementation of the high-quality pseudorandom number generator
of Luscher, Computer Phys. Commun. 79 (1994) 111-114.

V115-2 333

RM48 CERN Program Library V116

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 15.03.1994
Language : Fortran Revised:

Double Precision Uniform Random Numbers

RM48 generates pseudorandom numbers using a double-precision (64-bit) adaptation of RANMAR (V113). The
floating-point numbers in the interval (0,1), the end points excluded, have 48 significant bits of mantissa
(additional bits of mantissa, if supported by the hardware, are zero). Both the code and the results are
portable, provided the floating-point mode is adapted to the computer being used (for example, single-
precision mode on 64-bit machines, double-precision mode on 32-bit machines).

Structure:

SUBROUTINE Subprograms
User Entry Names: RM48, RM48IN, RM48UT

Usage:

CALL RM48(RVEC,LEN)

returns a vector RVEC of LEN 64-bit random floating-point numbersin (0,1), the end points excluded. RVEC
isan array of length LEN at least. It isof type DOUBLE PRECISION on 32-bit machines, and of type REAL
otherwise.

CALL RM48IN(I1,N1,N2)

initializesthe generator from one 32-bitinteger I1, and number countsN1, N2 (forinitializing,setN1 = N2 = 0,
but to restart a previously generated sequence, use values output by RM48UT).

CALL RM48UT(I1,N1,N2)

outputsthe value of the original seed and the two number counts, to be used for restarting by initializing to
I1 and skipping 100000000 * N2 + N1 numbers.

Method:

The method isthat of RANMAR (V113).

334 V116-1

RNORML CERN Program Library V120

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 15.03.1994
Language : Fortran Revised:

Gaussian-distributed Random Numbers

RNORML and RNORMX generate (vectors of) single-precision random numbers in a Gaussian distribution of
mean zero and variance one. RNORML uses the uniform generator RANMAR undernesth, and RNORMX allows
the user to choose the uniform generator to be used underneath. The code is portable Fortran, but the results
are not guaranteed to beidentical on all platforms because there isbranch on afloating-point compare which
may (very rarely) cause the sequence produced on a given platform to be out of step with that of a different
platform.

Structure:

SUBROUTINE Subprograms
User Entry Names: RNORML, RNORMX

Usage:

CALL RNORML(RVEC,LEN)

generates a vector RVEC of LEN Gaussian-distributed random numbers. RVEC is an array of type REAL and
of length LEN at least.

The uniform generator used iSRANMAR, so it may be initialized by calling RMARIN (V113), but beware that
thisasoinitializesRANMAR (V113)!

An alternative subroutine is supplied which allows the user to select the underlying uniform generator, for
example RANLUX (V115).

EXTERNAL urng

CALL RNORMX(RVEC,LEN,urng)

where urng isauniform random number generator of standard calling sequence: CALL urng(VEC,LENG).
For example,

DIMENSION RVEC(10)
LEN = 10
EXTERNAL RANLUX
CALL RLUXGO(4,7675039,0,0)
DO ...
CALL RNORMX(RVEC,LEN,RANLUX)

would generate vectors of 10 Gaussian-distributed pseudorandom numbers of the highest quality. Note that
initializationis now performed by theinitializing entry for RANLUX, which isRLUXGO.

Method:

The method used to transform uniform deviates to Gaussian deviates is that known as the ratio of random
deviates, discovered by Kinderman and Monahan, and improved by Leva(see Reference$. The generation
of one Gaussian random number requires at least two, and on average 2.74 uniform random numbers, as
well as one floating-point division and on average 0.232 logarithm eval uations.

335 V120-1

References:

1. JL. Leva, A fast normal random number generator, ACM Trans. Math. Softw. 18 (1992) 449-453.

2. JL. Leva, Algorithm 712. A normal random number generator, ACM Trans. Math. Softw. 18(1992)
454455,

V120-2 336

CORSET CERN Program Library V122

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 15.03.1994
Language : Fortran Revised:

Correlated Gaussian-distributed Random Numbers

CORGEN generates vectors of single-precision random numbers in a Gaussian distribution of mean zero and
covariance matrix V. The generator must first be set up by acall to CORSET which transforms the covariance
matrix V to an appropriate square rootmatrix C which isthen used by CORGEN. CORGEN uses the Gaussian
generator RNORML (V120) underneath, which in turn usesthe uniform generator RANMAR (V 113) underneath,
soinitidizationis performed asin V113, but beware that this also initializes both RANMAR and RNORML! The
code is portable Fortran, but the results are not guaranteed to be identical on all platforms as explained in
RNORML (V120).

Structure:

SUBROUTINE Subprograms
User Entry Names: CORSET, CORGEN

Usage:

DIMENSION V(n,n), C(n,n), X(n)
CALL CORSET(V,C,n)
DO ...

CALL CORGEN(C,X,n)

The call to CORSET transforms covariance matrix V to C. The call to CORGEN uses C to generate vector X of
correlated Gaussian variables with covariance matrix V.

Thelimitationn < 100 isimposed by the dimension of an intermediate storage vector in CORSET.

Note that CORSET takes longer than CORGEN (for medium to large matrices). If it is desired to generate
numbers according to a few different matrices, then each pair Vi, Ci must be separately dimensioned and
saved aslong asit is needed.

Method:
The square root method seems to be an old one whose originsare not known to the author (Ref. 1, p. 1182).

References:

1. F. James, Monte Carlo theory and practice, Rep. Prog. Phys. 43(1980) 1145-1189.

337 V122 -1

RAN3D CERN Program Library V130

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 15.09.1978
Language : Fortran Revised:

Random Three-Dimensional Vectors

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: RN3DIM (V131)

RAN3D generates random vectors, uniformly distributed over the surface of a sphere of agiven radius.
Structure:

SUBROUTINE subprogram
User Entry Names: RAN3D
External References: NRAN (V105)

Usage:

CALL RAN3D(X,Y,Z,XLONG)

X,Y,Z (REAL) A random 3-dimensional vector of length XLONG.
XLONG (REAL) Length of the vector (to be specified on entry).
Method:

A random vector in the unit cube is generated using NRAN (V105) and is rejected if it lies outside the unit
sphere. This rejection technique uses on average about 6 random numbers per vector, where only two are
needed in principle. However, it is faster than the classical two-number technique which requires a square
root, asine, and a cosine.

[J

338 V130-1

RN3DIM CERN Program Library V131

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 22.04.1996
Language : Fortran Revised:

Random Two- and Three-Dimensional Vectors

RN3DIM generates random vectors, uniformly distributed over the surface of a sphere of given radius.
RN2DIM generates random vectors, uniformly distributed over the circumference of acircle of given radius.

Structure:

SUBROUTINE subprogram
User Entry Names: RN2DIM, RN3DIM
External References: RANLUX (V115)

Usage:
CALL RN3DIM(X,Y,Z,XLONG)

X,Y,Z (REAL) A random 3-dimensional vector of length XLONG.
XLONG (REAL) Length of the vector (to be specified on entry).

CALL RN2DIM(X,Y,XLONG)

X,Y (REAL) A random 2-dimensional vector of length XLONG.
XLONG (REAL) Length of the vector (to be specified on entry).
Method:

A random vector in the unit cube is generated using RANLUX (V 115) and isrejected if it lies outside the unit
sphere. In the case of RN3DIN, thisrejection technique uses on average about 6 random numbers per vector,
where only two are needed in principle. However, it isfaster than the classical two-number technique which
requires a square root, asine, and a cosine.

[]

339 V131-1

RNGAMA CERN Program Library V135

Author(s) : F. James, K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.10.1994
Language : Fortran Revised:

Gamma or Chi-Square Random Numbers

Function subprogram RANGAM generates a positive random number = according to the gamma distribution
with parameter p > 0, i.e., according to the density

1
P@<x<t+ﬁ):i%;ﬁ4€WL

A special caseisthe y2-distributionwith N degrees of freedom

1 1 1

2 IN_1 14

X(t<2e<t+dl) = ————12 e 2" dt.
V2NT(3N)

Structure:

FUNCTION subprogram
User Entry Names: RNGAMA
External References: RANLUX (V115), RNORMX (V 120)

Usage:
In any arithmetic expression,
RNGAMA (P)

has the value of a gamma-distributed random number, where P > 0 is of type REAL. The value of P may
vary from call to call without influencing the efficiency.

Method:

For integral values of p < 15, the logarithm of the product of p uniform random numbersis used. For any
value of p > 15, the Wilson-Hilferty approximation (a transformed normal distribution) is used. For al
other p, Johnk’salgorithm is used.

Notes:

The routine is fast for small integer values of p, and for p > 15, (one Gaussian random number and one
sguare root, plusafew multiplications). Non-integral values of p < 15 are rather slow.

Examples:

CHI2 = 2xRNGAMA(O.5%N)

sets CHI2 to arandom number distributed as y? with N degrees of freedom.

340 V135-1

RNPSSN CERN Program Library V136

Author(s) : D. Drijard, K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.10.1994
Language : Fortran Revised:10.05.1995

Poisson Random Numbers

Subroutine subprogram POISSN generates arandom integer N > 0 according to the Poisson distribution

) = ﬁ e_M:uN7

Prob(N
where ;1 > 0 (the mean) is a constant specified by the user.
Structure:

SUBROUTINE subprogram
User Entry Names: RNPSSN, RNPSET
External References: RANLUX (V115), RNORMX (V 120)

Usage:

CALL RNPSSN(AMU,N,IERR)

AMU (REAL) Mean p.
N (INTEGER) The generated random number N, Poisson-distributed, with mean AMU.

IERR (INTEGER) Error flag.
= 0 : Normal case.
=1:AMU< 0.

For AMU > AMAX, a (faster) normal approximation is made. The default value for AMAX is AMAX = 88.0. It
can be reset (to smaller values only) by

CALL RNPSET(AMAX)
Timing:

Time increases with y roughly as %7,
[]

341 V136-1

RNBNML CERN Program Library V137

Author(s) : D. Drijard, K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.10.1994
Language : Fortran Revised:

Binomial Random Numbers

Subroutine subprogram RNBNML generates arandom integer N > 0 according to the binomial distribution

M

n

Prob(N = n) = ()pn (1 pyM-r

wherethe’'sample size’ M > 0 and the probability P (0 < P < 1) are specified by the user.
Structure:

SUBROUTINE subprogram
User Entry Names: RNBNML
External References: RANLUX (V115)

Usage:

CALL RNBNML(M,P,N,IERR)

M (INTEGER) Sample size M.
P (REAL) Probability P.
N (INTEGER) The generated random number N, binomialy distributedin theinterval 0 < N < M

withmean P x M.

IERR (INTEGER) Error flag.
= 0 : Normal case,
=1:P<O0O0rP>1.

Notes:

RNBNML should not be used when M is’large’ (say > 100). The normal approximation is then recommended
instead (with mean P + M 4 0.5 and standard deviation /M x P * (1 — P)).

342 V137-1

RNMNML CERN Program Library V138

Author(s) : D. Drijard, K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 15.10.1994
Language : Fortran Revised:

Multinomial Random Numbers

Subroutine subprogram RNMNML generates a vector of random integers n; > 0(: = 1,2,...,N) with
probabilities p; according to the multinomial distribution

(n1—|-n2—|—---+nN)!p L L
nitng! - nn! L2 N

Prob(ni,ng, ... ,nn) =

Structure:

SUBROUTINE subprogram
User Entry Names: RNMNML
External References: RANLUX (V115)

Usage:

CALL RNMNML (N,NSUM,PCUM,NVEC,IERR)

N (INTEGER) Number N of random integers n; requested.
NSUM (INTEGER) Y- n,, specified by the user.

PCUM (REAL) One-dimensional array of length > N. Must contains, on entry, the (normalized) cumula-
tive channel probabilities"_, p; inPCUM(i) (i = 1,...,N). Inparticular, PCUM(N) = 1.

NVEC (INTEGER) One-dimensional array of length > N. On exit, NVEC(i), (i = 1, ... ,N) contains
the generated random integers.

IERR Error flag.
= 0 : Normal case,
= 1:PCUM(i) < PCUM(i — 1) forone1i al lesst,
= 2 : PCUM(N) # 1.

Notes:

For N = 2, use RNBNML (V137).

343 V138-1

RNHRAN CERN Program Library V149

Author(s) : F. James, K.S. Kolbig Library: MATHLIB
Submitter: Submitted: 20.03.1996
Language : Fortran Revised:

Random Numbers According to Any Histogram

RNHRAN generates random numbers distributed according to any empirical (one-dimensional) distribution.
The distribution is supplied in the form of a histogram. If the distribution is known in functional form,
FUNLUX (V152) should be used instead.

Structure:

SUBROUTINE subprograms

User Entry Names: RNHRAN, RNHPRE

Files Referenced: Printer

External References: LOCATR (E106), RANLUX (V115)

Usage:
CALL RNHPRE(Y,NBINS) (once for each histogram)
CALL RNHRAN(Y,NBINS,XLO,XWID,XRAN) (for each random number)
Y Array of length NBINS at |east containing the desired distribution as histogram bin contents on
input to RNHPRE.
NBINS Number of bins.
XLO Lower edge of first bin.
XWID Bin width.
XRAN A random number returned by RNHRAN.
Method:

A uniform random number is generated using RANLUX (V115). The uniform number is then transformed to
the user’s distribution using the cumul ative probability distribution constructed from his histogram. The cu-
mulative distributionisinverted using a binary search for the nearest bin boundary and alinear interpolation
within the bin. RNHRAN therefore generates a constant density within each bin.

Notes:

RNHPRE changes the values Y to form the cumulative distribution which is needed by RNHRAN. If Y already
contains the cumulative distribution rather than the probability density, then RNHPRE should not be called,

but in that case Y (NBINS) must be exactly equal to one. Numbers may be drawn from severa different
distributionsin the same run by calling RNHRAN with different arrays Y1, Y2, etc. and (if desired) different
valuesof NBINS, XLO, XWID (but alwaysthe same valuesfor agiven array Y). The routine RNHPRE should be
used to initialize each array Yi.

The performance of the above method is nearly independent of the shape of the function or number of bins.
Error handling:

If the the input data to RNHPRE are not valid (some values negative or al values zero), an error message is
printed, the input values are printed, and zero is returned instead of arandom number. As many as five such
messages may be printed to allow for possible errors in more than one distribution.

If RNHPRE is not called, and the input data are not already in cumulative form, RNHRAN performs the initial-
ization itself and prints a warning message. RNHRAN recognizes that the data are not in cumulative form if
Y(NBINS) # 1.

344 V149-1

HISRAN CERN Program Library V150

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 15.09.1978
Language : Fortran Revised:

Random Numbers According to Any Histogram

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: RNHRAN (V 149)

HISRAN generates random numbers distributed according to any empirical (one-dimensional) distribution.
The distribution is supplied in the form of a histogram. If the distribution is known in functional form,
FUNRAN (V151) should be used instead.

Structure:

SUBROUTINE subprograms

User Entry Names: HISRAN, HISPRE

Files Referenced: Printer

External References: LOCATR (E106), RNDM (V104)

Usage:

CALL HISPRE(Y,NBINS) (once for each histogram)
CALL HISRAN(Y,NBINS,XLO,XWID,XRAN) (for each random number)

Y Array of length NBINS at |east containing the desired distribution as histogram bin contents on
input to HISPRE.

NBINS Number of bins.

XLO Lower edge of first bin.

XWID Bin width.

XRAN A random number returned by HISRAN.

Method:

A uniform random number is generated using RNDM (V104). (The user may therefore use RDMOUT and
RDMIN (V104) to restart arun.) The uniform number isthen transformed to the user’s distribution using the
cumulative probability distribution constructed from his histogram. The cumulative distributionis inverted
using a binary search for the nearest bin boundary and alinear interpolationwithinthe bin. HISRAN therefore
generates a constant density within each bin.

Notes:

HISPRE changesthe values Y to form the cumulative distribution which is needed by HISRAN. If Y already
contains the cumulative distribution rather than the probability density, then HISPRE should not be called,

but in that case Y (NBINS) must be exactly equal to one. Numbers may be drawn from severa different
distributionsin the same run by calling HISRAN with different arrays Y1, Y2, etc. and (if desired) different
valuesof NBINS, XL0O, XWID (but awaysthe same valuesfor agiven array Y). The routine HISPRE should be
used to initialize each array Yi.

345 V150-1

The performance of the above method is nearly independent of the shape of the function or number of bins.

Error handling:

If the the input data to HISPRE are not valid (some values negative or all values zero), an error message is
printed, the input values are printed, and zero is returned instead of arandom number. As many as five such
messages may be printed to allow for possible errors in more than one distribution.

If HISPRE ishot caled, and the input data are not already in cumulative form, HISRAN performs the initial-
ization itself and prints a warning message. HISRAN recognizes that the data are not in cumulative form if

Y(NBINS) # 1.

V1502 346

FUNRAN CERN Program Library V151

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 27.11.1984
Language : Fortran Revised:

Random Numbers According to Any Function

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 219. Usersare advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: FUNLUX (V152)

FUNRAN generates random numbers distributed according to any (one-dimensional) distribution f(z). The
distributionis supplied by the user in the form of a FUNCTION subprogram. If the distributionisknown asa
histogram only, HISRAN (V150) should be used instead.

Structure:

SUBROUTINE subprograms

User Entry Names: FUNRAN, FUNPRE

Internal Entry Names: FUNZER

Files Referenced: Printer

External References: GAUSS (D103), RNDM (V 104), user-supplied FUNCTION subprogram
COMMON Block Names and Lengths: /FUNINT/ 1

Usage:

CALL FUNPRE(F,FSPACE,XLOW,XHIGH) (once for each function)
CALL FUNRAN(FSPACE,XRAN) (for each random number)

F (REAL) A name of a FUNCTION subprogram declared EXTERNAL in the calling program. This
subprogram must calculate the (non-negative) density function f(X), for al X in the interval
XLOW < X < XHIGH.

FSPACE (REAL) One-dimensional array of length 100.

XLOW (REAL) Lower limit of the requested interval.
XHIGH (REAL) Upper limit of the requested interval.
XRAN (REAL) A random number returned by FUNRAN.

A call to FUNPRE cal culates the percentiles of F between XLOW and storesthem into the array FSPACE.
Method:

In FUNPRE, the percentiles are calculated using a combination of trapezoidal and Gaussian integration to a
rather high accuracy, which is printed out by FUNPRE. If the desired accuracy is hot obtained, an warning is
printed in addition.

Subroutine FUNRAN finds the desired random number by calling RNDM (V104) and doing a 4-point inter-
polation on FSPACE to transform the uniform random number to the distribution specified. This method
produces quite accurately distributed numbers even when the function F is badly skew or spiked as long as
the width of a spikeisnot less than 1/1000 of the total range.

347 V151-1

Error handling:

An error message is printed

—if theintegral of the user-supplied function F is zero or negative,
—if XLOW > XHIGH,
—if F(X) < 0 somewhere between XLOW and XHIGH.

Notes:

Some additional information which may be of useis contained in
COMMON / FUNINT/ FINT

After acall to FUNPRE, FINT containstheintegral of F from XLOW to XHIGH.

After a call to FUNRAN, FINT contains the integral of F from XLOW to XRAN, divided by the total integra to
XHIGH (i.e., it will be anumber uniformly distributed between zero and one).
[J

V151 -2 348

FUNLUX CERN Program Library V152

Author(s) : F. James Library: MATHLIB
Submitter: Submitted: 22.02.1996
Language : Fortran Revised:

Random Numbers According to Any Function

FUNLUX generates random numbers distributed according to any (one-dimensional) distribution f(z). The
distributionis supplied by the user in the form of a FUNCTION subprogram. If the distributionisknown asa
histogram only, HISRAN (V150) should be used instead.

Structure:

SUBROUTINE subprograms

User Entry Names: FUNLUX, FUNLXP

Internal Entry Names: FUNPCT, FUNLZ

Files Referenced: Printer

External References: RADAPT (D102), RANLUX (V 115), user-supplied FUNCTION subprogram
COMMON Block Names and Lengths: /FUNINT/ 1

Usage:
CALL FUNLXP(F,FSPACE,XLOW,XHIGH) (once for each function)
CALL FUNLUX(FSPACE,XRAN,LEN) (for each vector of random numbers)

F (REAL) A name of a FUNCTION subprogram declared EXTERNAL in the calling program. This
subprogram must calculate the (non-negative) density function f(X), for al X in the interval
XLOW < X < XHIGH.

FSPACE (REAL) One-dimensional array of length 200.

XLOW (REAL) Lower limit of the requested interval.

XHIGH (REAL) Upper limit of the requested interval.

XRAN (REAL) A vector of random numbers returned by FUNRAN.
LEN (INTEGER) Length of the vector XRAN.

A call to FUNLXP calculates the percentiles of F between XLOW and XHIGH and stores them into the array
FSPACE.

Method:

In FUNLXP, the 100 percentiles of the integral of f(X) are calculated using a combination of trapezoidal and
Gaussianintegration to a rather high accuracy, which is printed out by FUNLXP. Then both the left-hand and
right-hand 2 percentiles are expanded to 50 percentiles each in order to cater for functionswith long tails. If
the desired accuracy is not obtained, awarning is printed in addition.

Subroutine FUNLUX finds the desired random number by calling RANLUX (V115) and doing a 4-point inter-
polation on FSPACE to transform the uniform random number to the distribution specified. This method
produces quite accurately distributed numbers even when the function F is badly skew or spiked as long as
the width of a spikeisnot lessthan 1/1000 of the total range.

Error handling:
An error message is printed

—if theintegral of the user-supplied function F is zero or negative,
—if XLOW > XHIGH,
—if F(X) < 0 somewhere between XLOW and XHIGH.

349 V152 -1

Notes:

Some additional information which may be of useis contained in
COMMON / FUNINT/ FINT

After acall to FUNLXP, FINT containstheintegral of F from XLOW to XHIGH.

After acall toFUNLUX, FINT containstheintegral of F from XLOW to XRAN (LEN), divided by thetotal integral
to XHIGH (i.e., it will be a number uniformly distributed between zero and one).
[J

V152 -2 350

PERMU CERN Program Library V202

Author(s) : F. Beck, T. Lindelof Library: MATHLIB
Submitter: K.S. Kolbig Submitted: 15.09.1978
Language : Fortran Revised: 07.06.1992

Permutations and Combinations

Successive calls to subroutine subprogram PERMU will generate all permutations of a set of integers of total
length N consisting of n; repetitions of the integer 1, followed by » repetitions of the integer 2, . .. etc,
concluding with n,, repetitionsof theinteger m, where 3", n; = N.

Subroutinesubprogram PERMUT generatesdirectlyasinglemember of the set of all lexicographically ordered
permutations of thefirstintegers1, 2,..., IV, as specified by itslexicographical ordinal.

Successive calls to subroutine subprogram COMBI will generate all the (g) possi ble combinations without
repetitionof J < N integersfromtheset {1,2,... ,N}.

Structure:

SUBROUTINE subprogram
User Entry Names: PERMU, PERMUT, COMBI
Files Referenced: Unit 6

Usage:
Subroutine PERMU:

CALL PERMU(IA,N)

IA (INTEGER) One-dimensional array of length > N. On entry, IA(i), (i = 1,2,...,N), must contain
the initial set of integers to be permuted (see Examples. A call with TA(1) = 0 will place the set
{1,2,...,N} in IA. On exit, IA containsthe "next” permutation. If all the permutations have been
generated, the next call setsTA(1) = 0.

N (INTEGER) Length of the set to be permuted.

Subroutine PERMUT:

CALL PERMUT(NLX,N,IP)

NLX (INTEGER) Lexicographical ordinal of the permutation desired.
N (INTEGER) Length of the set to be permuted.

IP (INTEGER) One-dimensiond array of length > N. On exit, IP(i), (i =1,2,...,N), contains the
NLX-th lexicographically ordered permutation of theintegers 1,2, ..., N (see Examples.

Subroutine COMBI:

CALL COMBI(IC,N,J)

IC (INTEGER) One-dimensional array of length > N + 1. Thefirst call must be made with IC(1) = 0.
This generates the first combination IC(i) = i, (i = 1,2,...,J). Each successive call generates
a new combination and places it in the first J elements of IC. If al the combinations have been
generated, the next call setsIC(1) = 0.

N (INTEGER) Length of the set from which the combinations are taken.
(INTEGER) Length of the combinations.

351 vV202-1

Examples:

1. Consider thefollowing set of N = 12 objects, only 8 are different:

{yh Y2, Y3, 4,4, 71, 72,1, T, b7 b7 b}

This set consists of m = 8 sequences of lengthny = ny = n3 = ns = ng = 1, ny = ny = 2,
ng = 3. Thus, in order to get the possible permutations, set

TA={123445677888}

before calling PERMU(IA,12) thefirst time.

2. To generate all permutations of NV indistinguishable objects, set TA(1) = 0, which is equivalent to
IA(i) =1,(i=1,2,...,N), beforecaling PERMU(IA,N) thefirst time.

3. To compute the, lexicographically second, third and last (4! = 24) permutions of the set {1, 2, 3, 4}:

CALL PERMUT(2,4,IP) sets IP={1,2 4,3}
CALL PERMUT(3,4,IP) sets IP={1,3,24}
CALL PERMUT(24,4,IP) sets IP = {4,3,21}

4. To generate and print all 20 combinationsof 3 integers from the set {1, 2, 3, 4,5, 6} one could write:
IA(1)=0
1 CALL COMBI(IC,6,3)
IF(IC(1) .NE. 0) THEN
PRINT *, IC(1),IC(2),IC(3)

GO TO 1
ENDIF

Restrictions:

PERMUT: 1 < NLX < N!, N < 12.
COMBI: J < N.

Error handling:
If any of the above conditionsis not satisfied, amessage iswrittenonUnit 6.

Notes:

1. If N < 0 orJ < 0, the subprograms return control without action.

2. The number of distinct permutations of a set of N nhumbers which can be decomposed into m groups

of ny,na, ..., n, indistinguishableelementsis given by
N!
nilngl - on,!

where ny + ns + - -+ n,, = N. This number can become large even for seemingly simple cases,

e.g. in Example 1 above,
12!

Tiriorii2ig — [9998400.

V202-2 352

UZERO CERN Program Library V300

Author(s) : J. Zall Library: KERNLIB
Submitter: C. Letertre Submitted: 01.03.1968
Language : Fortran or Assembler Revised: 16.09.1991

Preset Parts of an Array

These routinesfill each word of an array with zero, ’blank’, or a quantity given in the argument list.
Structure:

SUBROUTINE subprograms
User Entry Names: UBLANK, UZERQ, UFILL

Usage:

Required 0 < J1 < J2.

CALL UZERO(A,J1,J2)
setsA(J1) until A(J2) to zero.

CALL UBLANK(A,J1,J2)
setsA(J1) until A(J2) to BCD blank.

CALL UFILL(A,J1,J2,STUFF)

loads A (J1) until A(J2) with the contents of STUFF.
®

353 V300-1

UCOPY CERN Program Library V301

Author(s) : R.K. Bock, C. Letertre Library: KERNLIB

Submitter: Submitted: 01.03.1968

Language : Fortran or Assembler Revised: 16.09.1991
Copy an Array

These routines copy a continuous string of wordsinto a continuous set of locations.
Structure:

SUBROUTINE subprograms
User Entry Names: UCOPY, UCOPIV, UCOPYN, UCOPY2, USWOP
External References: LOCF (N100) (Fortran version of UCOPY2 only)

Usage:

CALL UCOPY(A,X,N)

copiesN wordsfrom A into X; the beginning of A may overlap the end of X.
CALL UCOPY2(A,X,N)

copies N wordsfrom A into X, any overlap isalowed.
CALL UCOPYN(IA,IX,N)

transfersinto IX the negative values of N integer words from IA; the beginning of IA may overlap the end
of IX. (For numbers of type REAL, use VCOPYN (F121).)

CALL UCOPIV(A,X,N)

copies N words from A into X, in reverse order, i.e. X(1) = A(N),...,X(N) = A(1). No overlapping is
alowed.

CALL USWOP(A,B,N)
exchangesthefirst N > 0 words of arrays A and B. A and B must not overlap.

For N = 0 the above routines act as’do-nothing’.
[]

354 V301-1

UCOCOP CERN Program Library V302

Author(s) : F. Bruyant Library: KERNLIB

Submitter: C. Letertre Submitted: 21.08.1971

Language : Fortran or Assembler Revised: 16.09.1991
Copy a Scattered Vector

UCOCOP and UDICOP copy the contents of a scattered vector into a new scattered vector.
Structure:

SUBROUTINE subprograms
User Entry Names: UCOCOP, UDICOP

Usage:

CALL UCOCOP(A,X,IDO,IW,NA,NX)
CALL UDICOP(A,X,IDO,IW,NA,NX)

extract IDO times IW consecutive words from A, every NA words, and place them into X, every NX words.
Both routines have the same effect if the vectors A and X do not overlap. UCOCOP allows concentration,
UDICOP allowsdilation of avector in situ.

For IDO = 0 or IW = 0, theroutines act as’do-nothing’.

Examples:

DIMENSION IA(14),IX(12)
DATA IA /1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14/

CALL UCOCOP(IA,IX,4,2,4,3)
CALL UCOCOP(0,IX(3),4,1,0,3)

gives

IX=1,2,0, 5,6,0, 9,10,0, 13,14,0

355 v302-1

IUCOMP CERN Program Library V304

Author(s) : J. Zall, C. Letertre Library: KERNLIB
Submitter: Submitted: 01.03.1968
Language : Fortran or Assembler Revised: 16.09.1991

Search a Vector for a Given Element

Theseroutinesall search through avector for a given element. The calling sequences and the default returns
are different.

Structure:

FUNCTION subprograms
User Entry Names: TUCOMP, IUCOLA, IUFIND, IUFILA, IUHUNT, IULAST

Usage:
TUCOMP(IT,IVEC,N) or TUCOLA(IT,IVEC,N)

returnstherelative addressin the array IVEC of thefirst (or thelast) word whichisequal to IT, or zeroif IT
isnot contained in IVEC(1), ... ,IVEC(N) orif N = 0.

IUFIND(IT,IVEC,JL,JR) or IUFILA(IT,IVEC,JL,JR)

returns the relative address in the array IVEC of the first (or the last) element between IVEC(JL) and
IVEC(JR) (JL < JR) which equalsIT, or JR + 1 if IT isnot contained in IVEC(JL) ,IVEC(JL+1), ...,
IVEC(JR) orif JL > JR.

TUHUNT(IT,IVEC,N,INC)

returns the relative address of the first word among IVEC(1) ,IVEC(INC+1) ,IVEC(2*INC+1), ... of
array IVEC (the search does not go beyond IVEC(N)) which equals IT, or zero if IT is not found or if
N=0.

TULAST(IT,IVEC,N)

returns the relative address of the last word which, in the array IVEC of N elements, is hot equal to IT, or
zeroif N = 0 orif al elementsin IVEC equal IT.

Notes:

IVEC and IT above may be of type INTEGER or REAL, but the comparison is donein type INTEGER.
[]

356 V304 -1

PROXIM CERN Program Library V306

Author(s) : J. Zall, K.S. Kodlbig Library: KERNLIB
Submitter: Submitted: 15.03.1976
Language : Fortran Revised: 15.02.1989

Adjusting an Angle to Another Angle

Function subprogram PROXIM computes, for two angles «, 3 given as arguments, and by adding a suitable
multiple of 27 to #, an angle 5* such that

a—-r< "< a+mn.

Structure:

FUNCTION subprogram
User Entry Names: PROXIM

Usage:
In any arithmetic expression,
PROXIM(B,A)

hasthevalue 5* for B = § and A = «. PROXIM, B and A are of type REAL and in radians.
Notes:

The Fortran statement function
PROXIM(B,A)=B+C1*ANINT(C2* (A-B))

withC1 = 27, €2 = 1/C1 hasthe same effect.
[]

357 V306 -1

GRAPH CERN Program Library V401

Author(s) : A. Regl Library: MATHLIB
Submitter: H. Grote Submitted: 01.02.1974
Language : Fortran Revised:15.09.1978

Find Compatible Node-Nets in an Incompatibility Graph

GRAPH finds all compatible sets of events (nodes) in an incompatibility graph (in which incompatible events
or nodes are connected). It is useful, for example, in track-matching programs for eliminating spurious
tracks.

On each call, one compatible node-set isreturned. The user may decide in the first call whether the solutions
should be evaluated over the whole graph or subgraph by subgraph. Indications on " end-of-graph” and, if
applicable, " end-of-subgraph” are given.

Structure:

SUBROUTINE subprogram

User Entry Names: GRAPH

Internal Entry Names: PGRAPH, GETBIT, SETBIT, TUP, IGET, TREVNI

External References: JBIT (M421), SBIT (M421), JBYT (M421), SBYT (M421),
UFILL (V300), UZERO (V300)

COMMON Block Names and Lengths: /BITSXB/ 2
Usage:

See Long Write-up .

358 V401-1

RVNSPC CERN Program Library V700

Author(s) : K.S. Kolbig, F. Lamarche, C. Leroy Library: MATHLIB
Submitter: Submitted: 07.06.1992
Language : Fortran Revised:

Volume of Intersection of a Circular Cylinder with a Sphere

Function subprograms RVNSPC and DVNSPC calculate the volume of intersection V' (r, p, d) of a circular
cylinder of radius» > 0 with asphere of radius p > 0, the distance from the center of the sphere to the axis
of the cylinder being d > 0.

Thisvolumeisgiven by
V(T‘,p,d) = 2/ Vp2—$2—y2d$dy7

where the integration is performed over theintersection, if any, of thetwo circular disks (z — d)% + y? < r?
andaz? 4+ y? < p2 Ifr£0Ap#0Ad < r+ pthisisequd to

min(d+r,p) min<\/r2—(ac—d)2,\/p2—x2)
/ vV pr—a? —y?dady.

Vir,p,d) = 4/

max(d—r,—p) J 0

Otherwise V (r, p, d) = 0.
On CDC and Cray computers, the double-precision version DVNSPC is not provided.

Structure:

FUNCTION subprograms
User Entry Names: RVNSPCC347, DVNSPCC347
External References: DELI3C (C347), DELIKC (C347), DELIEC (C347)

Usage:
In any arithmetic expression,
RVNSPC(R,RHO,D) or DVNSPC(R,RHO,D) hasthevalue V'(R,RHO,D).

RVNSPC isif type REAL, DVNSPC is of type DOUBLE PRECISION, and R, RHO and D are of the same type as
the function name.

Method:

The integral given above can be expressed in closed form in terms of complete elliptic integrals of the first,
second, and third kind. For details see Ref. 1.

Notes:

Any negative sign in the parameters isignored.

In the single-precision version RVNSPC on machines other than CDC or Cray, the complete eliptic integrals
are calculated inside the subprogram. This version, faster than DVNSPC, isintended mainly for applications
in experimental physics, where itslimited accuracy of about 6 digitscan be tolerated.

References:

1. F. Lamarche and C. Leroy, Evaluation of the volume of intersection of a sphere with a cylinder by
eliptic integrals, Computer Phys. Comm. 59(1990) 359-369.

359 V700-1

TRSPRT CERN Program Library W150

Author(s) : C.H. Moore, D.C. Carey Library: PGMLIB
Submitter: C. Isdlin Submitted: 27.11.1984
Language : Fortran 4 Revised:

Transport, Second-Order Beam Optics

TRSPRT isafirst- and second-order matrix multiplication program for the design of magnetic beam transport
systems. It has been in use in various versions since 1963. The present version, written by D.C. Carey at
FNAL and extensively modified at CERN is described in CERN 80-04, NAL 91 and SLAC 91. It includes
both first- and second-order fitting capabilities. A beam line is described as a sequence of elements. Such
elements may represent magnetsor theinterval s separating them, but also specify cal culationsto be done, or
specia conditionsto be applied. The program worksin six-dimensional phase space (z, 2, y,y', {, dp/p);
it istherefore also capable of calculating coupling between planes.

Structure:

Complete PROGRAM

User Entry Names: TRSPRT

Files Referenced: INPUT, OUTPUT,

External References: UBUNCH (M409), ABEND (Z035), DATIMH (Z007)

Usage:

See Long Write-up. TRSPRT is accessed from PGMLIB as described in section *Execution of Complete
Programs, PGMLIB’ in Chapter 1 of the Program Library Manual.

Source:
SLAC and FNAL, USA
References:

1. K.L. Brown, D.C. Carey, C. Isdlin and F. Rothacker, Designing Charged Particle Beam Transport
Systems, CERN 80-04 (1980)

A copy of Ref. 1 isavailable asLong Write-up.

360 W150-1

TURTLE CERN Program Library w151

Author(s) : D.C. Carey, C. Isdin Library: PGMLIB
Submitter: C. Isdlin Submitted: 01.07.1974
Language : Fortran 4 Revised:27.11.1984

Beam Transport Simulation, Including Decay

TURTLE is designed to simulate charged particle beam transport systems. It allows evaluation of the effects
of aberrations in beams with a small phase space volum@hese include higher-order chromatic aberra-
tions, non-linearities in magnetic fields and higher-order geometric aberrations due to the accumulation of
second-order effects. The beam at any point in the system may be represented by one- or two-dimensional
histograms. TURTLE also provides a simulation of decay of pions or kaonsinto muons and neutrinos.

TURTLE uses the same input format as TRSPRT (W150). An input stream set up for TRSPRT can thus be used
for TURTLE with only afew additions.

Structure:

Complete PROGRAM

User Entry Names: TURTLE

Files Referenced: INPUT, OUTPUT

External References: RANF (G900), UBUNCH (M409), TIMEL (Z007), ABEND (Z035)

Usage:

See Long Write-up . TURTLE isaccessed from PGMLIB as described in * Execution of Complete Programs,
PGMLIB’ in Chapter 1 of the Program Library Manual. Page 50 of the Long write-up is obsolete.

Source:
FNAL. The parts concerning decay have been written at CERN.

References:

1. K.L. Brown and C. Iselin DECAY TURTLE, a Computer Program for Simulating Charged Particle
Beam Transport Systems, including Decay Calculations, CERN 74-2 (1974).

A copy of Ref. 1isavailable asLong Write-up.

361 Wi151-1

FOWL CERN Program Library W505

Author(s) : F. James Library: POOL
Submitter: Submitted: 13.11.1972
Language : Fortran Revised:01.12.1981

General Monte-Carlo Phase-Space

FOWL usesthe Monte-Carlo method to cal culate phase space distributionsarising from particle interactions.
The events are generated according to Lorentz-invariant phase space, and after each event the user may
calculate (in a subroutine) al quantities (effective masses, angles, moments, delta squared, etc.) whose
distribution he wants.

Moreover, the user may calculate, for each quantity, a weight (or 'matrix element’, for example a Breit-
Wigner) which is in general a function of the kinematic quantities for the event. In addition, one can
investigatethe effects of cutoffs, selectionsor biasesin an actual experiment by imposing the same selections
on events in FOWL. The program then prints histograms and/or scatter plots of quantities calculated by the
user.

Structure:

SUBROUTINE subprogram

User Entry Names: FOWL

Files Referenced: INPUT, QUTPUT, PUNCH

External References: RNDM (V104), UBLANK (V300), IUCHAN (Y201), DATIME (Z00Q7),
user-supplied subroutine USER.

Usage:
See Long Write-up .
Source:

Event generator GENEV was adapted by K. Kgjantie from a program by G. Lynch.

362 W505 -1

GENBOD CERN Program Library W515

Author(s) : F. James Library: POOL
Submitter: Submitted: 20.10.1975
Language : Fortran Revised:

N-Body Monte-Carlo Event Generator

GENBOD generates a multi-particle weighted event according to Lorentz-invariant Fermi phase space. It isa
modification of the routine GENEV (in FOWL (W505)) and uses the method of Raubold and Lynch (see Ref.
1). The total CM energy as well as the number and masses of the outgoing particles are specified by the
user, but may be changed from event to event. GENBOD generates the CM vector momenta (and energies) of
the outgoing particles and gives the weight which must be associated with each event. The weight may then
be multiplied by any "matrix element’ or geometrical detection function calculated by the user.

Structure:

SUBROUTINE subprogram

User Entry Names: GENBOD

Files Referenced: Printer

External References: FLPSOR (M 103), RNDM (V104), PDK (W505), ROTES2 (W505)
COMMON Block Names and Lengths: /GENIN/ 21, /GENOUT/ 91

Usage:
COMMON /GENIN /NP,TECM,AMASS(18),KGENEV

COMMON /GENOUT/ PCM(5,18),WT
CALL GENBOD

Input:

NP (INTEGER) Number of outgoing particles (2 < NP < 18).

TECM (REAL) Total CM energy.

AMASS (REAL) Array where element I containsthe mass of the I-th outgoing particle.

KGENEV (INTEGER) = 1 for cross section constant with energy, = 2 for Fermi energy dependence.
Output:

PCM(1,I) (REAL) P, of I-th particle.
PCM(2,1) (REAL) P, of I-th particle.
PCM(3,1) (REAL) P. of I-thparticle.
PCM(4,I) (REAL) Energy of I-th particle.
PCM(5,1) (REAL) P of I-th particle.

WT (REAL) Weight of the event.

See also the Long Write-up for FOWL (W505).

References:

1. F. James, Monte Carlo Phase Space, CERN 68-15 (1968)

363 W515 -1

IUCHAN CERN Program Library Y201

Author(s) : J. Zall, P. Rastl Library: KERNLIB
Submitter: C. Letertre Submitted: 01.09.1969
Language : Fortran or Assembler Revised: 16.09.1991

Find Histogram-Channel

TUCHAN, IUBIN, IUHIST al find the histogram-channel for a given quantity in the same way. They differ
only slightly in the way in which the parameters are passed.

Structure:

FUNCTION subprograms
User Entry Names. TUCHAN, TUBIN, TUHIST

Usage:

All routines need the the following parameters:

X (REAL) Quantity to be histogrammed.
XLOW (REAL) Lower limit of the histogram.
DX (REAL) Channel width.

NX (INTEGER) Number of channels.

and they return the channel number N = (X — XLOW) /DX + 1 + < normally, or N = 0 for underflow (X < XLOW),
or N = NX + 1 for overflow (X > XLOW + NX « DX).

¢ > 0 isasmal bias to counteract rounding effects when X is exactly on a bin edge, a likely and serious
problem when compressed data are histogrammed.

£ = 107" on 32-bit machines, ¢ = 10~° on machines with alarger word size.

Function IUCHAN:
N = IUCHAN(X,XLOW,DX,NX)
Functions IUBIN and IUHIST:

DIMENSION PAR(3)
EQUIVALENCE (NX,PAR(1))
LOGICAL SPILL

N = IUBIN (X,PAR,SPILL)
N = IUHIST(X,PAR,SPILL)

with

PAR Histogram parameters:
PAR(1) = NX
PAR(2) = DX (for IUBIN), or = 1/DX reciproca of the channel width (for IUHIST).
PAR(3) = XLOW

SPILL (LOGICAL) Flag setto .TRUE. or .FALSE. depending on whether X is outside or inside the his-
togram.

364 Y201-1

HBOOK

CERN Program Library

Author(s) : R. Brun, I. Ivanchenko, P. Palazzi

Submitter:
Language : Fortran

Statistical Analysis and Histogramming

Y250

Library: PACKLIB
Submitted:
Revised:

HBOOX offers as basic options the booking, filling and printing of a histogram, scatter plot or table. Other

availablefacilities are:

e Projectionsand dlices of scatter plotsand tables.

e Wide choice of editing options (what to print and how).

e Easy accessto the information.
e Operationson histograms (arithmetic, smoothing, filling, fitting).

e Packing of severa channelsin 1 computer word/or extension of the memory on disk file, to alow
simultaneous handling of a very large number of plots.

Structure:

SUBROUTINE and FUNCTION subprograms

Usage:

See Long Write-up .

365

Y250-1

HPLOT CERN Program Library Y251

Author(s) : O. Couet Library: GRAFLIB
Submitter: Submitted: 01.03.1976
Language : Fortran Revised:01.11.1994

HPLOT : HBOOK Graphics Interface for Histogram Plotting

HPLOT isaFORTRAN-callablefacility for producing HBOOK (Y 250) output on all kind of graphic devices. The
output is of a quality suitable for publications.

Structure:
SUBROUTINE subprograms
Usage:

A full description of the system is given in the HIGZ-HPLOT Manua (Q120, Y251). The full HPLOT
facilitiesare availablein the PAW (Q121) system.

366 Y251-1

KERNGT CERN Program Library Z001

Author(s) : J. Zall Library: KERNLIB
Submitter: Submitted: 19.09.1991
Language : Fortran Revised:

Print KERNLIB Version Numbers

KERNGT printsthetitles of the PAM-files which have been used to make the general part of KERNLIB.
Structure:

SUBROUTINE subprogram
User Entry Names: KERNGT
Files Referenced: Parameter

Usage:
CALL KERNGT(LUN)
with:
LUN Fortran logical unit number for printing, if zero: use’standard output’.
Examples:
CALL KERNGT(0)

gives something like:

KERNGT. KERNLIB from: KERNAPO 1.23 910719 13.00
KERNFOR 4.29 910731 19.17

367 Z001-1

DATIME CERN Program Library Z007

Author(s) : See below Library: KERNLIB
Submitter: Submitted: 15.01.1977
Language : Fortran or C or Assembler Revised: 18.09.1991

Job Time and Date

Authors: J. Harms, E. Jansen, A. Michalon, J. Zall, A. Berglund, T. Cass, C. Wood, H. Renshall.

The DATIME package interfaces with the system of any particular machine to obtain the current calendar
date and time, as well as the central processor time used by and remaining to the job.

Structure:

SUBROUTINE subprograms

User Entry Names: DATIME, DATIMH, TIMEX, TIMEL, TIMED, TIMEST
External References. Machine dependent

COMMON Block Names: /SLATE/ ISL(40)

Usage:

CALL DATIME(ID,IT)

returnsdecimal INTEGER date and time: ID=yymmdd, IH=hhmm. It aso storesthe componentsinto /SLATE/
as small integers:

ISL(1) = 19yy, ISL(2) =mm, ISL(3)=4dd, ISL(4)=nhh, ISL(5)=mm, ISL(6)=ss

for convenience of further processing by the user.

CALL DATIMH(ND,NT)
returns Hollerith date and time: ND = 8Hdd/mm/yy and NT = 8Hhh.mm.ss

CALL TIMEX(T)
returns the execution time used by the job so far; T isthe central processor timein seconds, a REAL number
with fractional part. In supported interactive systems the time returned is that relative to the first call to
TIMEST.

CALL TIMEL(T)
returns the execution time remaining until time-limit; T in seconds as for TIMEX. In supported interactive
systems the time returned is the time left until the time-limit set by the first call to TIMEST. See Note 4
below.

CALL TIMED(T)

returns the execution time interval since the last call to TIMED; T in seconds as for TIMEX.

368 Z007 -1

CALL TIMEST(TLIM)

This routine is necessary to initialise the timing operations in the interactive mode of VM-CMS. In other
systems (including VM-CMS batch) it isa dummy do-nothing routine.

It must be called once (subsequent calls are ignored) before any calls to TIMEX and TIMEL. Before this
routineis called TIMEX will return zero and TIMEL will return 999.0. TLIM isan input floating point value
whichwill be used inside TIMEL asif it were thejob time-limit. Thefirst call to TIMEST also establishesthe
time origin for subsequent callsto TIMEX and TIMEL.

Accuracy:

IBM: The RMS error returned in consecutive calls to TIMED without any intermediate code is of the order
of 3 usec on the the CERN IBM 3090 with a minimum timefor one call of 20 usec. Thetiming distribution
hasalong tail, however, and any individual measurement could take as long as four or five times thisvalue.
TIMEX isaccurate to within atenth of a second and TIMEL only to the nearest second.

Notes:
1. Thesymbolsyy,mm,dd,hh,mm,ss used above stand for the two decimal digitsof year, month, day,
hours, minutes, seconds

2. NT and ND inthecall to DATIMH are 2-word vectors on machines with a character-capacity of lessthan
8 characters per word.

3. Theinformation returned by these routinesis obtained by a system request. On some machinesthisis
expensive in real time, so one should avoid too many calls, to TIMEL in particular.

4. Some machine/operating system configurations do not have a value for timelimit, for example inter-
activework under VM-CMS (IBM) or VMS (VAX) or no-limit batch job classes under VMS. In these
cases a constant time-left of 999.0 secondsisreturned, unlessthetime limit has been set with TIMEST.

Examples:

Supposethe date is Sept 16, 1976, and the time of day 19h 24m 55s.
CALL DATIME(ID,IT)

returnsID = 760916, IT = 1924, ISL = 1976,9,16,19,24,55
CALL DATIMH(ND,NT)

returnsND = 8H16/09/76 and NT = 8H19.24.55.
°

Z007-2 369

CALDAT CERN Program Library Z009

Author(s) : O. Hell Library: KERNLIB
Submitter: Submitted: 27.11. 1984
Language : Fortran Revised:

Calendar Date Conversion

CALDAT converts any calendar date represention in a set of such representations to all other calendar date
representationsin the set; in addition afew extra bits of information are produced.

Structure:

SUBROUTINE subprogram

User Entry Names: CALDAT

Internal Entry Names. CDMON, CLEAP, CYDIY, CYEARY
External References: DATIME (Z007)

Usage:

CALL CALDAT(IINDEX,CHREP,IBNREP,IERR)

IINDEX (INTEGER) Integer specifying which of the possible date representations is being given as the
input representation. Thisinput may either be as type CHARACTER within the CHREP string or
astype INTEGER withinthe IBNREP array.

CHREP (CHARACTER#*119) A character string containing, as substrings, the possible date representa-
tions. One such substring may be filled as the input representation, in which case it should be
pointed to by IINDEX.

IBNREP (INTEGER) Array of length 8 containing various binary date representations. One such date
representation may be filled as the input representation, in which case it should be pointed to
by IINDEX.

IERR (INTEGER) Error flag. IERR = 0 success, IERR # 0 failure of the conversion.

The substringsof CHREP can be accessed directly, using CHARACTER substring operations. Alternatively all,
or part, of the EQUIVALENCE statements below may be used:

CHARACTER DMY14%14,DMY11%11,DMY9*9,DMY10*10
CHARACTER*8 DMY8A,DMY8B,YMD8,MDY8,YDM8

CHARACTER*6 DMY6, YMD6 ,MDY6, YDM6
CHARACTER YD5*5,W4*4,W2*2

EQUIVALENCE

* (CHREP(1: 14), DMY14), (CHREP(15: 25), DMY11),
* (CHREP(26: 34), DMY9), (CHREP(35: 44), DMY10),
* (CHREP(45: 52), DMY8A), (CHREP(53: 60), DMY8B),
* (CHREP(61: 66), DMY6), (CHREP(67: 74), YMD8),
* (CHREP(75: 80), YMD6), (CHREP(81: 88), MDY8),
* (CHREP(89: 94), MDY6), (CHREP(95:102), YDM8),
* (CHREP(103:108), YDM6), (CHREP(109:113), YD5),
* (CHREP(114:117), W4), (CHREP(118:119), W2)

370 Z009-1

Details of the substringsin argument CHREP and the corresponding IINDEX values:

EXAMPLE TINDEX EXAMPLE IINDEX
DMY14 16. APRIL 1982 1 YMDE6 820416 9
DMY11 16 APR 1982 2 MDY8 04/16/82 10
DMY9 16 APR 82 3 MDY6 041682 11
DMY10 16. 4.1982 4 YDM8 82/16/04 12
DMY8A 16. 4.82 5 YDME6 821604 13
DMY8B 16/04/82 6 YD5 82106 14
DMY6 160482 7 Wa FRI.
YMD8 82/04/16 8 W2 FR

Details of the elementsin argument IBNREP and the corresponding IINDEX values:

Element Contents Type Example TINDEX

1,2,3 d, m, y binary 16, 4, 1982 101
4 day in the year binary 106 102
5 00YYDDDC packed dec 0082106C 103
6 Julian date binary 723651 104

7 weekday, M0=0,... binary 4

8 week in the year binary 15
3,4 y, day in year binary 1982, 106 105

Notes. Julian date = days since 1/1/1, without Gregory’s pause. Week 1 of the year contains the 1st
Thursday in the year (1SO).
Names of the months:
3characters. ’JAN’, °FEB’, °MAR’, ’APR’, °’MAY’, ’JUN’,
*JUL’, °’AUG’, °’SEP’, ’0CT’, °’NOV’, ’DEC’

5characters: ’JAN. ’, °FEB. ’, °’MARCH’, ’APRIL’, °MAY ’, ’JUNE °’,
»JULY ’, ’AUG. ’, °SEPT.’, °’0CT. ’, ’NOV. ’, ’DEC. °’
Names of the week days:

2 characters; M0, °TU’, *WE’, >TH’, ’FR’, SA’, ’SU’.
4 characters. *MON.’, *TUE.’, *WED.’, >THUR’, >FRI.’, >SAT.’, *SUN.’,

Method:

Two arguments are used for passing the calendar dates. a character string and an array of full words. The
various representations are numbered, and an input parameter ('input index’) specifies the representation
containing the input calendar date.

An extraoutput parameter receives a return code.

Special cases:

e Inputindex = 0 designates todaywhich CALDAT will find.
e Inputyear yy rather than yyyy, designatesthis century
e Inputindex or input datainvalid:

— output character stringwith all **?;

—output numbersall X>81818181? =-2 122 219 135,

Z009-2 371

Restrictions:

CALDAT will give incorrect dates and weekdays for dates prior to the reformation of the Calendar by pope
Gregory (16th century).

Error handling:

IERR Meaning
0 everythingfine
4 TIINDEX <O
8 upper bound for CHREP < IINDEX < lower bound for IBNREP
12 upper bound for IBNREP < IINDEX
16 ddd out of bounds
20 mm | dd out of bounds
24 yyyy out of bounds

Syntax errors:

IERR in TIINDEX IERR in IINDEX IERR in IINDEX
1001 DMY14 1 1006 DMY8B 6 1011 MDY6 11
1002 DMY11 2 1007 DMY6 7 1012 YDM8 12
1003 DMY9 3 1008 YMD8 8 1013 YDM6 13
1004 DMY10 4 1009 YMD6 9 1014 YD5 14
1005 DMY8A 5 1010 MDY8 10 1103 Julian 103
Notes:

Element 5 of IBNREP isnot a Fortran type. Neverthelessthis calendar date format may show up in datafrom
the 'real world’. Element 7 of IBNREP is especially well suited for arithmetical cal culations with dates.

Examples:

C Initialize substring CHREP(15:25)
DMY11=’>16 APR 1982’

C Define this substring to be the input format
IINDEX=2
CALL CALDAT(IINDEX,CHREP,IBNREP,IERR)

372 Z009-3

UMON CERN Program Library Z020

Author(s) : F. Carminati Library: KERNLIB, VAX/VMS only
Submitter: Submitted: 01.03.1989
Language : VAX Fortran Revised:

Usage Monitor for VAX/VMS

UMCOM is an usage monitor package for VAX/VMS systems. Usage log requests are performed either via
Fortran calls or viaDCL commands.

Structure:

Complete PROGRAM and SUBROUTINE subprograms
User Entry Names: UMCOM, UMLOG

Usage:

CALL UMCOM(CMD,MONITOR,TEXT)

CMD (CHARACTER) The first two letters of CMD are interpreted as a command to UMON. See the
Long Write-up for possible commands.
MONITOR (CHARACTER) Name of the monitor to be affected by the command. If this name is longer

than 8 characters, only thefirst 8 will be taken into account.

TEXT (CHARACTER) A character string containing information about the command given. If this
string is longer than 80 characters, only the first 80 will be taken into account.

CALL UMLOG(MONITOR,TEXT)

MONITOR (CHARACTER) Name of the monitor to be affected by the command. If this name is longer
than 8 characters, only thefirst 8 will be taken into account.

TEXT (CHARACTER) A character string containing the text to be logged. If thisstring islonger than
80 characters, only thefirst 80 will be taken into account.

See also the Long Write-up.

373 Z020-1

ABEND CERN Program Library Z035

Author(s) : B. Lautrup, R. Matthews Library: KERNLIB
Submitter: C. Letertre Submitted: 06.01.1971
Language : Fortran or Assembler or C Revised: 20.01.1986

Abnormal Termination of Fortran Programs

ABEND causes abnormal termination of a program. (On CDC all subsequent JCL control cards up to the next
EXIT card will beignored by the system).

Structure:

SUBROUTINE subprogram
User Entry Names: ABEND

Usage:
Not IBM:

CALL ABEND

causes abnormal termination of execution and printsthe dayfile message ABEND. The output files are closed
and INPUT is correctly positioned.

IBM:
CALL ABEND(KODEU)

The optional argument KODEU is used as the user completion code and must be an integer expression with
avalueintherange 0 — 4095. If the argument is omitted, or does not have a value in thisrange, a default
value of 1 will be used.

374 Z035-1

ABUSER CERN Program Library Z036

Author(s) : R. Matthews, A. Cass Library: KERNLIB, IBM only
Submitter: Submitted: 01.02.1983
Language : Assembler Revised: 19.07.1988

Intercept a Fortran Abend on IBM

ABUSER enables a user-supplied subroutine to receive control when the user’s program abends. A call to
ABUSER identifies the user-supplied subroutine which isto receive control. The identified subroutinewill be
calledif the user’s program abends and can perform pre-termination processing such as printing summaries
or plotting histograms.

Structure:

SUBROUTINE subprogram
User Entry Names: ABUSER

Usage:

CALL ABUSER(NAME)
NAME Name of a user-supplied SUBROUTINE subprogram declared EXTERNAL in the calling program.

This subprogram receives control viaacall of the form

CALL NAME(KODES,KODEU)

KODES A 4-byteinteger containing, if available, the system completion code as hexadecimal number (use
Z format for printing).

KODEU A 4-byteinteger containing, if available, the user completion code asinteger number (use I format
for printing).

Restrictions:

This subprogram is compiler and system dependent.

MVS:

The Fortran 4 version relies on modifications to the IBM H-extended compiler library and is therefore not
portable. The Fortran 77 version uses a standard interface into the FACOM compiler library.

CMS:

The subprogram is compiler independent but KODES and KODEU are not available and so are set to zero. Note

that the routine uses storage in the CM S nucleus— the NUSERFWD field and also 8-bytesat NCCOPYR —which
must not be overwritten. (No other CERN Library routine uses these |ocations.)

Notes:

ABUSER can be called at any time during normal processing, (i.e. before an abend occurs), to re-specify the
name of the user-supplied subroutine. Alternatively, the effect of previous calls can be cancelled by CALL
ABUSER(0). A call to ABUSER after an abend will have no effect.

A secondary abend which occurs while the user is processing the primary abend will cause program termi-
nation.

375 Z036-1

Under MV S the user-supplied subroutine will not receive control for the following completion codes:

122 —job cancelled with dump
222 —job cancelled

322 — cpu time exceeded

522 —wait time limit exceeded
Examples:

In the following example, ABUSER is called to identify a subroutine called FATAL as the subroutinewhich is
to receive control when the user’s program abends. If an abend occurs, subroutine FATAL will be called and
will print the completion codes and then call HISTDO to plot histograms.

EXTERNAL FATAL

CALL ABUSER(FATAL)

END

SUBROUTINE FATAL (KODES,KODEU)

WRITE(6,’ (1X,’ ’PROGRAM ABENDING WITH CODES °’’,Z3,I5)’) KODES,KODEU
CALL HISTDO

RETURN
END

Z036—-2 376

VAXAST CERN Program Library Z037

Author(s) : C. Mekenkamp Library: KERNLIB
Submitter: R. Veenhof Submitted: 10.03.1988
Language : Fortran, Vax Macro Revised:

Routines to Handle Control-C Interrupts on Vax

These routines alow you to write a program that, when interrupted with a control-C, resumes execution in a
routine that you specify, which is higher up in the calling tree.

Structure:

Vax Macro and Vax Fortran routines
Usa’EnUyrﬂaﬂes ASTINT, ASTXIT, ASTDCC, ASTECC, ASTSCS, ASTECS
Internal Entry Names: ASTCCH

Usage:

VAXAST should be initialised at the beginning of the program by
CALL ASTINT

The routine to which control should be returned after a control-C has been typed, should have inits header

EXTERNAL ASTCCH
CALL LIB$ESTABLISH(ASTCCH)

When a control-C is typed on the terminal, ASTCCH is called. Thisroutineis part of VAXAST, its main job
is to unwind the stack of routine calls until the routine is found in which the LIB$ESTABLISH was issued.
Your program then continues execution just after the call to the routine that was interrupted. You may have
severa routines with the header shown above. Only the last call to LIB$ESTABLISH has effect.

When you no longer wish to make use of the VAXAST routines:

CALL ASTXIT

You may not wish to have control-C trapped all the time, for instance when the program iswaiting for inpuit.
To suspend trapping for a short while, do the following:

CALL ASTDCC
CALL ASTECC

Between ASTDCC and ASTECC a control-C typed on the terminal has the same effect as a control-Y, i.e.
stopping the program and returning to DCL. Execution can, as with control-Y, be resumed at the point it was
interrupted, viathe CONTINUE command.

Not all programs survive the stack unwind ASTCCH performs. A classical example isthe set of 1/0 routines
inthe Vax Fortran run time library (RTL). VAXAST replaces those routines by variants that are stack unwind
proof but perform otherwiseidentical tasks. You will see 29 messages about multiply defined symbolswhen
you LINK your program, you can safely ignore them.

377 Z037-1

If thereisa part in your own program where the stack should not be unwound but during which you would
like a control-C to be stored, do the following:

CALL ASTSCS
CALL ASTECS

A control-C typed between the ASTSCS and ASTECS calls remains "dormant’ and takes effect only at the
ASTECS call.
Notes:

1988 C.A.J. Mekenkamp. All Rights Reserved.
Carlo Mekenkamp, President Krugerstraat 42, NL-1975 EH |Jmuiden.

Z037-2 378

QNEXTE CERN Program Library 7041

Author(s) : W. Jank, D. Lellouch, R. Matthews, E. Pagiola, J. Zoll Library: KERNLIB
Submitter: Submitted: 28.08.1984
Language : Assembler or C Revised:

Restart of Next Event

This interface routine allows the user to restart his program at the entry point QNEXTE, provided he has
initiated it at this same entry point.

For first entry, QNEXTE remembers all necessary internal Fortran parameters, such as registers, trace-back,
stack pointers, signal mask, whatever is needed on a given machine, and then calls a user-supplied routine
QNEXT.

On any subsequent entry, QNEXTE resets all internal parameters so asto cancel all open CALLs below itsown
level, and then transfers again control to QNEXT. If in QNEXT a RETURN statement is reached thiswill lead
back to the routine which did thefirst call to QNEXTE, usually the MAIN program.

Structure:

(Pseudo) SUBROUTINE subprogram

User Entry Names: QNEXTE

Internal Entry Names: QNEXTD (on Vax)

External References: User-supplied SUBROUTINE subprogram QNEXT (Z041)

Usage:

CALL QNEXTE

will transfer control to the routine QNEXT supplied by the user, viaa CALL QNEXT (no parameter list).
Notes:

QNEXT is a user routine which cannot be loaded implicitly from alibrary. If to be used at al, it hasto be
loaded explicitly, either from a load file (such as produced by the compiler) or by some form of INCLUDE
from a user library.

Because QNEXTE is referenced by some general packages, whose user may not want to supply aQNEXT, the
reference from QNEXTE to QNEXT has been made 'weak’ (to avoid the *missing external’ message from the
loader) on the Vax (and probably also on some other machinesin the future). In this case QNEXTE has a call
to a Fortran dummy routine QNEXTD to print a message if it is reached without the user having supplied a
routine QNEXT.

On most UNIX machines the loader is not able to start a module with missing externals; in this case, the
user isobliged to provide a routine QNEXT, to stop the run, for example.

Examples:

Schema of Fortran CALL levels:

MAIN CALL QNEXTE R EVLOOP CALL MATCH
QNEXTE CALL QNEXT . MATCH CALL TEST
QNEXT CALL EVLOOCP R TEST CALL QNEXTE

Thelast CALL QNEXTE abandonsthe current event.
®

379 Z041-1

JUMPXN CERN Program Library

Author(s) : J.Zoll, R.Brun et al.

2042

Library: KERNLIB

Submitter: J. Zall Submitted: 27.04.1988

Language : Fortran or C or Assembler

Calling a Subroutine by its Address

Revised:20.02.1995

The purpose of this package is to provide a (limited) tool to connect what is called a user-routine with an

arbitrary name to a CALL in a package, pre-existing on alibrary.

Because on most machines JUMPXn isimplemented in Fortran or C, separate entries are needed for calling

the user-routine with zero, one, two, ..., nine parameters.
Structure:

SUBROUTINE subprogram
User Entry Names. JUMPAD, JUMPST, JUMPXn, (n =0,1,...,9)
Internal Entry Names: JUMPYn (Z042) (n = 0, 1, ...,9) (if not Assembler or C)

Usage:

Three steps are necessary:

1) Get the transfer address TAD of the routine (for example TARGET) to be called:

EXTERNAL TARGET
IAD=JUMPAD (TARGET)

2) Set the transfer address for the next transfer(s):
CALL JUMPST(IAD)
3) Execute atransfer, for acall withn = 0, 1, ... ,9 parameters:

CALL JUMPXO
or CALL JUMPX1(P1)

or CALL JUMPX9(P1,P2,P3,P4,P5,P6,P7,P8,P9)

Restrictions:

Since on most machines JUMPXn is written in Fortran or C, the call to JUMPXn will be found in the trace-
back of routine TARGET, and RETURN from TARGET will pass through JUMPXn. Hence, normally (i.e. unless
recursion is handled by a particular machine), TARGET or any of its called routines may not again call

JUMPXn.
°

380 Z2042-1

INTRAC CERN Program Library 2044

Author(s) : F. Carminati, T. Lindel6f, R. Matthews, C. Vosicki, J. Zall Library: KERNLIB
Submitter: Submitted: 01.12.1974
Language : Fortran or C or Assembler Revised:01.06.1993

Identify Job as Interactive

INTRAC allows an executing module to determine whether it is running interactively or not.
Structure:

FUNCTION subprogram
User Entry Names: INTRAC

Usage:
In any logical expression,
INTRACQ)

has the value . TRUE. if the module is executing interactively and .FALSE. otherwise. Note that INTRAC
must be declared LOGICAL in the calling routine.

Method:

On UNIX machines execution isinteractive if 'standard input’ (System Unit 0, i.e. Fortran Unit 5 nor-
mally) is connected to aterminal. The sameistrue on VAX as from June 1993.
[]

381 7044 -1

IFBATCH CERN Program Library 2045

Author(s) : J. Shiers, C. Vosicki Library: KERNLIB, VAX only
Submitter: Submitted: 01.04.1994
Language : Fortran Revised:

Identify Job as Running in Batch Mode

IFBATCH allows an executing modul e to determine whether it is running in batch mode or not.
Structure:

FUNCTION subprogram
User Entry Names: TFBATCH

Usage:
In any logical expression,
IFBATCH()

hasthe value . TRUE. if the module is executing in batch mode and . FALSE. otherwise. Notethat IFBATCH
must be declared LOGICAL in the calling routine.
[]

382 Z045-1

XINOUT CERN Program Library Z203

Author(s) : R. Matthews, J. Zall Library: KERNLIB
Submitter: Submitted: 15.07.1978
Language : Fortran Revised: 18.09.1991

Short List Reading and Writing

The’longlist’ form WRITE(LUN) (A(J),J=1,N) istrandated intoslow object code by some compilers.
Normally, these compilers handle the 'short list’ form

DIMENSION A(N)
WRITE(LUN) A

correctly, compiling just one system request, rather than N requests.
Furthermore, some machines require the calling program to know the record size beforehand, if reading is
donein Fortran. The problem can be solved by adding the record size as the first word of the record, thus
for

writing: WRITE(LUN) N, (B(J),J=1,N)

reading: READ (LUN) N,(B(J),J=1,l)
This way of reading and writing is an extra convention; it is called 'variable length’ in the descriptions
below.
Sometimes it is convenient to prefix each record with some identifiers, always the same number of words,
say NA words:

writing: WRITE(LUN) N,(A(J),J=1,NA),(B(J),J=1,N)

reading: READ (LUN) N,(A(J),J=1,NA),(B(J),J=1,N)
Thismodeiscalled 'split mode' in the descriptions below.

The routines of XINOUT provide 'short list’ reading and writing for split mode, variable length mode and
also for fixed length mode.

Structure:

SUBROUTINE subprograms

User Entry Names: XINB, XINBF, XINBS, XOUTB, XOUTBF, XOUTBS
COMMON Block Names and Lengths: /SLATE/ NR,DUMMY(39)
Files Referenced: Parameter

Notes:

The routines XINCF and XOUTCF to handle formatted files are obsol ete.

383 Z203-1

Usage:
Reading:
The vectorsto be read are XAV and XV of length NA and NX; the read routines contain effectively

DIMENSION XV(NX) [,XAV(NA)]

Before calling, NX must be preset to the maximum number of words to be accepted into XV with, say,
NX = NWMAX.

CALL XINB(LUN,XV,NX) Read binary, variable length:
READ(LUN) NR, (XV(J),J=1,MIN(NR,NX))

CALL XINBF(LUN,XV,NX) Read binary, fixed length:
READ(LUN) XV

CALL XINBS(LUN,XAV,NA,XV,NX) Read binary, split mode:
READ(LUN) NR,XAV,(XV(J),J=1,MIN(NR,NX))

On return NX contains;

NX > 0 : Read successful, number of words transmitted into XV.
= 0 : End-of-file.
< 0 : Read error, its value containsthe IOSTAT error code on most machines.

For XINB and XINBS the record length NR read from thefile is stored into the first word of /SLATE/.

Writing:
The vectorsto be written are AV and V of length NA and N; the write routines contain

DIMENSION V(N) [,AV(NA)]

CALL XOUTB(LUN,V,N) Write binary, variable length:
WRITE(LUN) N,V

CALL XOUTBF(LUN,V,N) Write binary, fixed length:
WRITE(LUN) V

CALL XOUTBS(LUN,AV,NA,V,N) Write binary, split mode:
WRITE(LUN) N,AV,V

Z203-2 384

IARGC CERN Program Library 2264

Author(s) : F. Carminati, M. Marquina Library: KERNLIB or Fortran Run-Time Library
Submitter: Submitted: 13.07.1988
Language : Fortran + C Revised: 15.03.1993

Returns Command Line Arguments

IARGC is used to return arguments that the user has given to an executable module on the command line.
Structure:

FUNCTION subprograms
User Entry Names: GETARG, TARGC

Usage:

NPAR = IARGC()

setsNPAR to the number of blank delimited arguments present after the program name on the command line.
NPAR and IARGC are of type INTEGER.

CALL GETARG(IARG,GOTEXT)
IARG (INTEGER) Contains, on entry, the number of the argument to retrieve. Unchanged on exit.
GOTEXT (CHARACTER) Contains, on exit, the IARG-th argument.

Notes:

1. Arguments surrounded by double quotes (") are treated as single, e.g.
"a variable here"

is equivalent to one argument.

2. On VM/CMS, due to technical restrictions, at least one of the routines must be called before any 1/0
(typically aPRINT statement).

3. GETARG(0,GOTEXT) returns name of executing program (not VM).

Example:

CHARACTER#*100 STRING
C-- Retrieve the number of arguments given to this program

NPAR=IARGC()
C-- and then get one by one, storing it in STRING
DO 10 N = 1,NPAR
CALL GETARG(N,STRING)
PRINT *, STRING(1:LENOCC(STRING))
10 CONTINUE
END

385 7264-1

CINTF CERN Program Library 7265

Author(s) : see below Library: KERNLIB
Submitter: Submitted: 19.09.1991
Language : Fortran + C Revised:01.04.1994

Immediate Interface Routines to the C Library

Authors: F. Carminati, M. Marquina, A. Rademakers, J. Shiers, J. Zall.

The routines of this package are Fortran callable routines which in turn call their corresponding C Library
routines, after having taken care of the Fortran way of passing parameters.

The names of the interface routines are exactly the names of the C functions with the letter F added; the
parameters are in one-to-one correspondence with the C functions; thus "man <name>'" gives the exact
detailsalso for the interface routine.

Most Fortran systems on Unix machines are clever, they protect the Fortran user against name-clashes with
theClibrary, for examplea"CALL RENAME (...)" compilesasareferenceto "rename_" (Orto "RENAME"
on the Cray).

If thisis not strictly true, and/or if moreover the Fortran Run-time library does itself contain an interface
routine "rename' then there might be trouble because it is not obvious which "rename" will be linked to
the interface routine RENAMEF. The IBM 6000 machine has succeeded in creating this problem, it has both
“rename" and "rename_" on the Fortran Run-time library. In this case one hasto give an explicite-1c on
the link statement to ensure that the C library is searched before the Fortran library (but after the Kernlib
library).

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: ACCESSF, CHDIRF, CTIMEF, EXITF, GETENVF, GETGIDF, GETPIDF, GETUIDF,
GETWDF, GMTIMEF, KILLF, LSTATF, PERRORF, READLNF, RENAMEF, SETENVF,

SLEEPF, STATF, SYSTEMF, UNLINKF
COMMON Block Names and Lengths: /SLATE/ ISLATE(40)

Usage:

The types of al variables and functions follow from the Fortran default typing convention (unless typed
explicitly), except that variables starting with the letters CH are of type CHARACTER.

The symbol * designates an output parameter.

For convenience, routines which return a CHARACTER string also return the occupied useful length of this
stringin ISLATE(1) of /SLATE/.

386 Z265-1

'access’ — determine accessibility of file

LOGICAL ACCESSF
truth = ACCESSF(CHNAME,MODE)

CHNAME the path-name of the file
MODE a bit pattern specifying the type of access:

bit 1 (1): execution permission
2 (2): write permission
3 (4): read permission
all zero: existence

'chdir’ — set current working directory

INTEGER CHDIRF
ISTAT = CHDIRF(CHNAME)

CHNAME the path-name of the new working directory
ISTAT function value returns zero if successful.

‘ctime’ — convert encoded time to ASCI|

CHARACTER CHTIMEx24
CALL CTIMEF(ITIME, CHTIME)

ITIME encoded time (as returned by STATF)
CHTIME* decoded time string of length 24

'exit’ — terminate the process with a status code

CALL EXITF(IRC)

stops setting return status IRC. This should not be used for normal run termination. On the IBM VM this
had to be implemented with a computed GOTO, henceif IRC > 20 aSTOP 255 isexecuted.

On the Unix machines IRC will appear in the shell variable " status” which is reset after execution of each
command, thus for more complicated logic the value of status hasto be saved like (in the C shell):

set rc = $status
if (rc '= 0) then
if (rc == 1) then
echo ’ not quite happy, but continue’
else
echo ’ stop for trouble’
exit
endif
endif

2265-2 387

'getenv’ — get the text of an environment variable

CHARACTER CHTEXT*(big enough)
CALL GETENVF (CHNAME, CHTEXT)

CHNAME +the name of the environment variable,
returns its value, with blank-fill

CHTEXTx*
ISLATE(1) occupied length, =0 if not found

'getgid’ — get group identification

CALL GETGIDF(IDG)

IDG returns the real group ID of the current process.

'getpid’ — get process identification
CALL GETPIDF(IDP)

IDP returns the process ID of the current process.

'getuid’ - get user identification

CALL GETUIDF(IDU)

IDU returns the real user ID of the current process.
'getwd’ — get the path-name of the working directory

CHARACTER CHTEXT*(big enough)
CALL GETWDF(CHTEXT)

returns the path-name, with blank-fill

CHTEXTx*
ISLATE(1) occupied length, =0 if not found

'gmtime’ — blow encoded time to time elements for Greenwich Mean Time

INTEGER ITMELS(9)
CALL GMTIMEF(ITIME, ITMELS)

ITIME encoded time (as returned by STATF)

ITMELS* decoded time elements:
(1) sec, (2) min, (3) hour, (4) day, (5) month, (6) year,

(7) weekday, (8) yearday, (9) isdst

'kill' — send a signal to a process

ISTAT = KILLF(IPID,ISIG)

IPID process ID

ISIG signal number
ISTAT function value returns zero if successful.

388 Z265-3

'perror’ — print message for the most recent C Library error

CALL PERRORF (CHTEXT)

CHTEXT the text to be printed before the error message

'readlink’ — read value of a symbolic link

INTEGER READLNF
CHARACTER VAL*(big enough)

NCH = READLNF (CHNAME,VAL)
CHNAME path-name of the link

VAL(1:NCH) returns the value of the link
NCH wuseful length returned,

= -1 if trouble, PERRORF may be called.

rename’ — rename a file

INTEGER RENAMEF
ISTAT = RENAMEF (CHFROM,CHTO)

CHFROM old file name
CHTO0 new file name
ISTAT function value returns zero if successful.

'setenv’ - set environment variable

INTEGER SETENVF
ISTAT = SETENVF(CHNAME,CHVAL)
CHNAME name of the environment variable

CHVAL 1its value to be set
ISTAT function value returns zero if succesful.

On machineswhere the setenv function of system BSD isnot available, putenv isused instead on a string
constructed from CHNAME and CHVAL in allocated memory, hence one should avoid re-defining the same

variable very many times.

'sleep’ — suspend execution

CALL SLEEPF(NSECS)

NSECS number of seconds to wait

2265-4

389

'stat’ — get file status

INTEGER INFO(12)
INTEGER STATF

ISTAT = STATF(CHNAME, INFO)
CHNAME path-name of the file
INFO* information returned

ISTAT function value returns zero if successful.

Thisroutine returns the properties of a given file in a 12-word integer vector:

INFO(1) = dev device inode resides on

INFO(2) = ino this inode’s number

INFO(3) = mode protection

INFO(4) = nlink number or hard links to the file
INFO(5) = wuid user-id of owner

INFO(6) = gid group-id of owner

INFO(7) = size total size of file

INFO(8) = atime file last access time

INFO(9) = mtime file last modify time

INFO(10) = ctime file last status change time
INFO(11) = blksize optimal blocksize for file system i/o ops

INFO(12)

blocks actual number of blocks allocated

On machineswhere *blksize’ and *blocks’ are not available (like Silicon Graphics) the words

INFO(11/12) will dwaysbe zero.

'Istat’ — get file status

LSTATF is like STATF except in the case where the named file is a symbolic link, in which case LSTATF
returns information about the link, while STATF returns information about the file the link references.

For convenience LSTATF storesinto /SLATE/ some information about the nature of CHNAME:

ISLATE(1) = 0 if CHNAME is a regular file
ISLATE(2) = 0 if CHNAME is a symbolic link
ISLATE(3) = 0 if CHNAME is a directory

'system’ — issue a shell command

INTEGER SYSTEMF
ISTAT = SYSTEMF (CHTEXT)

CHTEXT the command to be executed
ISTAT returns the exit status of the shell

390 Z265-5

'unlink’ — remove directory entry

INTEGER UNLINKF
ISTAT = UNLINKF (CHNAME)

CHNAME the path-name of the file to be unlinked
ISTAT function value returns zero if successful.

Normally this deletes file CHNAME. If CHNAME is a soft link, the link is deleted, but not the file pointed to.
Notes:

Theroutine SIGNALF, which belongsto thisfamily, will be described separately in the next paper

These routines have also been implemented on some machines which are not running Unix. The present
stateis asfollows:

VAX system VMS has:
CHDIRF, EXITF, GETENVF, GETWDF, RENAMEF, SLEEPF, SYSTEMF

Presently GETENVF looksin the symbol table, except if the name of the environment variableis "HOME" for
which it will return the value of thelogical name SYS$LOGIN.

Some other routines are available through the C run-time library.
IBM 3090 system VM/CMS has:

CHDIRF, CTIMEF, EXITF, GETENVF, GETPIDF, GETWDF, GMTIMEF,
KILLF, PERRORF, RENAMEF, SLEEPF, STATF, SYSTEMF

Z265-6 391

WHOAMI CERN Program Library 7266

Author(s) : F. Carminati, J. Zoll Library: KERNLIB, VAX only
Submitter: Submitted: 01.04.1994
Language : Fortran Revised:

Get the name of the executing module

Thisroutine will figure out the path-name of the executing image. On the VAX this is done with a system
call, on UNIX by scanning the search path until it finds the module whose nameisin argv [0].

Structure:

SUBROUTINE subprograms
User Entry Names; WHOAMI
Common Blocks, COMMON /SLATE/ ND,NE,NF,DUMMY(37)

Usage:

CALL WHOAMI(NAME)

On exit, NAME containsthe full path-name of the module.
Status and variouslengths are returned in /SLATE/:

ND = 0 1if the call failed,
> 0 the number of characters in the path-name

Onthe VAX:

ND number of characters in the path-name with .EXE;n stripped

NE = number of characters before the semicolon,
NF = number of characters in the complete name.
For example:

if NAME is DISK:[CERN]WYLBUR.EXE;4
_t.=4=0 A== 2 . =+=

we will get ND=17, NE=21, NF=23.

Note: At the moment thisisavailable only onthe VAX; the code existsfor UNIX but isnot yet in thelibrary.

392 7266 -1

FTOVAX CERN Program Library 7267

Author(s) : J. Zoll Library: KERNLIB, VAX only
Submitter: Submitted: 01.09.1990
Language : Fortran Revised:01.11.1994

Convert File-name to and from UNIX Syntax

These routines convert a file name from UNIX form to VAX VMS form, and vice versa. The correspondance
isasfollows:

VAX: node::disk:[a.b.c]file.ext;cy
UNIX: //node/disk/a/b/c/file.ext;cy

VAX: la.b.c]file.ext;cy and [.a.b.c]file.ext;cy
UNIX: /(a/b/c/file.ext;cy a/b/c/file.ext;cy
Formslike ../file.ext;cy and /dir/file.ext;cy are aso handled.

For back-compatibility /=disk ishandled as /disk.
Structure:

SUBROUTINE subprograms
User Entry Names: FTOVAX, FFRVAX
Common Blocks, COMMON /SLATE/ ISTAT,DUMMY(39)

Usage:
Convert to VAX form
CALL FTOVAX(CHNAME,NCH)

CHNAME file-name to be converted in situ
NCH significant length of the name

No conversion is doneif the file-name does not contain a character ''/'" on input.

Convert to UNIX form
CALL FFRVAX(CHNAME,NCH)

CHNAME file-name to be converted in situ
NCH significant length of the name

No conversion is doneif the file-name does aready contain a character /" oninpuit.
Thisroutine does some tidying up if necessary, thus for exampl e the troublesome

disk:[a][b.c]lfn.ext becomes the correct /disk/a/b/c/fn.ext

Both routinesreturn ISTAT=0 if no conversion was needed, ISTAT=1 for successful conversion,
and ISTAT=-1 if a syntax error was detected.

Note that both routines update both the file-name and its useful length NCH in situ.

Examples:
tex/z267 .tex [.tex]z267.tex
../wyl/kernfor.car [-.wyllkernfor.car

/(julia/kern/wyl/kernvax.car [julia.kern.wyllkernvax.car
/cern_root/pam/kernfor.car cern_root: [pam]lkernfor.car

393 Z267-1

VAXTIO CERN Program Library Z301

Author(s) : C. Ciapetti, J. Zall Library: KERNLIB, VAX only
Submitter: Submitted: 01.09.1983
Language : VAX Fortran Revised:

VAX Fortran Interface for Reading and Writing 'Foreign’ Tapes

VAXTIO handlesnon-nativetapeson the VAX; itis needed because VA X Fortran does not provide aU format.

If the tape to be handled is on logical unit 11, mounted on MTAO, with physical records of 3600 bytes
maximum, for example, the following commands have to be given:

$ MOUNT MTAO:/FOREIGN/BLOCKSIZE=3600/RECORDSIZE=3600
$ ASSIGN MTAO: QIOUNIT11
Structure:

SUBROUTINE subprogram

User Entry Names: VAXTIO

Internal Entry Names; WAIT2S

Files Referenced: User defined parameter

COMMON Block Names and Lengths: /VAXTIO/ 240

Usage:

CALL VAXTIO(LUN,MODOP,IBUF,NDO,NDONE,NCODE,LUNMSG)

Input parameters:

LUN Logical unit number (0 < LUN < 61).

MODOP Operation mode, indicating the kind of operation to be performed; for details, see below.
IBUF Data area for read and write.

NDO Number of unitsto be done.

LUNMSG Fortran logical unit number for printing diagnostic messages; if zero, printing is suppressed.
Output parameters:

NDONE Number of unitsdone; error if negative.
NCODE QI0 System status code.

The following operations are provided at present:

MODOP = —2: Write EOF (3 tape marks are written and the tape is positioned after the first
tape mark).
NDONE = 1 Successful.
NDONE =0 End-of-tape.
NDONE = —7 Trouble.
MODOP = —1: Write one record, tranfer NDO bytesfrom IBUF to tape.
NDONE > 1 Number of bytes written.
NDONE = 0 End-of-tape, but record written.
NDONE = —7 Trouble.

394 Z301-1

MODOP = 0 :
MODOP =1 :
MODOP = 2 :
MODOP = 3 :
MODOP =4 :
MODOP =5
MODOP = 6 :

Read one record, transfer at most NDO bytes from tape to IBUF, excess data
arelost.

NDONE > O Number of bytes transferred.

NDONE =0 EOF, end-of-tape.

NDONE = —1 Read error, record skipped.

NDONE = —7 Trouble.

Assign a channel for logical unit (if not done explicitly, assignment occurs on
first contact).

NDONE = 1 Successful.

NDONE = 0 Channel already assigned.

NDONE = —7 Trouble.

Skip |NDO| records, forward if NDO > 0, reverseif NDO < 0. (|NDO| < 32768)
NDONE > O Number of records skipped.

NDONE < NDO EOF seen, skipped, counted.

NDONE = —7 Trouble.

Skip |NDO| files, forward if NDO > 0, reverseif NDO < O.

NDONE > O Number of files skipped.

NDONE < NDO End-of-tape seen.

NDONE = —7 Trouble.

Rewind.

Rewind and unload.

NDONE = 1 Successful.

NDONE = —7 Trouble.

De-assign channel; this should be done if alogical unit is no longer needed.
NDONE = 1 Successful.

NDONE = —7 Trouble.

Z301-2

395

KAPACK

Author(s) : R. Matthews
Submitter:
Language : Fortran

CERN Program Library

Z303

Library: PACKLIB

Submitted: 25.08.1983

Random Access I/0O Using Keywords

OBSOLETE
Please note that thisroutine has been obsoleted in CNL 219. Usersare advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: ZEBRA (Q100) or HEPDB (Q180)

Revised:07.02.1986

A package of Fortran-callable subprograms for manipulating a random access file in which the records are
of variable length and identified by atwo-component name. Thispackage may be used asthe basis of adata
base or bookkeeping system.

Structure:

SUBROUTINE subprograms

User Entry Names: KAADD, KAADDM, KACOPY, KADEL, KADELM, KAFREE, KAGET, KAGETH,
KAHOLD, KALEN, KALIST, KALOC, KAMAKE, KAMSG, KAOPTN, KAPRE,
KAPREM, KAPRIK, KAPUT, KAPUTM, KARLSE, KASEQ, KASEQM, KASTOP

Usage:

See Long Write-up .

396

Z303-1

CFIO CERN Program Library Z310

Author(s) : J. Zoll Library: KERNLIB, UNIX and VMS
Submitter: Submitted: 19.09.1991
Language : Fortran + C Revised:

Handle Fixed-length Records on Unix Streams

The routines of this package are an interface to the C library functions open, read, write, Iseek, close, to
permit a Fortran program to handle an unstructured Unix file as astring of fixed-length binary records. Both
sequential and direct-access READ / WRITE can be simulated.

These routines are simple little interface routines, there is no book-keeping done of the files which have
been opened, the properties of the file have to be specified on each call, and the user is responsible for the
consistency of al hiscallsfor aparticular file.

Processing has to be different for a disk file or for a tape file; therefore the medium must be indicated in the
calls. Also, a user could take the source of these routines and modify them to add other branches for special
processing.

New files are opened with the default permissions 644; one may set different permissionsby calling CFPERM
just before calling CFOPEN, which resetsto the default after every call.

Three parameters are common to almost al routines:

LUNDES 1is the file-descriptor of C to identify the file;
with CFOPEN this is an output parameter,
for all other routines it is an input parameter.

MEDIUM = 0 for disk file, normal
1 tape file, normal
2 disk file, user coded I/0
3 tape file, user coded I/0

NWREC is the number of machine words for each one
of the fixed-length records.

In the examples below it is assumed that for a given file these three parameters are available in something
like COMMON storage.

Structure:

SUBROUTINE subprograms
User Entry Names: CFOPEN, CFGET, CFPUT, CFSIZE, CFTELL, CFSEEK, CFREW, CFCLOS, CFPERM
Files Referenced: Parameter

Usage:

Note: the symbol * designates output parameters.

397 Z310-1

Open afile

CALL CFOPEN(LUNDES,MEDIUM,NWREC, CHMODE, NBUF, CHNAME, ISTAT)
LUNDES* file-descriptor returned

CHMODE CHARACTER string selecting the IO mode :

='r’ open for reading
’r+’ open for read/write
Ty’ create or truncate for writing
’w+’ open for write/read, create or truncate
‘a’ append

’a+’ open for append/read

[add the letter "1" if labeled tape,
action on this is not yet implemented]

NBUF not used for the time being, always give zero
CHNAME name of the file, CHARACTER variable
ISTAT* status, =zero if success

For example, create a new filein the current directory :

MEDIUM = O

NWREC = 900

CALL CFOPEN(LUNDES,MEDIUM,NWREC, ’w’, O, ’run201.dat’, ISTAT)
IF(ISTAT .NE. 0) GO TO trouble

Read next record

CALL CFGET(LUNDES,MEDIUM,NWREC, NWTAK, MBUF, ISTAT)

NWTAK input: number of words to be read
output: number of words actually read

MBUF * vector to be read into
ISTAT* status, = zero if success,
= -1 if end-of-file

To simulate direct-access reading one has to call CFSEEK first.
For example:

<< if the 7th record of the file is to be read:
CALL CFSEEK(LUNDES,MEDIUM,NWREC, 6, ISTAT)
IF(ISTAT .NE. 0) GO TO trouble >>

NWTAK = NWREC

CALL CFGET(LUNDES,MEDIUM,NWREC, NWTAK, MBUF, ISTAT)
IF(ISTAT .EQ.-1) GO TO eof

IF(ISTAT .NE. 0) GO TO trouble

Z310-2 398

Write next record

CALL CFPUT(LUNDES,MEDIUM,NWREC, MBUF, ISTAT)

MBUF vector to be written, NWREC words
ISTAT* status, =zero if success

Get the size of the file

CALL CFSIZE(LUNDES,MEDIUM,NWREC, NRECT, ISTAT)

NRECT* number of records on the file
ISTAT* status, =zero if success

Careful : this will position the file to the end.
Get the current file position

CALL CFTELL(LUNDES,MEDIUM,NWREC, NRECC, ISTAT)

NRECC* number of records before current
ISTAT* status, =zero if success

Set the current file position

CALL CFSEEK(LUNDES,MEDIUM,NWREC, NRECC, ISTAT)

NRECC number of records before current
ISTAT* status, =zero if success

For example :
CALL CFSEEK(..., 0, ISTAT) position to start-of-file
CALL CFSEEK(..., 6, ISTAT) position to 7th record

use CFSIZE to position to end-of-file
Rewind the file

CALL CFREW(LUNDES,MEDIUM)
Close the file

CALL CFCLOS(LUNDES,MEDIUM)
Set the permissions for the next open

CALL CFPERM(IPERM)

IPERM the permissions as a decimal integer,
as returned by STATF (Z265) for example

For example (using NCOCTTI of M432) :

CALL CFPERM(NCOCTI(’660°))

set read and write for owner and group only.

399 Z310-3

Clo CERN Program Library Z311

Author(s) : J. Zoll Library: KERNLIB, VAX and UNIX systems only
Submitter: Submitted: 31.10.1991
Language : Fortran + C Revised:01.04.1994

Handle Unix Disk Files

The routines of this package are an interface to the C library functions open, read, write, Iseek, close, to
permit a Fortran program to handle an unstructured Unix file as a string of bytes. Both sequential and
direct-access READ / WRITE can be done.

New files are opened with the default permissions 644; one may set different permissionsby calling CIPERM
just before calling CIOPEN, which resetsto the default after every call.

One parameter iscommon to amost all routines : LUNDES isthe file-descriptor of C to identify thefile; with
CIOPEN thisis an output parameter, for al other routinesit isan input parameter.

Structure:

SUBROUTINE subprograms

User Entry Names. CIOPEN, CIGET, CIGETW, CIPUT, CIPUTW, CISIZE, CITELL, CISEEK, CIREW, CICLOS,
CIPERM

Files Referenced: Parameter

Usage:

Note: the symbol * designates output parameters.

Open afile
CALL CIOPEN(LUNDES, CHMODE, CHNAME, ISTAT)
LUNDES* file-descriptor returned

CHMODE CHARACTER string selecting the IO mode :

='r’ open for reading
’r+’ open for read/write
Ty’ create or truncate for writing
’w+’ open for write/read, create or truncate
‘a’ append

’a+’ open for append/read

CHNAME name of the file, of type CHARACTER
ISTAT* status, =zero if success

For example, create a new filein the current directory :

CALL CIOPEN(LUNDES, °’w’, ’concert.car’, ISTAT)
IF(ISTAT .NE. 0) GO TO trouble

400 Z311-1

Read next string of bytes

CALL CIGET (LUNDES, CHBUF, NBDO, NBDONE, ISTAT)

CHBUF* text vector to be read into
NBDO maximum number of bytes to be read
NBDONE* number of bytes actually read
ISTAT* status, = zero if success,
= -1 if end-of-file

Read next string of full words

CALL CIGETW(LUNDES, MBUF, NWDO, NWDONE, ISTAT)

MBUF* vector to be read into
NWDO maximum number of words to be read
NWDONE* number of words actually read
ISTAT* status, = zero if success,
= -1 if end-of-file

A full word isnormally 4 bytes; on the CRAY it is 8 bytes.
To simulate direct-access reading one has to call CISEEK first.
For example:

To read the next 2048 bytes:

<< starting at byte 8193
CALL CISEEK(LUNDES, 8192, ISTAT)
IF(ISTAT .NE. 0) GO TO trouble

CALL CIGET(LUNDES, CHBUF, 2048, NBDONE, ISTAT)
IF(ISTAT .EQ. -1) GO TO eof
IF(ISTAT .NE. 0) GO TO trouble

Write next string of bytes

CALL CIPUT(LUNDES, CHBUF, NBDO, ISTAT)

CHBUF text vector to be written, NBDO bytes
ISTAT* status, =zero if success

Write next string of full words

CALL CIPUTW(LUNDES, MBUF, NWDO, ISTAT)

MBUF vector to be written, NWDO words
ISTAT* status, =zero if success

Z311-2

401

Get the size of the file

CALL CISIZE(LUNDES, NBYTT, ISTAT)

NBYTT* number of bytes on the file
ISTAT* status, =zero if success

Careful : this will position the file to the end.
Get the current file position

CALL CITELL(LUNDES, NBYTC, ISTAT)

NBYTC* number of bytes before current
ISTAT* status, =zero if success

Set the current file position

CALL CISEEK(LUNDES, NBYTC, ISTAT)

NBYTC number of bytes before current
ISTAT* status, =zero if success

For example :

CALL CISEEK(LUNDES, 0, ISTAT) position to start-of-file
CALL CISEEK(LUNDES, 8, ISTAT) position to 9th byte
use CISIZE to position to end-of-file

Rewind the file
CALL CIREW(LUNDES)
Close the file
CALL CICLOS(LUNDES)
Set the permissions for the next open

CALL CIPERM(IPERM)

IPERM the permissions as a decimal integer,
as returned by STATF (Z265) for example

For example (using NCOCTTI of M432) :

CALL CIPERM(NCOCTI(’664°))

set read for everybody, and write for owner and group.

Note: formally the buffer for reading and writing should be of type CHARACTER for CIGET and CIPUT, and
of type INTEGER for CIGETW and CIPUTW. On most machines there is no difference, but on the VAX this
must be observed, because the parameter passing mechanisme differs crucially for the two cases. Also, on
the CRAY there would be problems if one were using CIGETW to read into a Character address other than a
word boundary.

[]

402 Z311-3

TMREAD CERN Program Library Z313

Author(s) : J. Zall Library: KERNLIB
Submitter: Submitted: 01.11.1994
Language : Fortran Revised:

Terminal Dialogue Routines

These routines prompt the user on-line to the executing program for input from the terminal, and read it. The
prompt is written to standard output by calling TMPRO, the input is read from standard input with TMREAD.
Whether or not standard input isin fact aterminal can be detected with INTRAC (Z044); if it is not the call
to TMPRO should be by-passed.

Structure:

SUBROUTINE subprograms
User Entry Names: TMINIT, TMPRO, TMREAD
Filesreferences. standard input, standard output

Usage:
Initialize the dialogue

On some machines it is necessary to switch off buffered mode on standard output, thisis done by calling
once, and before thefirst call to TMPRO:

CALL TMINIT (IFINIT)

IFINIT* 1is reset to non-zero by TMINIT
Put the prompt to standard output

CALL TMPRO (TEXT)

TEXT 1is the character string to be written
Read next line from standard input

CALL TMREAD (MAXCH, CHLINE, NCH, ISTAT)

MAXCH maximum number of char. to be stored into LINE
LINE* text read, of type CHARACTER
NCH* number of characters read into LINE
ISTAT* status returned:
= 0 success
< 0 end-of-file seen
> 0 read error

403 Z313-1

Index

ABEND, 17, 22, 24, 28, 29, 32-36, 40, 41, 4345
48, 50, 52, 55, 56, 58, 60, 63, 6668, 70,
71,74, 76, 78, 80, 83, 87, 89, 91, 94, 96,
97, 100, 103, 106, 115, 117, 124, 135
145, 148, 150, 155, 157, 176, 189, 191
193, 213, 215, 217, 218, 221-223, 231
296, 298, 323, 360, 361, 374

ABUSER, 375
ACCESSF, 386
ADDBND, 112

ALGAMA, 34, 63, 223

ALOGAM, 34
AMAXMU, 147
ANDB, 208
ASINH, 15, 80
ASLGF, 58
ASSNDX, 233
ASTCCH, 377
ASTDCC, 377
ASTECC, 377
ASTECS, 377
ASTINT, 377
ASTSCS, 377
ASTXIT, 377
ATANT, 53
ATG, 14

BESIO, 41
BESI1, 41, 60
BESIO, 60
BESJO, 40
BESJ1, 40, 60
BESJO, 60, 73
BESKO, 41, 71
BESK1,41, 71
BESYO, 40, 73
BESY1, 40
BFGS, 112
BINOM, 13
BINSIZ, 241
BINVEC, 208
BITPOS, 295
BLOW, 262
BNDOPT, 112
BNDTST, 112
BOUNDS, 112
BSIA, 74
BSIR3, 70
BSIR4, 55
BSJA, 74
BSKA, 71
BSKR3, 70, 71

404

BSKR4, 55, 71
BTEST, 287
BTMOVE, 285
BUCMVE, 112
BUFOPT, 112
BUKDMP, 112
BUNCH, 283
BZEJY, 78

CALDAT, 370
CAUCHY, 96
CBSJA, 76
CBYT, 258 263
CCLBES, 37, 56
CCMMPY, 185
CCOP1IV, 268
CCOPYL, 268
CCOPYR, 268
CCOSUB, 268
CCUMPY, 185
CELFUN, 48
CELINT, 87
CENVIR, 268
CEQINV, 189
CEQN, 189
CEXPIN, 68
CFACT, 189, 191
CFCLOS, 397
CFEQN, 189, 191
CFGET, 397
CFILL, 268
CFINV, 189, 191
CFOPEN, 397
CFPERY, 397
CFPUT, 397
CFREW, 397
CFSEEK, 397
CFSIZE, 397
CFSTFT, 141, 143
CFT, 139
CFTELL, 397
CGAMMA, 35, 60
CGAUSS, 106
CGPLG, 50
CHDIRF, 386
CHECF, 176
CHISIN, 218
CHSUM, 178
CHTOTI, 253 267
CICLOS, 400
CIGET, 400
CIGETW, 400

Index — 1

CINV, 189

CIOPEN, 400
CIPERN, 400
CIPUT, 400
CIPUTW, 400
CIREW, 400
CISEEXK, 400
CISIZE, 400
CITELL, 400
CKRACK, 268
CLEFT, 268

CLGAMA, 36, 37, 56, 60

CLTOU, 268
CMADD, 185
CMBIL, 185
CMCPY, 185
CMDMP, 185
CMMLA, 187
CMMLS, 187
CMMLT, 187
CMMLTC, 187
CMMNA, 185
CMMNS, 185
CMMPA, 185
CMMPS, 185
CMMPY, 185
CMMPYC, 185
CMNMA, 187
CMNMS, 187
CMRAN, 185
CMSCL, 185
CMSET, 185
CMSUB, 185
CMUTL, 185
CNTOB, 208
CNTZB, 208
COMBI, 351
CONVERT, 313
COPYB, 208
CORGEN, 337
CORSET, 337
COSINT, 66
CPLNML, 16
CPOLYZ, 28

CPSIPG, 37,45

CRIGHT, 268
CROSS, 201

CSETDI, 268
CSETHI, 268
CSETOI, 268
CSETVI, 268
CSETVM, 268
CSQMBL, 268

Index — 2

CSQMCH, 268
CTIMEF, 386
CTRANS, 268
CUMNA, 185
CUMNS, 185
CUMPA, 185
CUMPS, 185
CUMPY, 185
CUMPYC, 185
CUTOL, 268
CVADD, 183
CVCPY, 183
CVDIV, 183
CVMPA, 183
CVMPAC, 183
CVMPY, 183
CVMPYC, 183
CVMUL, 183
CVMULA, 183
CVMUNA, 183
CVRAN, 183
CVSCA, 183
CVsCL, 183
CVscCs, 183
CVSET, 183
CVSUB, 183
CVSUM, 183
CVXCH, 183
CWERF, 65

CWHITM, 56

DADAPT, 92
DADMUL, 110
DASINH, 15, 80
DASLGF, 58
DATANT, 53

DATIME, 239, 362, 368, 370
DATIMH, 360, 368

DAWSON, 69
DBEQN, 213
DBESIO, 41, 60
DBESI1, 41, 60

DBESJO, 40, 60, 73

DBESJ1, 40, 60
DBESKO, 41, 71
DBESK1,41, 71
DBESYO, 40, 73
DBESY1, 40
DBINON, 13
DBSIA, 74
DBSIR3, 70
DBSIR4, 55
DBSJA, 74
DBSKA, 71

405

DBSKR3, 70, 71 DFACT, 189, 191

DBSKR4, 55, 71 DFCONC, 60
DBZEJY, 78 DFEQN, 189, 191
DCAUCH, 96 DFERDR, 52
DCHEBN, 168 DFINV, 189,191
DCHECF, 176 DFRCOS, 51
DCHPWS, 179 DFRDH1, 135
DCHSUM, 178 DFRDH2, 135
DCLAUS, 54 DFRDH3, 135
DCLEBG, 319 DFREQ, 31
DCOSIN, 66 DFRSIN, 51
DCSPLN, 166 DFUNFT, 126
DCSPNT, 166 DGAGNC, 63
DDAWSN, 69 DGAMMA, 32,43, 74, 76
DDEQBS, 115 DGAMMF, 33
DDEQMR, 117 DGAPNC, 63
DDERIV, 124 DGAUSH, 222
DDILOG, 62 DGAUSS, 94, 96
DDJMNB, 323 DGBTRF, 157
DEBIR3, 70 DGBTRS, 157
DEBIR4, 55 DGEQPF, 126
DEBKA, 71 DGESVD, 157
DEBKR3, 70, 71 DGMLT1, 103
DEBKR4, 55, 71 DGMLT2, 103
DEBSIO, 41 DGMLT3, 103
DEBSI1, 41 DGMLT4, 103
DEBSKO, 41, 71 DGMLTS5, 103
DEBSK1,41, 71 DGMLTS6, 103
DELBND, 112 DGQUAD, 100
DELETE, 112 DGS56P, 92, 99
DELFUN, 46 DGSET, 100, 135
DELI1, 80 DIFLAN, 224
DELI1C, 83 DILOG, 62
DELI2, 80 DINV, 189 215
DELI2C, 83 DISLAN, 224, 226
DELI3, 80 DIVDIF, 150
DELI3C, 83, 359 DIVON, 112
DELIEC, 60, 83, 359 DJAHNU, 319
DELIGC, 83 DJMNB, 323
DELIKC, 60, 83, 359 DLGAMA, 34, 63
DELLIE, 83 DLHOIN, 215
DELLIK, 83 DLOGAM, 34
DELSLV, 112 DLSQP1, 153
DENLAN, 224, 226 DLSQP2, 153
DEQBS, 115 DLSQPM, 153
DEQINV, 189 DMADD, 185
DEQMR, 117 DMAXLK, 126
DEQN, 135, 189 DMBIL, 126, 185
DERF, 30 DMCPY, 126, 157, 185 215
DERFC, 30, 217 DMDMP, 185
DERIV, 124 DMINFC, 131
DEXPIE, 67 DMMLA, 187
DEXPIN, 67 DMMLS, 187

406 Index —3

DMMLT, 126, 187
DMMNA, 185
DMMNS, 185
DMMPA, 185
DMMPS, 185
DMMPY, 126, 157, 185
DMNMA, 187
DMNMS, 187
DMRAN, 185
DMSCL, 126, 185
DMSET, 126, 185, 215
DMSUB, 185
DMULLZ, 22
DMUTL, 185
DORMQR, 126
DOTB, 208
DOTI, 200
DPLNML, 16
DPSIPG, 44
DPWCHS, 179
DRACAW, 319
DRANF, 183, 185, 230
DRIZET, 43
DRKNYS, 119
DRKSTP, 113
DRTEQ3, 26, 27
DRTEQ4, 27
DSEQN, 153, 155, 193
DSFACT, 193
DSFEQN, 193
DSFINV, 193
DSIMPS, 91
DSININ, 66
DSINV, 126, 193
DSMPLX, 231
DSNLEQ, 20
DSPAP1, 157
DSPAP2, 157
DSPCD1, 157
DSPCD2, 157
DSPIN{, 157
DSPIN2, 157
DSPKN1, 157
DSPKN2, 157
DSPNB1, 157
DSPNB2, 157
DSPPS1, 157
DSPPS2, 157
DSPVD1, 157
DSPVD2, 157
DSRTNT, 17
DSTLAN, 224
DSTRHO, 73

Index —4

DSTRH1, 73
DSUMSQ, 126
DTHETA, 89
DTRGSH, 181
DTRINT, 97
DTRTRS, 126
DUMNA, 185
DUMNS, 185
DUMPA, 185
DUMPS, 185
DUMPY, 185
DVADD, 183
DVCOPY, 112

DVCPY, 126, 157, 183 215

DVDIV, 183
DVDOT, 112
DVMPA, 183

DVMPY, 126, 153, 157, 183 215

DVMUL, 183
DVMULA, 183
DVMUNA, 183
DVNBKD, 112
DVNOPT, 112
DVNSPC, 359
DVRAN, 183
DVSCA, 168, 183

DVSCL, 126, 168, 183 215

DVSCS, 168, 183

DVSET, 126, 153, 157, 168, 183

DVSUB, 126, 183
DVSUM, 153, 157, 183
DVXCH, 168, 183
DWIG3J, 319
DWIG6J, 319
DWIGSJ, 319
DZEROD, 24
DZERDX, 18

EBESIO, 41
EBESI1, 41
EBESKO, 41, 71
EBESK1,41, 71
EBSIR3, 70
EBSIR4, 55
EBSKA, 71
EBSKR3, 70, 71
EBSKR4, 55, 71
ELFUN, 46
ELLICE, 83
ELLICK, 83
ELPAHY, 122
EPADDH, 235
EPCLOS, 235
EPDE1, 121

407

EPDROP, 235
EPEND, 235
EPGETA, 235
EPGETC, 235
EPGETW, 235
EPINIT, 235
EPOUTL, 235
EPOUTS, 235
EPREAD, 235
EPRWND, 235
EPSETA, 235
EPSETC, 235
EPSETW, 235
EPSTAT, 235
EPUPDH, 235
EPUREF, 235
ERF, 30
ERFC, 30, 217
ERRORF, 134
EXITF, 386
EXMBUC, 112
EXPINT, 67

FCONC, 60
FEASMV, 112
FEQN, 112
FERDR, 52
FFGET, 237
FFGO, 237
FFINIT, 237
FFKEY, 237
FFREAD, 237
FFRVAX, 393
FFSET, 237
FFUSER, 237
FINT, 148

FLPSOR, 246, 363

FORCCR, 316
FOWL, 362
FRCOS, 51
FREQ, 31
FROMI, 267
FRSIN, 51
FTOVAX, 393
FUMILI, 134
FUN, 112
FUNLUX, 349
FUNLXP, 349
FUNPRE, 347
FUNRAN, 347

GAGNC, 63
GAMDIS, 223

GAMMA, 32, 43, 74, 76, 223

408

GAMMF, 33
GAPNC, 63
GATHER, 206

GAUSIN, 218, 221, 222
GAUSS, 94, 96, 347

GENBOD, 363
GENPNT, 112
GETARG, 385
GETBIT, 284
GETBYT, 286
GETENVF, 386
GETGIDF, 386
GETPIDF, 386
GETUIDF, 386
GETWDF, 386
GMTIMEF, 386
GRAPH, 358

GRDCMP, 112

GTHRB, 208

HISPRE, 345
HISRAN, 345

TAND, 287

TARGC, 385
IBCLR, 287

IBITS, 287

IBSET, 287

ICDECI, 268
ICEQU, 268
ICFILA, 268
ICFIND, 268
ICFMUL, 268
ICFNBL, 268
ICHEXI, 268
ICING, 268
ICINQL, 268
ICINQU, 268
ICLOC, 268
ICLOCL, 268
ICLOCU, 268
ICLUNS, 268
ICNEXT, 268
ICNTH, 268
ICNTHL, 268
ICNTHU, 268
ICNUM, 268
ICNUMA, 268
ICNUMU, 268
ICOCTI, 268
ICTYPE, 268
IE3FOD, 251
IE3F0S, 251
IE3TOD, 251

Index — 5

IE3TOS, 251
TEOR, 287
IFBATCH, 382
IFROMC, 267
I1LZ, 206
ILSUM, 206
INCBYT, 261
INDENT, 311
INDEXA, 279
INDEXB, 279
INDEXC, 279
INDEXN, 279
INDEXS, 279
INDXAC, 279
INDXBC, 279
INDXNC, 279
INTGB, 208
INTGRL, 112
INTRAC, 381
INTSOR, 246
I0OPACK, 235
I0R, 287
IRNDM, 324
ISCAN, 279
ISHFT, 287
ISHFTC, 287

ITOCH, 253 267

TUBIN, 364

IUCHAN, 362, 364

TUCOLA, 356

TUCOMP, 302, 356

IUFILA, 356
IUFIND, 356
TUHIST, 364
TUHUNT, 356
TULAST, 356

TUSAME, 291, 302

TUWEED, 300
IYLOSB, 208
IYLOXB, 208

JBIT, 258 358

JBYT, 258, 260, 263, 358

JBYTET, 258
JBYTOR, 258
JBYTPK, 260
JRSBYT, 258
JUMPAD, 380
JUMPST, 380
JUMPXn, 380
JUMPYn, 380

KAADD, 396
KAADDM, 396

Index — 6

KACOPY, 396
KADEL, 396
KADELM, 396
KAFREE, 396
KAGET, 396
KAGETM, 396
KAHOLD, 396
KALEN, 396
KALIST, 396
KALOC, 396
KAMAKE, 396
KAMSG, 396
KAOPTN, 396
KAPRE, 396
KAPREM, 396
KAPRIK, 396
KAPUT, 396
KAPUTM, 396
KARLSE, 396
KASEQ, 396
KASEQM, 396
KASTOP, 396
KBINOM, 13

KERMTR, 145, 148, 150, 155, 189, 191, 193, 213

KERNGT, 367
KERNLIB, 303
KERSET, 296
KILLF, 386

LATTCR, 316
LDLSOL, 112
LENOCC, 294
LFIT, 174

LFITW, 174
LTHOIN, 215
LIKELM, 134
LLSQ, 155

LNBLNK, 268
LOCATF, 152
LOCATI, 152

LOCATR, 152, 226, 344, 345

LOCB, 299
LOCBYT, 265

LOCF, 183, 185, 187, 299, 302, 354

LOCSCH, 112
LOREN4, 317
LORENB, 318
LORENF, 318
LsQ, 155

LSTATF, 386
LVMAX, 203
LVMAXA, 203
LVMIN, 203
LVMINA, 203

409

LVSDMI, 203
LVSDMX, 203
LVSIMI, 203
LVSIMX, 203
LVSMI, 203
LVSMX, 203

MAXDZE, 146
MAXFZE, 146
MAXIZE, 146
MAXRZE, 146
MBYTET, 258
MBYTOR, 258
MCBYT, 258
MINDZE, 146
MINFZE, 146
MINIZE, 146
MINRZE, 146
MODCHL, 112
MSBIT, 258
MSBITO, 258
MSBIT1, 258
MSBYT, 258

MTLMTR, 17, 22, 24, 28, 29, 32-36, 40, 41, 4345,
48, 50, 52, 55, 56, 58, 60, 63, 6668, 70,
71,74, 76, 78, 80, 83, 87, 89, 91, 94, 96,
97, 100, 103, 106, 115, 117, 124, 135,
157, 176, 215, 217, 218, 221-223, 231,

323

MTLSET, 40, 41, 298

MULCHK, 112
MVBITS, 287
MXDIPR, 211
MXMAD, 196
MXMAD1, 196
MXMAD2, 196
MXMAD3, 196
MXMLRT, 196
MXMLTR, 196
MXMPY, 196
MXMPY1, 196
MXMPY2, 196
MXMPY3, 196
MXMUB, 196
MXMUB1, 196
MXMUB2, 196
MXMUB3, 196
MXSTEP, 112
MXTRP, 196
MXUTY, 196

NAMEFD, 289
NANDB, 208
NCDECI, 268

410

NCHEXI, 268
NCOCTI, 268
NEWPTR, 112
NMDCHL, 112
NOCUT, 112
NODAUD, 112
NORB, 208
NOT, 287
NOTB, 208
NRAN, 112, 326, 338
NRANIN, 326
NRANUT, 326
NUMBIT, 266
NZERFZ, 29

ONEB, 208
ORB, 208
ORTHVC, 112

PARLSQ, 175
PARTN, 112

PDK, 363

PERMU, 351
PERMUT, 351
PERRORF, 386
PKBYT, 260
PKCHAR, 263 283
POISCR, 316
POLINT, 145
POLROT, 195
PRMFCT, 11
PROB, 217
PROBKL, 219, 220
PROXIN, 357
PSCALE, 250

QBSIA, 74
QBSJA, 74
QCHECF, 176
QGAMMA, 32, 74, 76
QGAUSS, 94
QLGAMA, 34
QNEXT, 379
QNEXTE, 379
QUAD, 112

QUAST, 112

RADAPT, 92, 349
RADMUL, 110, 112
RAN3D, 338

RANECQ, 330

RANECU, 330

RANF, 183, 185, 230, 361
RANGB, 208

RANGEN, 112

Index —7

RANGET, 230
RANLAN, 224

RANLUX, 332 339-344, 349

RANMAR, 327
RANSET, 230
RANUMS, 112
RASLGF, 58
RATANT, 53
RBEQN, 213
RBINON, 13
RBZEJY, 78
RCA, 137
RCAUCH, 96
RCHEBUN, 168
RCHECF, 176
RCHPWS, 179
RCHSUM, 178
RCLAUS, 54
RCLEBG, 319
RCOSIN, 66, 228
RCSPLN, 166
RCSPNT, 166
RDAWSN, 69
RDEQBS, 115
RDEQMR, 117
RDERIV, 124
RDILOG, 62
RDJMNB, 323
RDMIN, 324
RDMOUT, 324
READLNF, 386
RECPAR, 112
RELFUN, 46
RELI1, 80
RELI1C, 83
RELI2, 80
RELI2C, 83
RELI3, 80
RELI3C, 83
RELIEC, 60, 83
RELIGC, 83
RELIKC, 60, 83
RENAMEF, 386
REPEAT, 279
REQINV, 189
REQN, 135, 189
REXPIE, 67
REXPIN, 67, 228
RFACT, 189, 191
RFCONC, 60
RFEQN, 189, 191
RFERDR, 52
RFINV, 189,191

Index — 8

RFRCOS, 51
RFRDH1, 135
RFRDH2, 135
RFRDH3, 135
RFRSIN, 51
RFSTFT, 141
RFT, 122, 137
RFUNFT, 126
RGAGNC, 63
RGAPNC, 63
RGBTRF, 157
RGBTRS, 157
RGEQPF, 126
RGESVD, 157
RGMLT1, 103
RGMLT2, 103
RGMLT3, 103
RGMLT4, 103
RGMLTS5, 103
RGMLTS6, 103
RGQUAD, 100
RGSE56P, 92, 99
RGSET, 100, 135
RINV, 189 215
RIWIAD, 108
RJAHNU, 319
RJCTB, 208
RKNYS, 119
RKSTP, 113
RLEN, 112
RLHOIN, 215
RLSQP1, 153
RLSQP2, 153
RLSQPM, 153
RLUXAT, 332
RLUXGO, 332
RLUXIN, 332
RLUXUT, 332
RM48, 334
RM48IN, 334
RM48UT, 334
RMADD, 185
RMARIN, 327
RMARUT, 327
RMAXLK, 126
RMBIL, 126, 185

RMCPY, 126, 157, 185, 215

RMDMP, 185
RMINFC, 131
RMMAQ, 327
RMMAR, 327
RMMLA, 187
RMMLS, 187

411

RMMLT, 126, 187
RMMNA, 185

RMMNS, 185

RMMPA, 185

RMMPS, 185
RMMPY, 126, 157, 185
RMNMA, 187

RMNMS, 187

RMRAN, 185
RMSCL, 126, 185
RMSET, 126, 185, 215
RMSUB, 185
RMULLZ, 22

RMUTL, 185

RN2DINM, 339
RN3DINM, 339
RNBNML, 342

RNDM, 108, 324, 345, 347, 362, 363

RNGAMA, 340
RNHPRE, 344
RNHRAN, 344
RNMNML, 343
RNORML, 335
RNORMX, 335 340, 341
RNPSET, 341
RNPSSH, 341
RORMQR, 126
ROT, 202
ROTES2, 363
RPA, 137
RPLNML, 16
RPS, 137
RPSIPG, 44
RPWCHS, 179
RRACAW, 319
RRIZET, 43
RRKNYS, 119
RRTEQR3, 26, 27
RRTEQ4, 27
RSA, 137
RSEQN, 155, 193
RSFACT, 193
RSFEQN, 193
RSFINV, 193
RSININ, 66, 228
RSINV, 126, 193
RSMPLX, 231
RSNLEQ, 20
RSPAP1, 157
RSPAP2, 157
RSPCD1, 157
RSPCD2, 157
RSPIN1, 157

412

RSPIN2, 157
RSPKN1, 157
RSPKN2, 157
RSPNB1, 157
RSPNB2, 157
RSPPS1, 157
RSPPS2, 157
RSPVD1, 157
RSPVD2, 157
RSRTNT, 17
RSTRHO, 73
RSTRH1, 73

RSUMSQ, 126
RTCLGN, 321
RTEQ3, 26
RTEQ4, 27
RTHETA, 89

RTRGSH, 181
RTRINT, 97

RTRTRS, 126

RUMNA, 185

RUMNS, 185

RUMPA, 185

RUMPS, 185

RUMPY, 185

RVADD, 183

RVCPY, 126, 157, 183 215
RVDIV, 183

RVMPA, 183

RVMPY, 126, 157, 183 215
RVMUL, 183

RVMULA, 183
RVMUNA, 183
RVNSPC, 359

RVRAN, 183

RVSCA, 168, 183
RVSCL, 126, 168, 183 215
RVSCS, 168, 183
RVSET, 126, 153, 157, 168, 183
RVSUB, 126, 183
RVSUM, 155, 157, 183
RVXCH, 168, 183
RWIG3J, 319
RWIG6J, 319
RWIGSJ, 319
RZERD, 24, 228
RZERODX, 18

SBIT, 258 358

SBITO, 258

SBIT1, 258

SBYT, 258, 260, 263, 358
SBYTCR, 258

SBYTPK, 260

Index —9

SCALB, 208
SCATTER, 206
SCTTB, 208
SETBIT, 284
SETBYT, 286
SETENVF, 386
SETTOL, 112
SHRNK, 112
SIMPS, 91
SININT, 66
SLEEPF, 386
SNLEQ, 20
SORCHA, 247
SORTD, 248
SORTDQ, 249
SORTI, 248
SORTIQ, 249
SORTR, 248
SORTRQ, 249
SORTZV, 244
SPACES, 279
SPLIT, 112
STATF, 386
STRHO, 73
STRH1, 73
STRIP, 279
STUDIN, 221
STUDIS, 221
SUBWORD, 279
SXPYB, 208
SXYB, 208
SYSTENF, 386

TCDUMP, 302
TIMED, 368
TIMEL, 312, 361, 368
TIMEST, 368
TIMEX, 312 368
TKOLMO, 220
TLERR, 170
TLRES, 170
TLS, 170

TLSC, 170
TMINIT, 403
TMPRNT, 189, 193
TMPRO, 403
TMREAD, 403
TRAAT, 198
TRACEQ, 301
TRAL, 198
TRALT, 198
TRAPER, 102
TRAS, 198
TRASAT, 198

TRATA, 198
TRATS, 198
TRATSA, 198
TRCHLU, 198
TRCHUL, 198
TREAUD, 112
TREDMP, 112
TRIINT, 97
TRINV, 198
TRIPCR, 316
TRLA, 198
TRLTA, 198
TRPCK, 198
TRQSQ, 198
TRSA, 198
TRSAT, 198
TRSINV, 198
TRSMLU, 198
TRSMUL, 198
TRSPRT, 360
TRUPCK, 198
TSTEXT, 112
TURTLE, 361

UBITS, 293

UBLANK, 353 362
UBLOW, 255, 302
UBUNCH, 255, 360, 361
UCOCOP, 355
UCOPIV, 354

UCOPY, 235, 237, 285, 354
UCOPY2, 354
UCOPYN, 354
UCTOH, 237, 255
UCTOH1, 255
UDICOP, 355

UFILL, 353 358
UH1TOC, 255
UHTOC, 237, 255
UMcoM, 373

UMLOG, 373
UNLINKF, 386

UOPT, 292

UOPTC, 292

UPKBYT, 260, 293
UPKCH, 262, 263
URKBYT, 295
USRINT, 112
USRTRY, 112

USWOP, 248, 249, 354
UTRANS, 255

UZERO, 235, 353 358

VADD, 203

Index — 10 413

VASUM, 203
VAVDEN, 226
VAVDIS, 226
VAVRAN, 226
VAVRND, 226
VAVSET, 226
VAXTIO, 394
VBIAS, 203
VBLANK, 203
VCOPYN, 203
VDIST, 203
VDIST2, 203
VDOT, 203

VDOTN, 203
VDOTNZ, 203
VECMAN, 248
VERIFY, 279
VEXCUN, 203
VFILL, 203
VFIX, 203

VFLOAT, 203

VIZPRI, 238 239

VLINCO, 203
VMATL, 203
VMATR, 203
VMAX, 203
VMAXA, 203
VMIN, 203
VMINA, 203
VMOD, 203
VMUL, 203
VSCALE, 203
VSETB, 208
VSUB, 203
VSuM, 203
VUNIT, 203
VVIDEN, 228
VVIDIS, 228
VVISET, 228
VXINVB, 282
VXINVC, 282
VXPYB, 208
VZERO, 203

WBSJA, 76
WCLBES, 37, 56
WELFUN, 48
WELINT, 87
WEXPIN, 68
WGAMMA, 35, 60
WGAUSS, 106
WGPLG, 50
WHENEQ, 206
WHENFGE, 206

414

WHENFGT, 206
WHENFLE, 206
WHENFLT, 206
WHENIGE, 206
WHENIGT, 206
WHENILE, 206
WHENILT, 206
WHENNE, 206
WHOAMTI, 392

WLGAMA, 36, 37, 56, 60

WORD, 279
WORDS, 279
WORDSEP, 279
WPLNML, 16
WPOLYZ, 28
WPSIPG, 37,45
WQBSJA, 76
WWERF, 65
WWHITM, 56

XBANNER, 239
XINB, 383
XINBF, 383
XINBS, 383
XM1LAN, 224
XM2LAN, 224
XORB, 208
X0UTB, 383
X0OUTBF, 383
X0UTBS, 383
XPWZB, 208

YCOMPAR, 243
YEDIT, 243
YFRCETA, 243
YLIST, 243
YLOSB, 208
YLOXB, 208
YPATCHY, 243
YSEARCH, 243
YSHIFT, 243
YTOBCD, 243
YTOBIN, 243
YTOCETA, 243

ZBOOK, 310
ZEBRA, 303
ZERDB, 208
ZERDX, 18

Index — 11

