// @(#)root/hist:$Name: $:$Id: TH2.cxx,v 1.60 2004/11/23 14:45:02 brun Exp $
// Author: Rene Brun 26/12/94
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "TROOT.h"
#include "TH2.h"
#include "TVirtualPad.h"
#include "TF2.h"
#include "TProfile.h"
#include "TRandom.h"
#include "TMatrixFBase.h"
#include "TMatrixDBase.h"
#include "THLimitsFinder.h"
ClassImp(TH2)
//______________________________________________________________________________
//
// Service class for 2-Dim histogram classes
//
// TH2C a 2-D histogram with one byte per cell (char)
// TH2S a 2-D histogram with two bytes per cell (short integer)
// TH2I a 2-D histogram with four bytes per cell (32 bits integer)
// TH2F a 2-D histogram with four bytes per cell (float)
// TH2D a 2-D histogram with eight bytes per cell (double)
//
//______________________________________________________________________________
TH2::TH2()
{
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
SetBinsLength(9);
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH1(name,title,nbinsx,xlow,xup)
{
// see comments in the TH1 base class constructors
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
fYaxis.Set(nbinsy,ylow,yup);
fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH1(name,title,nbinsx,xbins)
{
// see comments in the TH1 base class constructors
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
fYaxis.Set(nbinsy,ylow,yup);
fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH1(name,title,nbinsx,xlow,xup)
{
// see comments in the TH1 base class constructors
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
if (ybins) fYaxis.Set(nbinsy,ybins);
else fYaxis.Set(nbinsy,0,1);
fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH1(name,title,nbinsx,xbins)
{
// see comments in the TH1 base class constructors
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
if (ybins) fYaxis.Set(nbinsy,ybins);
else fYaxis.Set(nbinsy,0,1);
fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH1(name,title,nbinsx,xbins)
{
// see comments in the TH1 base class constructors
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
if (ybins) fYaxis.Set(nbinsy,ybins);
else fYaxis.Set(nbinsy,0,1);
fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor.
}
//______________________________________________________________________________
TH2::TH2(const TH2 &h) : TH1()
{
// Copy constructor.
// The list of functions is not copied. (Use Clone if needed)
Copy((TObject&)h);
}
//______________________________________________________________________________
TH2::~TH2()
{
}
//______________________________________________________________________________
Int_t TH2::BufferEmpty(Int_t action)
{
// Fill histogram with all entries in the buffer.
// action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
// action = 0 histogram is filled from the buffer
// action = 1 histogram is filled and buffer is deleted
// The buffer is automatically deleted when the number of entries
// in the buffer is greater than the number of entries in the histogram
// do we need to compute the bin size?
if (!fBuffer) return 0;
Int_t nbentries = (Int_t)fBuffer[0];
if (!nbentries) return 0;
Double_t *buffer = fBuffer;
if (nbentries < 0) {
if (action == 0) return 0;
nbentries = -nbentries;
fBuffer=0;
Reset();
fBuffer = buffer;
}
if (TestBit(kCanRebin) || fXaxis.GetXmax() <= fXaxis.GetXmin() || fYaxis.GetXmax() <= fYaxis.GetXmin()) {
//find min, max of entries in buffer
Double_t xmin = fBuffer[2];
Double_t xmax = xmin;
Double_t ymin = fBuffer[3];
Double_t ymax = ymin;
for (Int_t i=1;i<nbentries;i++) {
Double_t x = fBuffer[3*i+2];
if (x < xmin) xmin = x;
if (x > xmax) xmax = x;
Double_t y = fBuffer[3*i+3];
if (y < ymin) ymin = y;
if (y > ymax) ymax = y;
}
if (fXaxis.GetXmax() <= fXaxis.GetXmin() || fYaxis.GetXmax() <= fYaxis.GetXmin()) {
THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this,xmin,xmax,ymin,ymax);
} else {
fBuffer = 0;
Int_t keep = fBufferSize; fBufferSize = 0;
if (xmin < fXaxis.GetXmin()) RebinAxis(xmin,"X");
if (xmax >= fXaxis.GetXmax()) RebinAxis(xmax,"X");
if (ymin < fYaxis.GetXmin()) RebinAxis(ymin,"Y");
if (ymax >= fYaxis.GetXmax()) RebinAxis(ymax,"Y");
fBuffer = buffer;
fBufferSize = keep;
}
}
fBuffer = 0;
for (Int_t i=0;i<nbentries;i++) {
Fill(buffer[3*i+2],buffer[3*i+3],buffer[3*i+1]);
}
fBuffer = buffer;
if (action > 0) { delete [] fBuffer; fBuffer = 0; fBufferSize = 0;}
else {
if (nbentries == (Int_t)fEntries) fBuffer[0] = -nbentries;
else fBuffer[0] = 0;
}
return nbentries;
}
//______________________________________________________________________________
Int_t TH2::BufferFill(Axis_t x, Axis_t y, Stat_t w)
{
// accumulate arguments in buffer. When buffer is full, empty the buffer
// fBuffer[0] = number of entries in buffer
// fBuffer[1] = w of first entry
// fBuffer[2] = x of first entry
// fBuffer[3] = y of first entry
if (!fBuffer) return -3;
Int_t nbentries = (Int_t)fBuffer[0];
if (nbentries < 0) {
nbentries = -nbentries;
fBuffer[0] = nbentries;
if (fEntries > 0) {
Double_t *buffer = fBuffer; fBuffer=0;
Reset();
fBuffer = buffer;
}
}
if (3*nbentries+3 >= fBufferSize) {
BufferEmpty(1);
return Fill(x,y,w);
}
fBuffer[3*nbentries+1] = w;
fBuffer[3*nbentries+2] = x;
fBuffer[3*nbentries+3] = y;
fBuffer[0] += 1;
return -3;
}
Double_t TH2::Chi2Test(TH1 *h, Option_t *option, Int_t constraint)
{
//The Chi2 (Pearson's) test for differences between h and this histogram.
//a small value of prob indicates a significant difference between the distributions
//
//if the data was collected in such a way that the number of entries
//in the first histogram is necessarily equal to the number of entries
//in the second, the parameter _constraint_ must be made 1. Default is 0.
//any additional constraints on the data lower the number of degrees of freedom
//(i.e. increase constraint to more positive values) in accordance with
//their number
//
///options:
//"O" -overflows included
//"U" - underflows included
//
//"P" - print information about number of degrees of freedom and
//the value of chi2
//by default underflows and overflows are not included
//algorithm taken from "Numerical Recipes in C++"
// implementation by Anna Kreshuk
Int_t df;
Double_t chsq = 0;
Double_t prob;
Double_t temp;
Double_t koef1,koef2;
Double_t nen1, nen2;
Double_t bin1, bin2;
Int_t i_start, i_end, j_start, j_end;
TString opt = option;
opt.ToUpper();
TAxis *xaxis1 = this->GetXaxis();
TAxis *xaxis2 = h->GetXaxis();
TAxis *yaxis1 = this->GetYaxis();
TAxis *yaxis2 = h->GetYaxis();
Int_t nbinx1 = xaxis1->GetNbins();
Int_t nbinx2 = xaxis2->GetNbins();
Int_t nbiny1 = yaxis1->GetNbins();
Int_t nbiny2 = yaxis2->GetNbins();
//check dimensions
if (this->GetDimension() != 2 || h->GetDimension() != 2) {
Error("Chi2Test","Histograms must be 2-D");
return 0;
}
//check that the histograms are not empty
nen1 = this->GetEntries();
nen2 = h->GetEntries();
if((nen1==0)||(nen2==0)){
Error("Chi2Test","one of the histograms is empty");
return 0;
}
//check channels
if (nbinx1 != nbinx2) {
Error("Chi2Test", "different number of x channels 1 - %d and 2 - %d", nbinx1, nbinx2);
return 0;
}
if (nbiny1!=nbiny2) {
Error("Chi2Test", "different number of y channels 1 - %d and 2 - %d", nbiny1, nbiny2);
return 0;
}
//check binning
Double_t difprec = 1e-5;
Double_t diff1 = TMath::Abs(xaxis1->GetXmin() - xaxis2->GetXmin());
Double_t diff2 = TMath::Abs(xaxis1->GetXmax() - xaxis2->GetXmax());
if (diff1 > difprec || diff2 > difprec) {
Error("Chi2Test","histograms with different binning along X");
return 0;
}
diff1 = TMath::Abs(yaxis1->GetXmin() - yaxis2->GetXmin());
diff2 = TMath::Abs(yaxis1->GetXmax() - yaxis2->GetXmax());
if (diff1 > difprec || diff2 > difprec) {
Error("Chi2Test","histograms with different binning along Y");
return 0;
}
//check options
i_start=1; j_start=1;
i_end = nbinx1; j_end = nbiny1;
df = nbinx1 * nbiny1-constraint; //total number of bins
if (opt.Contains("U")) {
i_start = 0;
j_start = 0;
df +=nbinx1 + nbiny1;
}
if (opt.Contains("O")) {
i_end = nbinx1+1;
j_end = nbiny1+1;
df += nbinx1 + nbiny1;
}
//the test
if (TMath::Abs(nen1-nen2) > difprec){
koef1 = TMath::Sqrt(nen2/nen1);
koef2 = TMath::Sqrt(nen1/nen2);
}
else{
koef1 = 1;
koef2 = 1;
}
for (Int_t i=i_start; i<i_end; i++){
for (Int_t j=j_start; j<j_end; j++){
bin1 = this->GetCellContent(i, j);
bin2 = h->GetCellContent(i, j);
if (bin1==0 && bin2==0){
--df; //no data means one less degree of freedom
} else{
temp = koef1*bin1 - koef2 *bin2;
chsq += temp*temp/(bin1+bin2);
}
}
}
prob = TMath::Prob(0.5*chsq, Int_t(0.5*df));
if (opt.Contains("P")){
Printf("the value of chi2 = %f\n", chsq);
Printf("the number of degrees of freedom = %d\n", df);
}
return prob;
}
//______________________________________________________________________________
void TH2::Copy(TObject &obj) const
{
TH1::Copy(obj);
((TH2&)obj).fScalefactor = fScalefactor;
((TH2&)obj).fTsumwy = fTsumwy;
((TH2&)obj).fTsumwy2 = fTsumwy2;
((TH2&)obj).fTsumwxy = fTsumwxy;
}
//______________________________________________________________________________
Int_t TH2::Fill(Axis_t x,Axis_t y)
{
//*-*-*-*-*-*-*-*-*-*-*Increment cell defined by x,y by 1*-*-*-*-*-*-*-*-*-*
//*-* ==================================
//*-*
//*-* if x or/and y is less than the low-edge of the corresponding axis first bin,
//*-* the Underflow cell is incremented.
//*-* if x or/and y is greater than the upper edge of corresponding axis last bin,
//*-* the Overflow cell is incremented.
//*-*
//*-* If the storage of the sum of squares of weights has been triggered,
//*-* via the function Sumw2, then the sum of the squares of weights is incremented
//*-* by 1in the cell corresponding to x,y.
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
if (fBuffer) return BufferFill(x,y,1);
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(y);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin);
if (fSumw2.fN) ++fSumw2.fArray[bin];
if (binx == 0 || binx > fXaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (biny == 0 || biny > fYaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
++fTsumw;
++fTsumw2;
fTsumwx += x;
fTsumwx2 += x*x;
fTsumwy += y;
fTsumwy2 += y*y;
fTsumwxy += x*y;
return bin;
}
//______________________________________________________________________________
Int_t TH2::Fill(Axis_t x, Axis_t y, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*-*Increment cell defined by x,y by a weight w*-*-*-*-*-*
//*-* ===========================================
//*-*
//*-* if x or/and y is less than the low-edge of the corresponding axis first bin,
//*-* the Underflow cell is incremented.
//*-* if x or/and y is greater than the upper edge of corresponding axis last bin,
//*-* the Overflow cell is incremented.
//*-*
//*-* If the storage of the sum of squares of weights has been triggered,
//*-* via the function Sumw2, then the sum of the squares of weights is incremented
//*-* by w^2 in the cell corresponding to x,y.
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
if (fBuffer) return BufferFill(x,y,w);
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(y);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (biny == 0 || biny > fYaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
Stat_t z= (w > 0 ? w : -w);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x;
fTsumwx2 += z*x*x;
fTsumwy += z*y;
fTsumwy2 += z*y*y;
fTsumwxy += z*x*y;
return bin;
}
//______________________________________________________________________________
Int_t TH2::Fill(const char *namex, const char *namey, Stat_t w)
{
// Increment cell defined by namex,namey by a weight w
//
// if x or/and y is less than the low-edge of the corresponding axis first bin,
// the Underflow cell is incremented.
// if x or/and y is greater than the upper edge of corresponding axis last bin,
// the Overflow cell is incremented.
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y.
//
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(namex);
biny = fYaxis.FindBin(namey);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
Axis_t x = fXaxis.GetBinCenter(binx);
Axis_t y = fYaxis.GetBinCenter(biny);
Stat_t z= (w > 0 ? w : -w);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x;
fTsumwx2 += z*x*x;
fTsumwy += z*y;
fTsumwy2 += z*y*y;
fTsumwxy += z*x*y;
return bin;
}
//______________________________________________________________________________
Int_t TH2::Fill(const char *namex, Axis_t y, Stat_t w)
{
// Increment cell defined by namex,y by a weight w
//
// if x or/and y is less than the low-edge of the corresponding axis first bin,
// the Underflow cell is incremented.
// if x or/and y is greater than the upper edge of corresponding axis last bin,
// the Overflow cell is incremented.
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y.
//
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(namex);
biny = fYaxis.FindBin(y);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
Axis_t x = fXaxis.GetBinCenter(binx);
Stat_t z= (w > 0 ? w : -w);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x;
fTsumwx2 += z*x*x;
fTsumwy += z*y;
fTsumwy2 += z*y*y;
fTsumwxy += z*x*y;
return bin;
}
//______________________________________________________________________________
Int_t TH2::Fill(Axis_t x, const char *namey, Stat_t w)
{
// Increment cell defined by x,namey by a weight w
//
// if x or/and y is less than the low-edge of the corresponding axis first bin,
// the Underflow cell is incremented.
// if x or/and y is greater than the upper edge of corresponding axis last bin,
// the Overflow cell is incremented.
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y.
//
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(namey);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
Axis_t y = fYaxis.GetBinCenter(biny);
Stat_t z= (w > 0 ? w : -w);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x;
fTsumwx2 += z*x*x;
fTsumwy += z*y;
fTsumwy2 += z*y*y;
fTsumwxy += z*x*y;
return bin;
}
//______________________________________________________________________________
void TH2::FillN(Int_t ntimes, const Axis_t *x, const Axis_t *y, const Double_t *w, Int_t stride)
{
//*-*-*-*-*-*-*Fill a 2-D histogram with an array of values and weights*-*-*-*
//*-* ========================================================
//*-*
//*-* ntimes: number of entries in arrays x and w (array size must be ntimes*stride)
//*-* x: array of x values to be histogrammed
//*-* y: array of y values to be histogrammed
//*-* w: array of weights
//*-* stride: step size through arrays x, y and w
//*-*
//*-* If the storage of the sum of squares of weights has been triggered,
//*-* via the function Sumw2, then the sum of the squares of weights is incremented
//*-* by w[i]^2 in the cell corresponding to x[i],y[i].
//*-* if w is NULL each entry is assumed a weight=1
//*-*
//*-* NB: function only valid for a TH2x object
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Int_t binx, biny, bin, i;
fEntries += ntimes;
Double_t ww = 1;
ntimes *= stride;
for (i=0;i<ntimes;i+=stride) {
binx = fXaxis.FindBin(x[i]);
biny = fYaxis.FindBin(y[i]);
bin = biny*(fXaxis.GetNbins()+2) + binx;
if (w) ww = w[i];
AddBinContent(bin,ww);
if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
if (binx == 0 || binx > fXaxis.GetNbins()) {
if (!fgStatOverflows) continue;
}
if (biny == 0 || biny > fYaxis.GetNbins()) {
if (!fgStatOverflows) continue;
}
Stat_t z= (ww > 0 ? ww : -ww);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x[i];
fTsumwx2 += z*x[i]*x[i];
fTsumwy += z*y[i];
fTsumwy2 += z*y[i]*y[i];
fTsumwxy += z*x[i]*y[i];
}
}
//______________________________________________________________________________
void TH2::FillRandom(const char *fname, Int_t ntimes)
{
//*-*-*-*-*-*-*Fill histogram following distribution in function fname*-*-*-*
//*-* =======================================================
//*-*
//*-* The distribution contained in the function fname (TF2) is integrated
//*-* over the channel contents.
//*-* It is normalized to 1.
//*-* Getting one random number implies:
//*-* - Generating a random number between 0 and 1 (say r1)
//*-* - Look in which bin in the normalized integral r1 corresponds to
//*-* - Fill histogram channel
//*-* ntimes random numbers are generated
//*-*
//*-* One can also call TF2::GetRandom2 to get a random variate from a function.
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-*
Int_t bin, binx, biny, ibin, loop;
Double_t r1, x, y, xv[2];
//*-*- Search for fname in the list of ROOT defined functions
TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }
//*-*- Allocate temporary space to store the integral and compute integral
Int_t nbinsx = GetNbinsX();
Int_t nbinsy = GetNbinsY();
Int_t nbins = nbinsx*nbinsy;
Double_t *integral = new Double_t[nbins+1];
ibin = 0;
integral[ibin] = 0;
for (biny=1;biny<=nbinsy;biny++) {
xv[1] = fYaxis.GetBinCenter(biny);
for (binx=1;binx<=nbinsx;binx++) {
xv[0] = fXaxis.GetBinCenter(binx);
ibin++;
integral[ibin] = integral[ibin-1] + f1->Eval(xv[0],xv[1]);
}
}
//*-*- Normalize integral to 1
if (integral[nbins] == 0 ) {
Error("FillRandom", "Integral = zero"); return;
}
for (bin=1;bin<=nbins;bin++) integral[bin] /= integral[nbins];
//*-*--------------Start main loop ntimes
for (loop=0;loop<ntimes;loop++) {
r1 = gRandom->Rndm(loop);
ibin = TMath::BinarySearch(nbins,&integral[0],r1);
biny = ibin/nbinsx;
binx = 1 + ibin - nbinsx*biny;
biny++;
x = fXaxis.GetBinCenter(binx);
y = fYaxis.GetBinCenter(biny);
Fill(x,y, 1.);
}
delete [] integral;
}
//______________________________________________________________________________
void TH2::FillRandom(TH1 *h, Int_t ntimes)
{
//*-*-*-*-*-*-*Fill histogram following distribution in histogram h*-*-*-*
//*-* ====================================================
//*-*
//*-* The distribution contained in the histogram h (TH2) is integrated
//*-* over the channel contents.
//*-* It is normalized to 1.
//*-* Getting one random number implies:
//*-* - Generating a random number between 0 and 1 (say r1)
//*-* - Look in which bin in the normalized integral r1 corresponds to
//*-* - Fill histogram channel
//*-* ntimes random numbers are generated
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-*
if (!h) { Error("FillRandom", "Null histogram"); return; }
if (fDimension != h->GetDimension()) {
Error("FillRandom", "Histograms with different dimensions"); return;
}
if (h->ComputeIntegral() == 0) return;
Int_t loop;
Axis_t x,y;
TH2 *h2 = (TH2*)h;
for (loop=0;loop<ntimes;loop++) {
h2->GetRandom2(x,y);
Fill(x,y,1.);
}
}
//______________________________________________________________________________
void TH2::FitSlicesX(TF1 *f1, Int_t binmin, Int_t binmax, Int_t cut, Option_t *option)
{
// Project slices along X in case of a 2-D histogram, then fit each slice
// with function f1 and make a histogram for each fit parameter
// Only bins along Y between binmin and binmax are considered.
// if f1=0, a gaussian is assumed
// Before invoking this function, one can set a subrange to be fitted along X
// via f1->SetRange(xmin,xmax)
// The argument option (default="QNR") can be used to change the fit options.
// "Q" means Quiet mode
// "N" means do not show the result of the fit
// "R" means fit the function in the specified function range
// "G2" merge 2 consecutive bins along X
// "G3" merge 3 consecutive bins along X
// "G4" merge 4 consecutive bins along X
// "G5" merge 5 consecutive bins along X
//
// Note that the generated histograms are added to the list of objects
// in the current directory. It is the user's responsability to delete
// these histograms.
//
// Example: Assume a 2-d histogram h2
// Root > h2->FitSlicesX(); produces 4 TH1D histograms
// with h2_0 containing parameter 0(Constant) for a Gaus fit
// of each bin in Y projected along X
// with h2_1 containing parameter 1(Mean) for a gaus fit
// with h2_2 containing parameter 2(RMS) for a gaus fit
// with h2_chi2 containing the chisquare/number of degrees of freedom for a gaus fit
//
// Root > h2->FitSlicesX(0,15,22,10);
// same as above, but only for bins 15 to 22 along Y
// and only for bins in Y for which the corresponding projection
// along X has more than cut bins filled.
//
// NOTE: To access the generated histograms in the current directory, do eg:
// TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
Int_t nbins = fYaxis.GetNbins();
if (binmin < 1) binmin = 1;
if (binmax > nbins) binmax = nbins;
if (binmax < binmin) {binmin = 1; binmax = nbins;}
TString opt = option;
opt.ToLower();
Int_t ngroup = 1;
if (opt.Contains("g2")) {ngroup = 2; opt.ReplaceAll("g2","");}
if (opt.Contains("g3")) {ngroup = 3; opt.ReplaceAll("g3","");}
if (opt.Contains("g4")) {ngroup = 4; opt.ReplaceAll("g4","");}
if (opt.Contains("g5")) {ngroup = 5; opt.ReplaceAll("g5","");}
//default is to fit with a gaussian
if (f1 == 0) {
f1 = (TF1*)gROOT->GetFunction("gaus");
if (f1 == 0) f1 = new TF1("gaus","gaus",fXaxis.GetXmin(),fXaxis.GetXmax());
else f1->SetRange(fXaxis.GetXmin(),fXaxis.GetXmax());
}
Int_t npar = f1->GetNpar();
Double_t *parsave = new Double_t[npar];
f1->GetParameters(parsave);
//Create one histogram for each function parameter
Int_t ipar;
char name[80], title[80];
TH1D *hlist[25];
const TArrayD *bins = fYaxis.GetXbins();
for (ipar=0;ipar<npar;ipar++) {
sprintf(name,"%s_%d",GetName(),ipar);
sprintf(title,"Fitted value of par[%d]=%s",ipar,f1->GetParName(ipar));
delete gDirectory->FindObject(name);
if (bins->fN == 0) {
hlist[ipar] = new TH1D(name,title, nbins, fYaxis.GetXmin(), fYaxis.GetXmax());
} else {
hlist[ipar] = new TH1D(name,title, nbins,bins->fArray);
}
hlist[ipar]->GetXaxis()->SetTitle(fYaxis.GetTitle());
}
sprintf(name,"%s_chi2",GetName());
delete gDirectory->FindObject(name);
TH1D *hchi2 = new TH1D(name,"chisquare", nbins, fYaxis.GetXmin(), fYaxis.GetXmax());
hchi2->GetXaxis()->SetTitle(fYaxis.GetTitle());
//Loop on all bins in Y, generate a projection along X
Int_t bin;
Int_t nentries;
for (bin=binmin;bin<=binmax;bin += ngroup) {
TH1D *hpx = ProjectionX("_temp",bin,bin+ngroup-1,"e");
if (hpx == 0) continue;
nentries = Int_t(hpx->GetEntries());
if (nentries == 0 || nentries < cut) {delete hpx; continue;}
f1->SetParameters(parsave);
hpx->Fit(f1,opt.Data());
Int_t npfits = f1->GetNumberFitPoints();
if (npfits > npar && npfits >= cut) {
Int_t binx = bin + ngroup/2;
for (ipar=0;ipar<npar;ipar++) {
hlist[ipar]->Fill(fYaxis.GetBinCenter(binx),f1->GetParameter(ipar));
hlist[ipar]->SetBinError(binx,f1->GetParError(ipar));
}
hchi2->Fill(fYaxis.GetBinCenter(binx),f1->GetChisquare()/(npfits-npar));
}
delete hpx;
}
delete [] parsave;
}
//______________________________________________________________________________
void TH2::FitSlicesY(TF1 *f1, Int_t binmin, Int_t binmax, Int_t cut, Option_t *option)
{
// Project slices along Y in case of a 2-D histogram, then fit each slice
// with function f1 and make a histogram for each fit parameter
// Only bins along X between binmin and binmax are considered.
// if f1=0, a gaussian is assumed
// Before invoking this function, one can set a subrange to be fitted along Y
// via f1->SetRange(ymin,ymax)
// The argument option (default="QNR") can be used to change the fit options.
// "Q" means Quiet mode
// "N" means do not show the result of the fit
// "R" means fit the function in the specified function range
// "G2" merge 2 consecutive bins along Y
// "G3" merge 3 consecutive bins along Y
// "G4" merge 4 consecutive bins along Y
// "G5" merge 5 consecutive bins along Y
//
// Note that the generated histograms are added to the list of objects
// in the current directory. It is the user's responsability to delete
// these histograms.
//
// Example: Assume a 2-d histogram h2
// Root > h2->FitSlicesY(); produces 4 TH1D histograms
// with h2_0 containing parameter 0(Constant) for a Gaus fit
// of each bin in X projected along Y
// with h2_1 containing parameter 1(Mean) for a gaus fit
// with h2_2 containing parameter 2(RMS) for a gaus fit
// with h2_chi2 containing the chisquare/number of degrees of freedom for a gaus fit
//
// Root > h2->FitSlicesY(0,15,22,10);
// same as above, but only for bins 15 to 22 along X
// and only for bins in X for which the corresponding projection
// along Y has more than cut bins filled.
//
// NOTE: To access the generated histograms in the current directory, do eg:
// TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
//
// A complete example of this function is given in
tutorial:fitslicesy.C
// with the following output:
//
/*
*/
//
Int_t nbins = fXaxis.GetNbins();
if (binmin < 1) binmin = 1;
if (binmax > nbins) binmax = nbins;
if (binmax < binmin) {binmin = 1; binmax = nbins;}
TString opt = option;
opt.ToLower();
Int_t ngroup = 1;
if (opt.Contains("g2")) {ngroup = 2; opt.ReplaceAll("g2","");}
if (opt.Contains("g3")) {ngroup = 3; opt.ReplaceAll("g3","");}
if (opt.Contains("g4")) {ngroup = 4; opt.ReplaceAll("g4","");}
if (opt.Contains("g5")) {ngroup = 5; opt.ReplaceAll("g5","");}
//default is to fit with a gaussian
if (f1 == 0) {
f1 = (TF1*)gROOT->GetFunction("gaus");
if (f1 == 0) f1 = new TF1("gaus","gaus",fYaxis.GetXmin(),fYaxis.GetXmax());
else f1->SetRange(fYaxis.GetXmin(),fYaxis.GetXmax());
}
Int_t npar = f1->GetNpar();
Double_t *parsave = new Double_t[npar];
f1->GetParameters(parsave);
//Create one histogram for each function parameter
Int_t ipar;
char name[80], title[80];
TH1D *hlist[25];
const TArrayD *bins = fXaxis.GetXbins();
for (ipar=0;ipar<npar;ipar++) {
sprintf(name,"%s_%d",GetName(),ipar);
sprintf(title,"Fitted value of par[%d]=%s",ipar,f1->GetParName(ipar));
delete gDirectory->FindObject(name);
if (bins->fN == 0) {
hlist[ipar] = new TH1D(name,title, nbins, fXaxis.GetXmin(), fXaxis.GetXmax());
} else {
hlist[ipar] = new TH1D(name,title, nbins,bins->fArray);
}
hlist[ipar]->GetXaxis()->SetTitle(fXaxis.GetTitle());
}
sprintf(name,"%s_chi2",GetName());
delete gDirectory->FindObject(name);
TH1D *hchi2 = new TH1D(name,"chisquare", nbins, fXaxis.GetXmin(), fXaxis.GetXmax());
hchi2->GetXaxis()->SetTitle(fXaxis.GetTitle());
//Loop on all bins in X, generate a projection along Y
Int_t bin;
Int_t nentries;
for (bin=binmin;bin<=binmax;bin += ngroup) {
TH1D *hpy = ProjectionY("_temp",bin,bin+ngroup-1,"e");
if (hpy == 0) continue;
nentries = Int_t(hpy->GetEntries());
if (nentries == 0 || nentries < cut) {delete hpy; continue;}
f1->SetParameters(parsave);
hpy->Fit(f1,option);
Int_t npfits = f1->GetNumberFitPoints();
if (npfits > npar && npfits >= cut) {
Int_t biny = bin + ngroup/2;
for (ipar=0;ipar<npar;ipar++) {
hlist[ipar]->Fill(fXaxis.GetBinCenter(biny),f1->GetParameter(ipar));
hlist[ipar]->SetBinError(biny,f1->GetParError(ipar));
}
hchi2->Fill(fXaxis.GetBinCenter(biny),f1->GetChisquare()/(npfits-npar));
}
delete hpy;
}
delete [] parsave;
}
//______________________________________________________________________________
Stat_t TH2::GetCorrelationFactor(Int_t axis1, Int_t axis2) const
{
//*-*-*-*-*-*-*-*Return correlation factor between axis1 and axis2*-*-*-*-*
//*-* ====================================================
if (axis1 < 1 || axis2 < 1 || axis1 > 2 || axis2 > 2) {
Error("GetCorrelationFactor","Wrong parameters");
return 0;
}
if (axis1 == axis2) return 1;
Stat_t rms1 = GetRMS(axis1);
if (rms1 == 0) return 0;
Stat_t rms2 = GetRMS(axis2);
if (rms2 == 0) return 0;
return GetCovariance(axis1,axis2)/rms1/rms2;
}
//______________________________________________________________________________
Stat_t TH2::GetCovariance(Int_t axis1, Int_t axis2) const
{
//*-*-*-*-*-*-*-*Return covariance between axis1 and axis2*-*-*-*-*
//*-* ====================================================
if (axis1 < 1 || axis2 < 1 || axis1 > 2 || axis2 > 2) {
Error("GetCovariance","Wrong parameters");
return 0;
}
Stat_t stats[7];
GetStats(stats);
Stat_t sumw = stats[0];
Stat_t sumw2 = stats[1];
Stat_t sumwx = stats[2];
Stat_t sumwx2 = stats[3];
Stat_t sumwy = stats[4];
Stat_t sumwy2 = stats[5];
Stat_t sumwxy = stats[6];
if (sumw == 0) return 0;
if (axis1 == 1 && axis2 == 1) {
return TMath::Abs(sumwx2/sumw - sumwx*sumwx/sumw2);
}
if (axis1 == 2 && axis2 == 2) {
return TMath::Abs(sumwy2/sumw - sumwy*sumwy/sumw2);
}
return sumwxy/sumw - sumwx/sumw*sumwy/sumw;
}
//______________________________________________________________________________
void TH2::GetRandom2(Axis_t &x, Axis_t &y)
{
// return 2 random numbers along axis x and y distributed according
// the cellcontents of a 2-dim histogram
Int_t nbinsx = GetNbinsX();
Int_t nbinsy = GetNbinsY();
Int_t nbins = nbinsx*nbinsy;
Double_t integral;
if (fIntegral) {
if (fIntegral[nbins+1] != fEntries) integral = ComputeIntegral();
} else {
integral = ComputeIntegral();
if (integral == 0 || fIntegral == 0) return;
}
Float_t r1 = gRandom->Rndm();
Int_t ibin = TMath::BinarySearch(nbins,fIntegral,r1);
Int_t biny = ibin/nbinsx;
Int_t binx = ibin - nbinsx*biny;
x = fXaxis.GetBinLowEdge(binx+1)
+fXaxis.GetBinWidth(binx+1)*(r1-fIntegral[ibin])/(fIntegral[ibin+1] - fIntegral[ibin]);
y = fYaxis.GetBinLowEdge(biny+1) + fYaxis.GetBinWidth(biny+1)*gRandom->Rndm();
}
//______________________________________________________________________________
void TH2::GetStats(Stat_t *stats) const
{
// fill the array stats from the contents of this histogram
// The array stats must be correctly dimensionned in the calling program.
// stats[0] = sumw
// stats[1] = sumw2
// stats[2] = sumwx
// stats[3] = sumwx2
// stats[4] = sumwy
// stats[5] = sumwy2
// stats[6] = sumwxy
if (fBuffer) ((TH2*)this)->BufferEmpty();
Int_t bin, binx, biny;
Stat_t w,err;
Double_t x,y;
if (fTsumw == 0 || fXaxis.TestBit(TAxis::kAxisRange) || fYaxis.TestBit(TAxis::kAxisRange)) {
for (bin=0;bin<7;bin++) stats[bin] = 0;
for (biny=fYaxis.GetFirst();biny<=fYaxis.GetLast();biny++) {
y = fYaxis.GetBinCenter(biny);
for (binx=fXaxis.GetFirst();binx<=fXaxis.GetLast();binx++) {
bin = GetBin(binx,biny);
x = fXaxis.GetBinCenter(binx);
w = TMath::Abs(GetBinContent(bin));
err = TMath::Abs(GetBinError(bin));
stats[0] += w;
stats[1] += err*err;
stats[2] += w*x;
stats[3] += w*x*x;
stats[4] += w*y;
stats[5] += w*y*y;
stats[6] += w*x*y;
}
}
} else {
stats[0] = fTsumw;
stats[1] = fTsumw2;
stats[2] = fTsumwx;
stats[3] = fTsumwx2;
stats[4] = fTsumwy;
stats[5] = fTsumwy2;
stats[6] = fTsumwxy;
}
}
//______________________________________________________________________________
Stat_t TH2::Integral(Option_t *option) const
{
//Return integral of bin contents. Only bins in the bins range are considered.
// By default the integral is computed as the sum of bin contents in the range.
// if option "width" is specified, the integral is the sum of
// the bin contents multiplied by the bin width in x and in y.
return Integral(fXaxis.GetFirst(),fXaxis.GetLast(),
fYaxis.GetFirst(),fYaxis.GetLast(),option);
}
//______________________________________________________________________________
Stat_t TH2::Integral(Int_t binx1, Int_t binx2, Int_t biny1, Int_t biny2, Option_t *option) const
{
//Return integral of bin contents in range [binx1,binx2],[biny1,biny2]
// for a 2-D histogram
// By default the integral is computed as the sum of bin contents in the range.
// if option "width" is specified, the integral is the sum of
// the bin contents multiplied by the bin width in x and in y.
if (fBuffer) ((TH2*)this)->BufferEmpty();
Int_t nbinsx = GetNbinsX();
Int_t nbinsy = GetNbinsY();
if (binx1 < 0) binx1 = 0;
if (binx2 > nbinsx+1) binx2 = nbinsx+1;
if (binx2 < binx1) binx2 = nbinsx;
if (biny1 < 0) biny1 = 0;
if (biny2 > nbinsy+1) biny2 = nbinsy+1;
if (biny2 < biny1) biny2 = nbinsy;
Stat_t integral = 0;
//*-*- Loop on bins in specified range
TString opt = option;
opt.ToLower();
Bool_t width = kFALSE;
if (opt.Contains("width")) width = kTRUE;
Int_t bin, binx, biny;
for (biny=biny1;biny<=biny2;biny++) {
for (binx=binx1;binx<=binx2;binx++) {
bin = binx +(nbinsx+2)*biny;
if (width) integral += GetBinContent(bin)*fXaxis.GetBinWidth(binx)*fYaxis.GetBinWidth(biny);
else integral += GetBinContent(bin);
}
}
return integral;
}
//______________________________________________________________________________
Double_t TH2::KolmogorovTest(TH1 *h2, Option_t *option) const
{
// Statistical test of compatibility in shape between
// THIS histogram and h2, using Kolmogorov test.
// Default: Ignore under- and overflow bins in comparison
//
// option is a character string to specify options
// "U" include Underflows in test
// "O" include Overflows
// "N" include comparison of normalizations
// "D" Put out a line of "Debug" printout
//
// The returned function value is the probability of test
// (much less than one means NOT compatible)
//
// Code adapted by Rene Brun from original HBOOK routine HDIFF
TString opt = option;
opt.ToUpper();
Double_t prb = 0;
TH1 *h1 = (TH1*)this;
if (h2 == 0) return 0;
TAxis *xaxis1 = h1->GetXaxis();
TAxis *xaxis2 = h2->GetXaxis();
TAxis *yaxis1 = h1->GetYaxis();
TAxis *yaxis2 = h2->GetYaxis();
Int_t ncx1 = xaxis1->GetNbins();
Int_t ncx2 = xaxis2->GetNbins();
Int_t ncy1 = yaxis1->GetNbins();
Int_t ncy2 = yaxis2->GetNbins();
// Check consistency of dimensions
if (h1->GetDimension() != 2 || h2->GetDimension() != 2) {
Error("KolmogorovTest","Histograms must be 2-D\n");
return 0;
}
// Check consistency in number of channels
if (ncx1 != ncx2) {
Error("KolmogorovTest","Number of channels in X is different, %d and %d\n",ncx1,ncx2);
return 0;
}
if (ncy1 != ncy2) {
Error("KolmogorovTest","Number of channels in Y is different, %d and %d\n",ncy1,ncy2);
return 0;
}
// Check consistency in channel edges
Bool_t afunc1 = kFALSE;
Bool_t afunc2 = kFALSE;
Double_t difprec = 1e-5;
Double_t diff1 = TMath::Abs(xaxis1->GetXmin() - xaxis2->GetXmin());
Double_t diff2 = TMath::Abs(xaxis1->GetXmax() - xaxis2->GetXmax());
if (diff1 > difprec || diff2 > difprec) {
Error("KolmogorovTest","histograms with different binning along X");
return 0;
}
diff1 = TMath::Abs(yaxis1->GetXmin() - yaxis2->GetXmin());
diff2 = TMath::Abs(yaxis1->GetXmax() - yaxis2->GetXmax());
if (diff1 > difprec || diff2 > difprec) {
Error("KolmogorovTest","histograms with different binning along Y");
return 0;
}
// Should we include Uflows, Oflows?
Int_t ibeg = 1, jbeg = 1;
Int_t iend = ncx1, jend = ncy1;
if (opt.Contains("U")) {ibeg = 0; jbeg = 0;}
if (opt.Contains("O")) {iend = ncx1+1; jend = ncy1+1;}
Int_t i,j;
Double_t hsav;
Double_t sum1 = 0;
Double_t tsum1 = 0;
for (i=0;i<=ncx1+1;i++) {
for (j=0;j<=ncy1+1;j++) {
hsav = h1->GetCellContent(i,j);
tsum1 += hsav;
if (i >= ibeg && i <= iend && j >= jbeg && j <= jend) sum1 += hsav;
}
}
Double_t sum2 = 0;
Double_t tsum2 = 0;
for (i=0;i<=ncx1+1;i++) {
for (j=0;j<=ncy1+1;j++) {
hsav = h2->GetCellContent(i,j);
tsum2 += hsav;
if (i >= ibeg && i <= iend && j >= jbeg && j <= jend) sum2 += hsav;
}
}
// Check that both scatterplots contain events
if (sum1 == 0) {
Error("KolmogorovTest","Integral is zero for h1=%s\n",h1->GetName());
return 0;
}
if (sum2 == 0) {
Error("KolmogorovTest","Integral is zero for h2=%s\n",h2->GetName());
return 0;
}
// Check that scatterplots are not weighted or saturated
Double_t num1 = h1->GetEntries();
Double_t num2 = h2->GetEntries();
if (num1 != tsum1) {
Warning("KolmogorovTest","Saturation or weighted events for h1=%s, num1=%g, tsum1=%g\n",h1->GetName(),num1,tsum1);
}
if (num2 != tsum2) {
Warning("KolmogorovTest","Saturation or weighted events for h2=%s, num2=%g, tsum2=%g\n",h2->GetName(),num2,tsum2);
}
// Find first Kolmogorov distance
Double_t s1 = 1/sum1;
Double_t s2 = 1/sum2;
Double_t dfmax = 0;
Double_t rsum1=0, rsum2=0;
for (i=ibeg;i<=iend;i++) {
for (j=jbeg;j<=jend;j++) {
rsum1 += s1*h1->GetCellContent(i,j);
rsum2 += s2*h2->GetCellContent(i,j);
dfmax = TMath::Max(dfmax, TMath::Abs(rsum1-rsum2));
}
}
// Find second Kolmogorov distance
Double_t dfmax2 = 0;
rsum1=0, rsum2=0;
for (j=jbeg;j<=jend;j++) {
for (i=ibeg;i<=iend;i++) {
rsum1 += s1*h1->GetCellContent(i,j);
rsum2 += s2*h2->GetCellContent(i,j);
dfmax2 = TMath::Max(dfmax2, TMath::Abs(rsum1-rsum2));
}
}
// Get Kolmogorov probability
Double_t factnm;
if (afunc1) factnm = TMath::Sqrt(sum2);
else if (afunc2) factnm = TMath::Sqrt(sum1);
else factnm = TMath::Sqrt(sum1*sum2/(sum1+sum2));
Double_t z = dfmax*factnm;
Double_t z2 = dfmax2*factnm;
prb = TMath::KolmogorovProb(0.5*(z+z2));
Double_t prb1=0, prb2=0;
Double_t resum1, resum2, chi2, d12;
if (opt.Contains("N")) { //Combine probabilities for shape and normalization,
prb1 = prb;
resum1 = sum1; if (afunc1) resum1 = 0;
resum2 = sum2; if (afunc2) resum2 = 0;
d12 = sum1-sum2;
chi2 = d12*d12/(resum1+resum2);
prb2 = TMath::Prob(chi2,1);
// see Eadie et al., section 11.6.2
if (prb > 0 && prb2 > 0) prb = prb*prb2*(1-TMath::Log(prb*prb2));
else prb = 0;
}
// debug printout
if (opt.Contains("D")) {
printf(" Kolmo Prob h1 = %s, sum1=%g\n",h1->GetName(),sum1);
printf(" Kolmo Prob h2 = %s, sum2=%g\n",h2->GetName(),sum2);
printf(" Kolmo Probabil = %f, Max Dist = %g\n",prb,dfmax);
if (opt.Contains("N"))
printf(" Kolmo Probabil = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
}
// This numerical error condition should never occur:
if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%s\n",h1->GetName());
if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%s\n",h2->GetName());
return prb;
}
//______________________________________________________________________________
Int_t TH2::Merge(TCollection *list)
{
//Add all histograms in the collection to this histogram.
//This function computes the min/max for the axes,
//compute a new number of bins, if necessary,
//add bin contents, errors and statistics.
//The function returns the merged number of entries if the merge is
//successfull, -1 otherwise.
//
//IMPORTANT remark. The 2 axis x and y may have different number
//of bins and different limits, BUT the largest bin width must be
//a multiple of the smallest bin width.
if (!list) return 0;
TIter next(list);
Double_t umin,umax,vmin,vmax;
Int_t nx,ny;
Double_t xmin = fXaxis.GetXmin();
Double_t xmax = fXaxis.GetXmax();
Double_t ymin = fYaxis.GetXmin();
Double_t ymax = fYaxis.GetXmax();
Double_t bwix = fXaxis.GetBinWidth(1);
Double_t bwiy = fYaxis.GetBinWidth(1);
Int_t nbix = fXaxis.GetNbins();
Int_t nbiy = fYaxis.GetNbins();
const Int_t kNstat = 7;
Stat_t stats[kNstat], totstats[kNstat];
TH2 *h;
Int_t i, nentries=(Int_t)fEntries;
for (i=0;i<kNstat;i++) {totstats[i] = stats[i] = 0;}
GetStats(totstats);
Bool_t same = kTRUE;
while ((h=(TH2*)next())) {
if (!h->InheritsFrom(TH2::Class())) {
Error("Add","Attempt to add object of class: %s to a %s",h->ClassName(),this->ClassName());
return -1;
}
//import statistics
h->GetStats(stats);
for (i=0;i<kNstat;i++) totstats[i] += stats[i];
nentries += (Int_t)h->GetEntries();
// find min/max of the axes
umin = h->GetXaxis()->GetXmin();
umax = h->GetXaxis()->GetXmax();
vmin = h->GetYaxis()->GetXmin();
vmax = h->GetYaxis()->GetXmax();
nx = h->GetXaxis()->GetNbins();
ny = h->GetYaxis()->GetNbins();
if (nx != nbix || ny != nbiy ||
umin != xmin || umax != xmax || vmin != ymin || vmax != ymax) {
same = kFALSE;
if (umin < xmin) xmin = umin;
if (umax > xmax) xmax = umax;
if (vmin < ymin) ymin = vmin;
if (vmax > ymax) ymax = vmax;
if (h->GetXaxis()->GetBinWidth(1) > bwix) bwix = h->GetXaxis()->GetBinWidth(1);
if (h->GetYaxis()->GetBinWidth(1) > bwiy) bwiy = h->GetYaxis()->GetBinWidth(1);
}
}
// if different binning compute best binning
if (!same) {
nbix = (Int_t) ((xmax-xmin)/bwix +0.1); while(nbix > 100) nbix /= 2;
nbiy = (Int_t) ((ymax-ymin)/bwiy +0.1); while(nbiy > 100) nbiy /= 2;
SetBins(nbix,xmin,xmax,nbiy,ymin,ymax);
}
//merge bin contents and errors
next.Reset();
Int_t ibin, bin, binx, biny, ix, iy;
Double_t cu;
while ((h=(TH2*)next())) {
nx = h->GetXaxis()->GetNbins();
ny = h->GetYaxis()->GetNbins();
for (biny=0;biny<=ny+1;biny++) {
iy = fYaxis.FindBin(h->GetYaxis()->GetBinCenter(biny));
for (binx=0;binx<=nx+1;binx++) {
ix = fXaxis.FindBin(h->GetXaxis()->GetBinCenter(binx));
bin = binx +(nx+2)*biny;
ibin = ix +(nbix+2)*iy;
cu = h->GetBinContent(bin);
AddBinContent(ibin,cu);
if (fSumw2.fN) {
Double_t error1 = h->GetBinError(bin);
fSumw2.fArray[ibin] += error1*error1;
}
}
}
}
//copy merged stats
PutStats(totstats);
SetEntries(nentries);
return nentries;
}
//______________________________________________________________________________
TH2 *TH2::RebinX(Int_t ngroup, const char *newname)
{
// Rebin only the X axis
// see Rebin2D
return Rebin2D(ngroup, 1, newname);
}
//______________________________________________________________________________
TH2 *TH2::RebinY(Int_t ngroup, const char *newname)
{
// Rebin only the Y axis
// see Rebin2D
return Rebin2D(1, ngroup, newname);
}
//______________________________________________________________________________
TH2 *TH2::Rebin2D(Int_t nxgroup, Int_t nygroup, const char *newname)
{
// -*-*-*Rebin this histogram grouping nxgroup/nygroup bins along the xaxis/yaxis together*-*-*-*-
// =================================================================================
// if newname is not blank a new temporary histogram hnew is created.
// else the current histogram is modified (default)
// The parameter nxgroup/nygroup indicate how many bins along the xaxis/yaxis of this
// have to me merged into one bin of hnew
// If the original histogram has errors stored (via Sumw2), the resulting
// histograms has new errors correctly calculated.
//
// examples: if hpxpy is an existing TH2 histogram with 40 x 40 bins
// hpxpy->Rebin(); // merges two bins along the xaxis and yaxis in one in hpxpy
// // Carefull: previous contents of hpxpy are lost
// hpxpy->RebinX(5); //merges five bins along the xaxis in one in hpxpy
// TH2 *hnew = hpxpy->RebinY(5,"hnew"); // creates a new histogram hnew
// // merging 5 bins of h1 along the yaxis in one bin
//
// NOTE1: If nxgroup/nygroup is not an exact divider of the number of bins,
// along the xaxis/yaxis the top limit(s) of the rebinned histogram
// is changed to the upper edge of the xbin=newxbins*nxgroup resp.
// ybin=newybins*nygroup and the corresponding bins are added to
// the overflow bin.
// Statistics will be recomputed from the new bin contents.
//
// NOTE2: This function cannot be used with variable bin size histograms.
Int_t nxbins = fXaxis.GetNbins();
Int_t nybins = fYaxis.GetNbins();
Axis_t xmin = fXaxis.GetXmin();
Axis_t xmax = fXaxis.GetXmax();
Axis_t ymin = fYaxis.GetXmin();
Axis_t ymax = fYaxis.GetXmax();
if ((nxgroup <= 0) || (nxgroup > nxbins)) {
Error("Rebin", "Illegal value of nxgroup=%d",nxgroup);
return 0;
}
if ((nygroup <= 0) || (nygroup > nybins)) {
Error("Rebin", "Illegal value of nygroup=%d",nygroup);
return 0;
}
if (fDimension != 2 || InheritsFrom("TProfile")) {
Error("Rebin", "Operation valid on 2-D histograms only");
return 0;
}
if (fXaxis.GetXbins()->GetSize() > 0 || fYaxis.GetXbins()->GetSize() > 0) {
Error("Rebin", "Cannot rebin variable bin size histograms");
return 0;
}
Int_t newxbins = nxbins/nxgroup;
Int_t newybins = nybins/nygroup;
// Save old bin contents into a new array
Double_t entries = fEntries;
Double_t *oldBins = new Double_t[nxbins*nybins];
for (Int_t xbin = 0; xbin < nxbins; xbin++) {
for (Int_t ybin = 0; ybin < nybins; ybin++) {
oldBins[xbin*nybins+ybin] = GetBinContent(xbin+1, ybin+1);
}
}
Double_t *oldErrors = 0;
if (fSumw2.fN != 0) {
oldErrors = new Double_t[nxbins*nybins];
for (Int_t xbin = 0; xbin < nxbins; xbin++) {
for (Int_t ybin = 0; ybin < nybins; ybin++) {
oldErrors[xbin*nybins+ybin] = GetBinError(xbin+1, ybin+1);
}
}
}
// create a clone of the old histogram if newname is specified
TH2 *hnew = this;
if (newname && strlen(newname)) {
hnew = (TH2*)Clone();
hnew->SetName(newname);
}
// change axis specs and rebuild bin contents array
if(newxbins*nxgroup != nxbins) {
xmax = fXaxis.GetBinUpEdge(newxbins*nxgroup);
hnew->fTsumw = 0; //stats must be reset because top bins will be moved to overflow bin
}
if(newybins*nygroup != nybins) {
ymax = fYaxis.GetBinUpEdge(newybins*nygroup);
hnew->fTsumw = 0; //stats must be reset because top bins will be moved to overflow bin
}
// save the TAttAxis members (reset by SetBins) for x axis
Int_t NXdivisions = fXaxis.GetNdivisions();
Color_t XAxisColor = fXaxis.GetAxisColor();
Color_t XLabelColor = fXaxis.GetLabelColor();
Style_t XLabelFont = fXaxis.GetLabelFont();
Float_t XLabelOffset = fXaxis.GetLabelOffset();
Float_t XLabelSize = fXaxis.GetLabelSize();
Float_t XTickLength = fXaxis.GetTickLength();
Float_t XTitleOffset = fXaxis.GetTitleOffset();
Float_t XTitleSize = fXaxis.GetTitleSize();
Color_t XTitleColor = fXaxis.GetTitleColor();
Style_t XTitleFont = fXaxis.GetTitleFont();
// save the TAttAxis members (reset by SetBins) for y axis
Int_t NYdivisions = fYaxis.GetNdivisions();
Color_t YAxisColor = fYaxis.GetAxisColor();
Color_t YLabelColor = fYaxis.GetLabelColor();
Style_t YLabelFont = fYaxis.GetLabelFont();
Float_t YLabelOffset = fYaxis.GetLabelOffset();
Float_t YLabelSize = fYaxis.GetLabelSize();
Float_t YTickLength = fYaxis.GetTickLength();
Float_t YTitleOffset = fYaxis.GetTitleOffset();
Float_t YTitleSize = fYaxis.GetTitleSize();
Color_t YTitleColor = fYaxis.GetTitleColor();
Style_t YTitleFont = fYaxis.GetTitleFont();
// copy merged bin contents (ignore under/overflows)
if (nxgroup != 1 || nygroup != 1) {
hnew->SetBins(newxbins,xmin,xmax, newybins, ymin, ymax); //this also changes errors array (if any)
Double_t binContent, binError;
Int_t oldxbin = 0;
for (Int_t xbin = 0; xbin <= newxbins; xbin++) {
Int_t oldybin = 0;
for (Int_t ybin = 0; ybin <= newybins; ybin++) {
binContent = 0;
binError = 0;
for (Int_t i = 0; i < nxgroup; i++) {
if (oldxbin+i >= nxbins) break;
for (Int_t j =0; j < nygroup; j++) {
if (oldybin+j >= nybins) break;
binContent += oldBins[oldybin+j + (oldxbin+i)*nybins];
if (oldErrors) binError += oldErrors[oldybin+ j + (oldxbin+i)*nybins]*oldErrors[oldybin + j + (oldxbin+i)*nybins];
}
}
hnew->SetBinContent(xbin+1,ybin+1, binContent);
if (oldErrors) hnew->SetBinError(xbin+1,ybin+1,TMath::Sqrt(binError));
oldybin += nygroup;
}
oldxbin += nxgroup;
}
}
// Restore x axis attributes
fXaxis.SetNdivisions(NXdivisions);
fXaxis.SetAxisColor(XAxisColor);
fXaxis.SetLabelColor(XLabelColor);
fXaxis.SetLabelFont(XLabelFont);
fXaxis.SetLabelOffset(XLabelOffset);
fXaxis.SetLabelSize(XLabelSize);
fXaxis.SetTickLength(XTickLength);
fXaxis.SetTitleOffset(XTitleOffset);
fXaxis.SetTitleSize(XTitleSize);
fXaxis.SetTitleColor(XTitleColor);
fXaxis.SetTitleFont(XTitleFont);
// Restore y axis attributes
fYaxis.SetNdivisions(NYdivisions);
fYaxis.SetAxisColor(YAxisColor);
fYaxis.SetLabelColor(YLabelColor);
fYaxis.SetLabelFont(YLabelFont);
fYaxis.SetLabelOffset(YLabelOffset);
fYaxis.SetLabelSize(YLabelSize);
fYaxis.SetTickLength(YTickLength);
fYaxis.SetTitleOffset(YTitleOffset);
fYaxis.SetTitleSize(YTitleSize);
fYaxis.SetTitleColor(YTitleColor);
fYaxis.SetTitleFont(YTitleFont);
hnew->SetEntries(entries); //was modified by SetBinContent
delete [] oldBins;
if (oldErrors) delete [] oldErrors;
return hnew;
}
//______________________________________________________________________________
TProfile *TH2::ProfileX(const char *name, Int_t firstybin, Int_t lastybin, Option_t *option) const
{
//*-*-*-*-*Project a 2-D histogram into a profile histogram along X*-*-*-*-*-*
//*-* ========================================================
//
// The projection is made from the channels along the Y axis
// ranging from firstybin to lastybin included.
// By default, bins 1 to ny are included
// When all bins are included, the number of entries in the projection
// is set to the number of entries of the 2-D histogram, otherwise
// the number of entries is incremented by 1 for all non empty cells.
//
// if option "d" is specified, the profile is drawn in the current pad.
//
// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
// One must create a graphical cut (mouse or C++) and specify the name
// of the cut between [] in the option.
// For example, with a TCutG named "cutg", one can call:
// myhist->ProfileX(" ",firstybin,lastybin,"[cutg]");
// To invert the cut, it is enough to put a "-" in front of its name:
// myhist->ProfileX(" ",firstybin,lastybin,"[-cutg]");
// It is possible to apply several cuts:
// myhist->ProfileX(" ",firstybin,lastybin,[cutg1,cutg2]");
//
// NOTE that if a TProfile named name exists in the current directory or pad,
// the histogram is reset and filled again with the current contents of the TH2.
// The X axis attributes of the TH2 are copied to the X axis of the profile.
TString opt = option;
opt.ToLower();
Int_t nx = fXaxis.GetNbins();
Int_t ny = fYaxis.GetNbins();
if (firstybin < 0) firstybin = 1;
if (lastybin < 0) lastybin = ny;
if (lastybin > ny+1) lastybin = ny;
// Create the profile histogram
char *pname = (char*)name;
if (name && strcmp(name,"_pfx") == 0) {
Int_t nch = strlen(GetName()) + 5;
pname = new char[nch];
sprintf(pname,"%s%s",GetName(),name);
}
TProfile *h1=0;
//check if a profile with identical name exist
TObject *h1obj = gROOT->FindObject(pname);
if (h1obj && h1obj->InheritsFrom("TProfile")) {
h1 = (TProfile*)h1obj;
h1->Reset();
}
Int_t ncuts = 0;
if (opt.Contains("[")) {
((TH2 *)this)->GetPainter();
if (fPainter) ncuts = fPainter->MakeCuts((char*)opt.Data());
}
if (!h1) {
const TArrayD *bins = fXaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TProfile(pname,GetTitle(),nx,fXaxis.GetXmin(),fXaxis.GetXmax(),option);
} else {
h1 = new TProfile(pname,GetTitle(),nx,bins->fArray,option);
}
}
if (pname != name) delete [] pname;
// Copy attributes
h1->GetXaxis()->ImportAttributes(this->GetXaxis());
h1->SetLineColor(this->GetLineColor());
h1->SetFillColor(this->GetFillColor());
h1->SetMarkerColor(this->GetMarkerColor());
h1->SetMarkerStyle(this->GetMarkerStyle());
// Fill the profile histogram
Double_t cont;
for (Int_t binx =0;binx<=nx+1;binx++) {
for (Int_t biny=firstybin;biny<=lastybin;biny++) {
if (ncuts) {
if (!fPainter->IsInside(binx,biny)) continue;
}
cont = GetCellContent(binx,biny);
if (cont) {
h1->Fill(fXaxis.GetBinCenter(binx),fYaxis.GetBinCenter(biny), cont);
}
}
}
if (firstybin <=1 && lastybin >= ny) h1->SetEntries(fEntries);
if (opt.Contains("d")) {
TVirtualPad *padsav = gPad;
TVirtualPad *pad = gROOT->GetSelectedPad();
if (pad) pad->cd();
char optin[100];
strcpy(optin,opt.Data());
char *d = (char*)strstr(optin,"d"); if (d) {*d = ' '; if (*(d+1) == 0) *d=0;}
char *e = (char*)strstr(optin,"e"); if (e) {*e = ' '; if (*(e+1) == 0) *e=0;}
if (!gPad->FindObject(h1)) {
h1->Draw(optin);
} else {
h1->Paint(optin);
}
if (padsav) padsav->cd();
}
return h1;
}
//______________________________________________________________________________
TProfile *TH2::ProfileY(const char *name, Int_t firstxbin, Int_t lastxbin, Option_t *option) const
{
//*-*-*-*-*Project a 2-D histogram into a profile histogram along Y*-*-*-*-*-*
//*-* ========================================================
//
// The projection is made from the channels along the X axis
// ranging from firstxbin to lastxbin included.
// By default, bins 1 to nx are included
// When all bins are included, the number of entries in the projection
// is set to the number of entries of the 2-D histogram, otherwise
// the number of entries is incremented by 1 for all non empty cells.
//
// if option "d" is specified, the profile is drawn in the current pad.
//
// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
// One must create a graphical cut (mouse or C++) and specify the name
// of the cut between [] in the option.
// For example, with a TCutG named "cutg", one can call:
// myhist->ProfileY(" ",firstybin,lastybin,"[cutg]");
// To invert the cut, it is enough to put a "-" in front of its name:
// myhist->ProfileY(" ",firstybin,lastybin,"[-cutg]");
// It is possible to apply several cuts:
// myhist->ProfileY(" ",firstybin,lastybin,[cutg1,cutg2]");
//
// NOTE that if a TProfile named name exists in the current directory or pad,
// the histogram is reset and filled again with the current contents of the TH2.
// The Y axis attributes of the TH2 are copied to the X axis of the profile.
TString opt = option;
opt.ToLower();
Int_t nx = fXaxis.GetNbins();
Int_t ny = fYaxis.GetNbins();
if (firstxbin < 0) firstxbin = 1;
if (lastxbin < 0) lastxbin = nx;
if (lastxbin > nx+1) lastxbin = nx;
// Create the projection histogram
char *pname = (char*)name;
if (name && strcmp(name,"_pfy") == 0) {
Int_t nch = strlen(GetName()) + 5;
pname = new char[nch];
sprintf(pname,"%s%s",GetName(),name);
}
TProfile *h1=0;
//check if a profile with identical name exist
TObject *h1obj = gROOT->FindObject(pname);
if (h1obj && h1obj->InheritsFrom("TProfile")) {
h1 = (TProfile*)h1obj;
h1->Reset();
}
Int_t ncuts = 0;
if (opt.Contains("[")) {
((TH2 *)this)->GetPainter();
if (fPainter) ncuts = fPainter->MakeCuts((char*)opt.Data());
}
if (!h1) {
const TArrayD *bins = fYaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TProfile(pname,GetTitle(),ny,fYaxis.GetXmin(),fYaxis.GetXmax(),option);
} else {
h1 = new TProfile(pname,GetTitle(),ny,bins->fArray,option);
}
}
if (pname != name) delete [] pname;
// Copy attributes
h1->GetXaxis()->ImportAttributes(this->GetYaxis());
h1->SetLineColor(this->GetLineColor());
h1->SetFillColor(this->GetFillColor());
h1->SetMarkerColor(this->GetMarkerColor());
h1->SetMarkerStyle(this->GetMarkerStyle());
// Fill the profile histogram
Double_t cont;
for (Int_t biny =0;biny<=ny+1;biny++) {
for (Int_t binx=firstxbin;binx<=lastxbin;binx++) {
if (ncuts) {
if (!fPainter->IsInside(binx,biny)) continue;
}
cont = GetCellContent(binx,biny);
if (cont) {
h1->Fill(fYaxis.GetBinCenter(biny),fXaxis.GetBinCenter(binx), cont);
}
}
}
if (firstxbin <=1 && lastxbin >= nx) h1->SetEntries(fEntries);
if (opt.Contains("d")) {
TVirtualPad *padsav = gPad;
TVirtualPad *pad = gROOT->GetSelectedPad();
if (pad) pad->cd();
char optin[100];
strcpy(optin,opt.Data());
char *d = (char*)strstr(optin,"d"); if (d) {*d = ' '; if (*(d+1) == 0) *d=0;}
char *e = (char*)strstr(optin,"e"); if (e) {*e = ' '; if (*(e+1) == 0) *e=0;}
if (!gPad->FindObject(h1)) {
h1->Draw(optin);
} else {
h1->Paint(optin);
}
if (padsav) padsav->cd();
}
return h1;
}
//______________________________________________________________________________
TH1D *TH2::ProjectionX(const char *name, Int_t firstybin, Int_t lastybin, Option_t *option) const
{
//*-*-*-*-*Project a 2-D histogram into a 1-D histogram along X*-*-*-*-*-*-*
//*-* ====================================================
//
// The projection is always of the type TH1D.
// The projection is made from the channels along the Y axis
// ranging from firstybin to lastybin included.
// By default, bins 1 to ny are included
// When all bins are included, the number of entries in the projection
// is set to the number of entries of the 2-D histogram, otherwise
// the number of entries is incremented by 1 for all non empty cells.
//
// To make the projection in X of the underflow bin in Y, use firstybin=lastybin=0;
// To make the projection in X of the overflow bin in Y, use firstybin=lastybin=ny+1;
//
// if option "e" is specified, the errors are computed.
// if option "d" is specified, the projection is drawn in the current pad.
//
// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
// One must create a graphical cut (mouse or C++) and specify the name
// of the cut between [] in the option.
// For example, with a TCutG named "cutg", one can call:
// myhist->ProjectionX(" ",firstybin,lastybin,"[cutg]");
// To invert the cut, it is enough to put a "-" in front of its name:
// myhist->ProjectionX(" ",firstybin,lastybin,"[-cutg]");
// It is possible to apply several cuts:
// myhist->ProjectionX(" ",firstybin,lastybin,[cutg1,cutg2]");
//
// NOTE that if a TH1D named name exists in the current directory or pad,
// the histogram is reset and filled again with the current contents of the TH2.
// The X axis attributes of the TH2 are copied to the X axis of the projection.
TString opt = option;
opt.ToLower();
Int_t nx = fXaxis.GetNbins();
Int_t ny = fYaxis.GetNbins();
if (firstybin < 0) firstybin = 1;
if (lastybin < 0) lastybin = ny;
if (lastybin > ny+1) lastybin = ny;
// Create the projection histogram
char *pname = (char*)name;
if (name && strcmp(name,"_px") == 0) {
Int_t nch = strlen(GetName()) + 4;
pname = new char[nch];
sprintf(pname,"%s%s",GetName(),name);
}
TH1D *h1=0;
//check if histogram with identical name exist
TObject *h1obj = gROOT->FindObject(pname);
if (h1obj && h1obj->InheritsFrom("TH1D")) {
h1 = (TH1D*)h1obj;
h1->Reset();
}
Int_t ncuts = 0;
if (opt.Contains("[")) {
((TH2 *)this)->GetPainter();
if (fPainter) ncuts = fPainter->MakeCuts((char*)opt.Data());
}
if (!h1) {
const TArrayD *bins = fXaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TH1D(pname,GetTitle(),nx,fXaxis.GetXmin(),fXaxis.GetXmax());
} else {
h1 = new TH1D(pname,GetTitle(),nx,bins->fArray);
}
if (opt.Contains("e")) h1->Sumw2();
}
if (pname != name) delete [] pname;
// Copy attributes
h1->GetXaxis()->ImportAttributes(this->GetXaxis());
h1->SetLineColor(this->GetLineColor());
h1->SetFillColor(this->GetFillColor());
h1->SetMarkerColor(this->GetMarkerColor());
h1->SetMarkerStyle(this->GetMarkerStyle());
// Fill the projected histogram
Double_t cont,err,err2;
for (Int_t binx =0;binx<=nx+1;binx++) {
err2 = 0;
for (Int_t biny=firstybin;biny<=lastybin;biny++) {
if (ncuts) {
if (!fPainter->IsInside(binx,biny)) continue;
}
cont = GetCellContent(binx,biny);
err = GetCellError(binx,biny);
err2 += err*err;
if (cont) {
h1->Fill(fXaxis.GetBinCenter(binx), cont);
}
}
if (h1->GetSumw2N()) h1->SetBinError(binx,TMath::Sqrt(err2));
}
if (firstybin <=1 && lastybin >= ny) h1->SetEntries(fEntries);
if (opt.Contains("d")) {
TVirtualPad *padsav = gPad;
TVirtualPad *pad = gROOT->GetSelectedPad();
if (pad) pad->cd();
char optin[100];
strcpy(optin,opt.Data());
char *d = (char*)strstr(optin,"d"); if (d) {*d = ' '; if (*(d+1) == 0) *d=0;}
char *e = (char*)strstr(optin,"e"); if (e) {*e = ' '; if (*(e+1) == 0) *e=0;}
if (!gPad->FindObject(h1)) {
h1->Draw(optin);
} else {
h1->Paint(optin);
}
if (padsav) padsav->cd();
}
return h1;
}
//______________________________________________________________________________
TH1D *TH2::ProjectionY(const char *name, Int_t firstxbin, Int_t lastxbin, Option_t *option) const
{
//*-*-*-*-*Project a 2-D histogram into a 1-D histogram along Y*-*-*-*-*-*-*
//*-* ====================================================
//
// The projection is always of the type TH1D.
// The projection is made from the channels along the X axis
// ranging from firstxbin to lastxbin included.
// By default, bins 1 to nx are included
// When all bins are included, the number of entries in the projection
// is set to the number of entries of the 2-D histogram, otherwise
// the number of entries is incremented by 1 for all non empty cells.
//
// To make the projection in Y of the underflow bin in X, use firstxbin=lastxbin=0;
// To make the projection in Y of the overflow bin in X, use firstxbin=lastxbin=nx+1;
//
// if option "e" is specified, the errors are computed.
// if option "d" is specified, the projection is drawn in the current pad.
//
// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
// One must create a graphical cut (mouse or C++) and specify the name
// of the cut between [] in the option.
// For example, with a TCutG named "cutg", one can call:
// myhist->ProjectionY(" ",firstybin,lastybin,"[cutg]");
// To invert the cut, it is enough to put a "-" in front of its name:
// myhist->ProjectionY(" ",firstybin,lastybin,"[-cutg]");
// It is possible to apply several cuts:
// myhist->ProjectionY(" ",firstybin,lastybin,[cutg1,cutg2]");
//
// NOTE that if a TH1D named name exists in the current directory or pad,
// the histogram is reset and filled again with the current contents of the TH2.
// The Y axis attributes of the TH2 are copied to the X axis of the projection.
TString opt = option;
opt.ToLower();
Int_t nx = fXaxis.GetNbins();
Int_t ny = fYaxis.GetNbins();
if (firstxbin < 0) firstxbin = 1;
if (lastxbin < 0) lastxbin = nx;
if (lastxbin > nx+1) lastxbin = nx;
// Create the projection histogram
char *pname = (char*)name;
if (name && strcmp(name,"_py") == 0) {
Int_t nch = strlen(GetName()) + 4;
pname = new char[nch];
sprintf(pname,"%s%s",GetName(),name);
}
TH1D *h1=0;
//check if histogram with identical name exist
TObject *h1obj = gROOT->FindObject(pname);
if (h1obj && h1obj->InheritsFrom("TH1D")) {
h1 = (TH1D*)h1obj;
h1->Reset();
}
Int_t ncuts = 0;
if (opt.Contains("[")) {
((TH2 *)this)->GetPainter();
if (fPainter) ncuts = fPainter->MakeCuts((char*)opt.Data());
}
if (!h1) {
const TArrayD *bins = fYaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TH1D(pname,GetTitle(),ny,fYaxis.GetXmin(),fYaxis.GetXmax());
} else {
h1 = new TH1D(pname,GetTitle(),ny,bins->fArray);
}
if (opt.Contains("e")) h1->Sumw2();
}
if (pname != name) delete [] pname;
// Copy attributes
h1->GetXaxis()->ImportAttributes(this->GetYaxis());
h1->SetLineColor(this->GetLineColor());
h1->SetFillColor(this->GetFillColor());
h1->SetMarkerColor(this->GetMarkerColor());
h1->SetMarkerStyle(this->GetMarkerStyle());
// Fill the projected histogram
Double_t cont,err,err2;
for (Int_t biny =0;biny<=ny+1;biny++) {
err2 = 0;
for (Int_t binx=firstxbin;binx<=lastxbin;binx++) {
if (ncuts) {
if (!fPainter->IsInside(binx,biny)) continue;
}
cont = GetCellContent(binx,biny);
err = GetCellError(binx,biny);
err2 += err*err;
if (cont) {
h1->Fill(fYaxis.GetBinCenter(biny), cont);
}
}
if (h1->GetSumw2N()) h1->SetBinError(biny,TMath::Sqrt(err2));
}
if (firstxbin <=1 && lastxbin >= nx) h1->SetEntries(fEntries);
if (opt.Contains("d")) {
TVirtualPad *padsav = gPad;
TVirtualPad *pad = gROOT->GetSelectedPad();
if (pad) pad->cd();
char optin[100];
strcpy(optin,opt.Data());
char *d = (char*)strstr(optin,"d"); if (d) {*d = ' '; if (*(d+1) == 0) *d=0;}
char *e = (char*)strstr(optin,"e"); if (e) {*e = ' '; if (*(e+1) == 0) *e=0;}
if (!gPad->FindObject(h1)) {
h1->Draw(optin);
} else {
h1->Paint(optin);
}
if (padsav) padsav->cd();
}
return h1;
}
//______________________________________________________________________________
void TH2::PutStats(Stat_t *stats)
{
// Replace current statistics with the values in array stats
TH1::PutStats(stats);
fTsumwy = stats[4];
fTsumwy2 = stats[5];
fTsumwxy = stats[6];
}
//______________________________________________________________________________
void TH2::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH1::Reset(option);
fTsumwy = 0;
fTsumwy2 = 0;
fTsumwxy = 0;
}
//______________________________________________________________________________
void TH2::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
TH1::Streamer(R__b);
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
//====end of old versions
} else {
TH2::Class()->WriteBuffer(R__b,this);
}
}
ClassImp(TH2C)
//______________________________________________________________________________
// TH2C methods
//______________________________________________________________________________
TH2C::TH2C(): TH2()
{
}
//______________________________________________________________________________
TH2C::~TH2C()
{
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const TH2C &h2c) : TH2(), TArrayC()
{
((TH2C&)h2c).Copy(*this);
}
//______________________________________________________________________________
void TH2C::AddBinContent(Int_t bin)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
if (fArray[bin] < 127) fArray[bin]++;
}
//______________________________________________________________________________
void TH2C::AddBinContent(Int_t bin, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by w*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
Int_t newval = fArray[bin] + Int_t(w);
if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
if (newval < -127) fArray[bin] = -127;
if (newval > 127) fArray[bin] = 127;
}
//______________________________________________________________________________
void TH2C::Copy(TObject &newth2) const
{
TH2::Copy((TH2C&)newth2);
TArrayC::Copy((TH2C&)newth2);
}
//______________________________________________________________________________
TH1 *TH2C::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH2C *newth2 = (TH2C*)Clone();
newth2->SetDirectory(0);
newth2->SetBit(kCanDelete);
newth2->AppendPad(option);
return newth2;
}
//______________________________________________________________________________
Stat_t TH2C::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH2C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH2C::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH2::Reset(option);
TArrayC::Reset();
}
//______________________________________________________________________________
void TH2C::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Char_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH2C::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
fNcells = n;
TArrayC::Set(n);
}
//______________________________________________________________________________
void TH2C::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2C.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2C::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayC::Streamer(R__b);
R__b.ReadVersion();
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
} else {
TH2::Streamer(R__b);
TArrayC::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH2C::IsA());
}
//====end of old versions
} else {
TH2C::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH2C& TH2C::operator=(const TH2C &h1)
{
if (this != &h1) ((TH2C&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH2C operator*(Float_t c1, TH2C &h1)
{
TH2C hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2C operator+(TH2C &h1, TH2C &h2)
{
TH2C hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2C operator-(TH2C &h1, TH2C &h2)
{
TH2C hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2C operator*(TH2C &h1, TH2C &h2)
{
TH2C hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2C operator/(TH2C &h1, TH2C &h2)
{
TH2C hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH2S)
//______________________________________________________________________________
// TH2S methods
//______________________________________________________________________________
TH2S::TH2S(): TH2()
{
}
//______________________________________________________________________________
TH2S::~TH2S()
{
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const TH2S &h2s) : TH2(), TArrayS()
{
((TH2S&)h2s).Copy(*this);
}
//______________________________________________________________________________
void TH2S::AddBinContent(Int_t bin)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
if (fArray[bin] < 32767) fArray[bin]++;
}
//______________________________________________________________________________
void TH2S::AddBinContent(Int_t bin, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by w*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
Int_t newval = fArray[bin] + Int_t(w);
if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
if (newval < -32767) fArray[bin] = -32767;
if (newval > 32767) fArray[bin] = 32767;
}
//______________________________________________________________________________
void TH2S::Copy(TObject &newth2) const
{
TH2::Copy((TH2S&)newth2);
TArrayS::Copy((TH2S&)newth2);
}
//______________________________________________________________________________
TH1 *TH2S::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH2S *newth2 = (TH2S*)Clone();
newth2->SetDirectory(0);
newth2->SetBit(kCanDelete);
newth2->AppendPad(option);
return newth2;
}
//______________________________________________________________________________
Stat_t TH2S::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH2C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH2S::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH2::Reset(option);
TArrayS::Reset();
}
//______________________________________________________________________________
void TH2S::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Short_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH2S::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
fNcells = n;
TArrayS::Set(n);
}
//______________________________________________________________________________
void TH2S::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2S.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2S::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayS::Streamer(R__b);
R__b.ReadVersion();
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
} else {
TH2::Streamer(R__b);
TArrayS::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH2S::IsA());
}
//====end of old versions
} else {
TH2S::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH2S& TH2S::operator=(const TH2S &h1)
{
if (this != &h1) ((TH2S&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH2S operator*(Float_t c1, TH2S &h1)
{
TH2S hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2S operator+(TH2S &h1, TH2S &h2)
{
TH2S hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2S operator-(TH2S &h1, TH2S &h2)
{
TH2S hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2S operator*(TH2S &h1, TH2S &h2)
{
TH2S hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2S operator/(TH2S &h1, TH2S &h2)
{
TH2S hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH2I)
//______________________________________________________________________________
// TH2I methods
//______________________________________________________________________________
TH2I::TH2I(): TH2()
{
}
//______________________________________________________________________________
TH2I::~TH2I()
{
}
//______________________________________________________________________________
TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
{
TArrayI::Set(fNcells);
}
//______________________________________________________________________________
TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
{
TArrayI::Set(fNcells);
}
//______________________________________________________________________________
TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
{
TArrayI::Set(fNcells);
}
//______________________________________________________________________________
TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayI::Set(fNcells);
}
//______________________________________________________________________________
TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayI::Set(fNcells);
}
//______________________________________________________________________________
TH2I::TH2I(const TH2I &h2i) : TH2(), TArrayI()
{
((TH2I&)h2i).Copy(*this);
}
//______________________________________________________________________________
void TH2I::AddBinContent(Int_t bin)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
if (fArray[bin] < 2147483647) fArray[bin]++;
}
//______________________________________________________________________________
void TH2I::AddBinContent(Int_t bin, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by w*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
Int_t newval = fArray[bin] + Int_t(w);
if (newval > -2147483647 && newval < 2147483647) {fArray[bin] = Int_t(newval); return;}
if (newval < -2147483647) fArray[bin] = -2147483647;
if (newval > 2147483647) fArray[bin] = 2147483647;
}
//______________________________________________________________________________
void TH2I::Copy(TObject &newth2) const
{
TH2::Copy((TH2I&)newth2);
TArrayI::Copy((TH2I&)newth2);
}
//______________________________________________________________________________
TH1 *TH2I::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH2I *newth2 = (TH2I*)Clone();
newth2->SetDirectory(0);
newth2->SetBit(kCanDelete);
newth2->AppendPad(option);
return newth2;
}
//______________________________________________________________________________
Stat_t TH2I::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH2C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH2I::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH2::Reset(option);
TArrayI::Reset();
}
//______________________________________________________________________________
void TH2I::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Int_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH2I::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
fNcells = n;
TArrayI::Set(n);
}
//______________________________________________________________________________
TH2I& TH2I::operator=(const TH2I &h1)
{
if (this != &h1) ((TH2I&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH2I operator*(Float_t c1, TH2I &h1)
{
TH2I hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2I operator+(TH2I &h1, TH2I &h2)
{
TH2I hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2I operator-(TH2I &h1, TH2I &h2)
{
TH2I hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2I operator*(TH2I &h1, TH2I &h2)
{
TH2I hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2I operator/(TH2I &h1, TH2I &h2)
{
TH2I hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH2F)
//______________________________________________________________________________
// TH2F methods
//______________________________________________________________________________
TH2F::TH2F(): TH2()
{
}
//______________________________________________________________________________
TH2F::~TH2F()
{
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const TMatrixFBase &m)
:TH2("TMatrixFBase","",m.GetNcols(),m.GetColLwb(),1+m.GetColUpb(),m.GetNrows(),m.GetRowLwb(),1+m.GetRowUpb())
{
TArrayF::Set(fNcells);
Int_t ilow = m.GetRowLwb();
Int_t iup = m.GetRowUpb();
Int_t jlow = m.GetColLwb();
Int_t jup = m.GetColUpb();
for (Int_t i=ilow;i<=iup;i++) {
for (Int_t j=jlow;j<=jup;j++) {
SetCellContent(j-jlow+1,i-ilow+1,m(i,j));
}
}
}
//______________________________________________________________________________
TH2F::TH2F(const TH2F &h2f) : TH2(), TArrayF()
{
((TH2F&)h2f).Copy(*this);
}
//______________________________________________________________________________
void TH2F::Copy(TObject &newth2) const
{
TH2::Copy((TH2F&)newth2);
TArrayF::Copy((TH2F&)newth2);
}
//______________________________________________________________________________
TH1 *TH2F::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH2F *newth2 = (TH2F*)Clone();
newth2->SetDirectory(0);
newth2->SetBit(kCanDelete);
newth2->AppendPad(option);
return newth2;
}
//______________________________________________________________________________
Stat_t TH2F::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH2C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH2F::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH2::Reset(option);
TArrayF::Reset();
}
//______________________________________________________________________________
void TH2F::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Float_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH2F::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
fNcells = n;
TArrayF::Set(n);
}
//______________________________________________________________________________
void TH2F::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2F.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2F::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayF::Streamer(R__b);
R__b.ReadVersion();
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
} else {
TH2::Streamer(R__b);
TArrayF::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH2F::IsA());
}
//====end of old versions
} else {
TH2F::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH2F& TH2F::operator=(const TH2F &h1)
{
if (this != &h1) ((TH2F&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH2F operator*(Float_t c1, TH2F &h1)
{
TH2F hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator*(TH2F &h1, Float_t c1)
{
TH2F hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator+(TH2F &h1, TH2F &h2)
{
TH2F hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator-(TH2F &h1, TH2F &h2)
{
TH2F hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator*(TH2F &h1, TH2F &h2)
{
TH2F hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator/(TH2F &h1, TH2F &h2)
{
TH2F hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH2D)
//______________________________________________________________________________
// TH2D methods
//______________________________________________________________________________
TH2D::TH2D(): TH2()
{
}
//______________________________________________________________________________
TH2D::~TH2D()
{
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const TMatrixDBase &m)
:TH2("TMatrixDBase","",m.GetNcols(),m.GetColLwb(),1+m.GetColUpb(),m.GetNrows(),m.GetRowLwb(),1+m.GetRowUpb())
{
TArrayD::Set(fNcells);
Int_t ilow = m.GetRowLwb();
Int_t iup = m.GetRowUpb();
Int_t jlow = m.GetColLwb();
Int_t jup = m.GetColUpb();
for (Int_t i=ilow;i<=iup;i++) {
for (Int_t j=jlow;j<=jup;j++) {
SetCellContent(j-jlow+1,i-ilow+1,m(i,j));
}
}
}
//______________________________________________________________________________
TH2D::TH2D(const TH2D &h2d) : TH2(), TArrayD()
{
((TH2D&)h2d).Copy(*this);
}
//______________________________________________________________________________
void TH2D::Copy(TObject &newth2) const
{
TH2::Copy((TH2D&)newth2);
TArrayD::Copy((TH2D&)newth2);
}
//______________________________________________________________________________
TH1 *TH2D::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH2D *newth2 = (TH2D*)Clone();
newth2->SetDirectory(0);
newth2->SetBit(kCanDelete);
newth2->AppendPad(option);
return newth2;
}
//______________________________________________________________________________
Stat_t TH2D::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH2C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH2D::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH2::Reset(option);
TArrayD::Reset();
}
//______________________________________________________________________________
void TH2D::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Double_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH2D::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
fNcells = n;
TArrayD::Set(n);
}
//______________________________________________________________________________
void TH2D::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2D.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2D::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayD::Streamer(R__b);
R__b.ReadVersion();
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
} else {
TH2::Streamer(R__b);
TArrayD::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH2D::IsA());
}
//====end of old versions
} else {
TH2D::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH2D& TH2D::operator=(const TH2D &h1)
{
if (this != &h1) ((TH2D&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH2D operator*(Float_t c1, TH2D &h1)
{
TH2D hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2D operator+(TH2D &h1, TH2D &h2)
{
TH2D hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2D operator-(TH2D &h1, TH2D &h2)
{
TH2D hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2D operator*(TH2D &h1, TH2D &h2)
{
TH2D hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2D operator/(TH2D &h1, TH2D &h2)
{
TH2D hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.