// @(#)root/matrix:$Name: $:$Id: TMatrixDSymEigen.cxx,v 1.9 2005/02/15 16:17:10 brun Exp $
// Authors: Fons Rademakers, Eddy Offermann Dec 2003
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//////////////////////////////////////////////////////////////////////////
// //
// TMatrixDSymEigen //
// //
// Eigenvalues and eigenvectors of a real symmetric matrix. //
// //
// If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is //
// diagonal and the eigenvector matrix V is orthogonal. That is, the //
// diagonal values of D are the eigenvalues, and V*V' = I, where I is //
// the identity matrix. The columns of V represent the eigenvectors in //
// the sense that A*V = V*D. //
// //
//////////////////////////////////////////////////////////////////////////
#include "TMatrixDSymEigen.h"
ClassImp(TMatrixDSymEigen)
//______________________________________________________________________________
TMatrixDSymEigen::TMatrixDSymEigen(const TMatrixTSym &a)
{
Assert(a.IsValid());
const Int_t nRows = a.GetNrows();
const Int_t rowLwb = a.GetRowLwb();
fEigenValues.ResizeTo(rowLwb,rowLwb+nRows-1);
fEigenVectors.ResizeTo(a);
fEigenVectors = a;
TVectorT offDiag;
Double_t work[kWorkMax];
if (nRows > kWorkMax) offDiag.ResizeTo(nRows);
else offDiag.Use(nRows,work);
// Tridiagonalize matrix
MakeTridiagonal(fEigenVectors,fEigenValues,offDiag);
// Make eigenvectors and -values
MakeEigenVectors(fEigenVectors,fEigenValues,offDiag);
}
//______________________________________________________________________________
TMatrixDSymEigen::TMatrixDSymEigen(const TMatrixDSymEigen &another)
{
*this = another;
}
//______________________________________________________________________________
void TMatrixDSymEigen::MakeTridiagonal(TMatrixT &v,TVectorT &d,TVectorT &e)
{
// This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and
// Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
Double_t *pV = v.GetMatrixArray();
Double_t *pD = d.GetMatrixArray();
Double_t *pE = e.GetMatrixArray();
const Int_t n = v.GetNrows();
Int_t i,j,k;
Int_t off_n1 = (n-1)*n;
for (j = 0; j < n; j++)
pD[j] = pV[off_n1+j];
// Householder reduction to tridiagonal form.
for (i = n-1; i > 0; i--) {
const Int_t off_i1 = (i-1)*n;
const Int_t off_i = i*n;
// Scale to avoid under/overflow.
Double_t scale = 0.0;
Double_t h = 0.0;
for (k = 0; k < i; k++)
scale = scale+TMath::Abs(pD[k]);
if (scale == 0.0) {
pE[i] = pD[i-1];
for (j = 0; j < i; j++) {
const Int_t off_j = j*n;
pD[j] = pV[off_i1+j];
pV[off_i+j] = 0.0;
pV[off_j+i] = 0.0;
}
} else {
// Generate Householder vector.
for (k = 0; k < i; k++) {
pD[k] /= scale;
h += pD[k]*pD[k];
}
Double_t f = pD[i-1];
Double_t g = TMath::Sqrt(h);
if (f > 0)
g = -g;
pE[i] = scale*g;
h = h-f*g;
pD[i-1] = f-g;
for (j = 0; j < i; j++)
pE[j] = 0.0;
// Apply similarity transformation to remaining columns.
for (j = 0; j < i; j++) {
const Int_t off_j = j*n;
f = pD[j];
pV[off_j+i] = f;
g = pE[j]+pV[off_j+j]*f;
for (k = j+1; k <= i-1; k++) {
const Int_t off_k = k*n;
g += pV[off_k+j]*pD[k];
pE[k] += pV[off_k+j]*f;
}
pE[j] = g;
}
f = 0.0;
for (j = 0; j < i; j++) {
pE[j] /= h;
f += pE[j]*pD[j];
}
Double_t hh = f/(h+h);
for (j = 0; j < i; j++)
pE[j] -= hh*pD[j];
for (j = 0; j < i; j++) {
f = pD[j];
g = pE[j];
for (k = j; k <= i-1; k++) {
const Int_t off_k = k*n;
pV[off_k+j] -= (f*pE[k]+g*pD[k]);
}
pD[j] = pV[off_i1+j];
pV[off_i+j] = 0.0;
}
}
pD[i] = h;
}
// Accumulate transformations.
for (i = 0; i < n-1; i++) {
const Int_t off_i = i*n;
pV[off_n1+i] = pV[off_i+i];
pV[off_i+i] = 1.0;
Double_t h = pD[i+1];
if (h != 0.0) {
for (k = 0; k <= i; k++) {
const Int_t off_k = k*n;
pD[k] = pV[off_k+i+1]/h;
}
for (j = 0; j <= i; j++) {
Double_t g = 0.0;
for (k = 0; k <= i; k++) {
const Int_t off_k = k*n;
g += pV[off_k+i+1]*pV[off_k+j];
}
for (k = 0; k <= i; k++) {
const Int_t off_k = k*n;
pV[off_k+j] -= g*pD[k];
}
}
}
for (k = 0; k <= i; k++) {
const Int_t off_k = k*n;
pV[off_k+i+1] = 0.0;
}
}
for (j = 0; j < n; j++) {
pD[j] = pV[off_n1+j];
pV[off_n1+j] = 0.0;
}
pV[off_n1+n-1] = 1.0;
pE[0] = 0.0;
}
//______________________________________________________________________________
void TMatrixDSymEigen::MakeEigenVectors(TMatrixT &v,TVectorT &d,TVectorT &e)
{
// Symmetric tridiagonal QL algorithm.
// This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and
// Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
Double_t *pV = v.GetMatrixArray();
Double_t *pD = d.GetMatrixArray();
Double_t *pE = e.GetMatrixArray();
const Int_t n = v.GetNrows();
Int_t i,j,k,l;
for (i = 1; i < n; i++)
pE[i-1] = pE[i];
pE[n-1] = 0.0;
Double_t f = 0.0;
Double_t tst1 = 0.0;
Double_t eps = TMath::Power(2.0,-52.0);
for (l = 0; l < n; l++) {
// Find small subdiagonal element
tst1 = TMath::Max(tst1,TMath::Abs(pD[l])+TMath::Abs(pE[l]));
Int_t m = l;
// Original while-loop from Java code
while (m < n) {
if (TMath::Abs(pE[m]) <= eps*tst1) {
break;
}
m++;
}
// If m == l, pD[l] is an eigenvalue,
// otherwise, iterate.
if (m > l) {
Int_t iter = 0;
do {
if (iter++ == 30) { // (check iteration count here.)
Error("MakeEigenVectors","too many iterations");
break;
}
// Compute implicit shift
Double_t g = pD[l];
Double_t p = (pD[l+1]-g)/(2.0*pE[l]);
Double_t r = TMath::Hypot(p,1.0);
if (p < 0)
r = -r;
pD[l] = pE[l]/(p+r);
pD[l+1] = pE[l]*(p+r);
Double_t dl1 = pD[l+1];
Double_t h = g-pD[l];
for (i = l+2; i < n; i++)
pD[i] -= h;
f = f+h;
// Implicit QL transformation.
p = pD[m];
Double_t c = 1.0;
Double_t c2 = c;
Double_t c3 = c;
Double_t el1 = pE[l+1];
Double_t s = 0.0;
Double_t s2 = 0.0;
for (i = m-1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c*pE[i];
h = c*p;
r = TMath::Hypot(p,pE[i]);
pE[i+1] = s*r;
s = pE[i]/r;
c = p/r;
p = c*pD[i]-s*g;
pD[i+1] = h+s*(c*g+s*pD[i]);
// Accumulate transformation.
for (k = 0; k < n; k++) {
const Int_t off_k = k*n;
h = pV[off_k+i+1];
pV[off_k+i+1] = s*pV[off_k+i]+c*h;
pV[off_k+i] = c*pV[off_k+i]-s*h;
}
}
p = -s*s2*c3*el1*pE[l]/dl1;
pE[l] = s*p;
pD[l] = c*p;
// Check for convergence.
} while (TMath::Abs(pE[l]) > eps*tst1);
}
pD[l] = pD[l]+f;
pE[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (i = 0; i < n-1; i++) {
Int_t k = i;
Double_t p = pD[i];
for (j = i+1; j < n; j++) {
if (pD[j] > p) {
k = j;
p = pD[j];
}
}
if (k != i) {
pD[k] = pD[i];
pD[i] = p;
for (j = 0; j < n; j++) {
const Int_t off_j = j*n;
p = pV[off_j+i];
pV[off_j+i] = pV[off_j+k];
pV[off_j+k] = p;
}
}
}
}
//______________________________________________________________________________
TMatrixDSymEigen &TMatrixDSymEigen::operator=(const TMatrixDSymEigen &source)
{
if (this != &source) {
fEigenVectors.ResizeTo(source.fEigenVectors);
fEigenValues.ResizeTo(source.fEigenValues);
}
return *this;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.