// @(#)root/geom:$Name: $:$Id: TGeoHype.cxx,v 1.4 2004/12/07 14:24:57 brun Exp $
// Author: Mihaela Gheata 20/11/04
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TVirtualGeoPainter.h"
#include "TGeoHype.h"
#include "TVirtualPad.h"
#include "TBuffer3D.h"
//_____________________________________________________________________________
// TGeoHype - Hyperboloid class defined by 5 parameters. Bounded by:
// - Two z planes at z=+/-dz
// - Inner and outer lateral surfaces. These represent the surfaces
// described by the revolution of 2 hyperbolas about the Z axis:
// r^2 - (t*z)^2 = a^2
//
// r = distance between hyperbola and Z axis at coordinate z
// t = tangent of the stereo angle (angle made by hyperbola
// asimptotic lines and Z axis). t=0 means cylindrical surface.
// a = distance between hyperbola and Z axis at z=0
//
// The inner hyperbolic surface is described by:
// r^2 - (tin*z)^2 = rin^2
// - absence of the inner surface (filled hyperboloid can be forced
// by rin=0 and sin=0
// The outer hyperbolic surface is described by:
// r^2 - (tout*z)^2 = rout^2
// TGeoHype parameters: dz[cm], rin[cm], sin[deg], rout[cm], sout[deg].
// MANDATORY conditions:
// - rin < rout
// - rout > 0
// - rin^2 + (tin*dz)^2 > rout^2 + (tout*dz)^2
// SUPPORTED CASES:
// - rin = 0, tin != 0 => inner surface conical
// - tin=0 AND/OR tout=0 => corresponding surface(s) cyllindrical
// e.g. tin=0 AND tout=0 => shape becomes a tube with: rmin,rmax,dz
//
//_____________________________________________________________________________
ClassImp(TGeoHype)
//_____________________________________________________________________________
TGeoHype::TGeoHype()
{
// Default constructor
SetShapeBit(TGeoShape::kGeoHype);
fStIn = 0.;
fStOut = 0.;
fTin = 0.;
fTinsq = 0.;
fTout = 0.;
fToutsq = 0.;
}
//_____________________________________________________________________________
TGeoHype::TGeoHype(Double_t rin, Double_t stin, Double_t rout, Double_t stout, Double_t dz)
:TGeoTube(rin, rout, dz)
{
// Constructor specifying hyperboloid parameters.
SetShapeBit(TGeoShape::kGeoHype);
SetHypeDimensions(rin, stin, rout, stout, dz);
// dz<0 can be used to force dz of hyperboloid fit the container volume
if (fDz<0) SetShapeBit(kGeoRunTimeShape);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoHype::TGeoHype(const char *name,Double_t rin, Double_t stin, Double_t rout, Double_t stout, Double_t dz)
:TGeoTube(name, rin, rout, dz)
{
// Constructor specifying parameters and name.
SetShapeBit(TGeoShape::kGeoHype);
SetHypeDimensions(rin, stin, rout, stout, dz);
// dz<0 can be used to force dz of hyperboloid fit the container volume
if (fDz<0) SetShapeBit(kGeoRunTimeShape);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoHype::TGeoHype(Double_t *param)
:TGeoTube(param[1],param[3],param[0])
{
// Default constructor specifying a list of parameters
// param[0] = dz
// param[1] = rin
// param[2] = stin
// param[3] = rout
// param[4] = stout
SetShapeBit(TGeoShape::kGeoHype);
SetDimensions(param);
// dz<0 can be used to force dz of hyperboloid fit the container volume
if (fDz<0) SetShapeBit(kGeoRunTimeShape);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoHype::~TGeoHype()
{
// destructor
}
//_____________________________________________________________________________
void TGeoHype::ComputeBBox()
{
// Compute bounding box of the hyperboloid
if (fRmin<0.) {
Warning("ComputeBBox", "Shape %s has invalid rmin=%g ! SET TO 0.", fRmin);
fRmin = 0.;
}
if ((fRmin>fRmax) || (fRmin*fRmin+fTinsq*fDz*fDz > fRmax*fRmax+fToutsq*fDz*fDz)) {
SetShapeBit(kGeoInvalidShape);
Error("ComputeBBox", "Shape %s hyperbolic surfaces are malformed: rin=%g, stin=%g, rout=%g, stout=%g",
GetName(), fRmin, fStIn, fRmax, fStOut);
return;
}
fDX = fDY = TMath::Sqrt(RadiusHypeSq(fDz, kFALSE));
fDZ = fDz;
}
//_____________________________________________________________________________
void TGeoHype::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT.
Double_t saf[3];
Double_t rsq = point[0]*point[0]+point[1]*point[1];
Double_t r = TMath::Sqrt(rsq);
Double_t rin = (HasInner())?(TMath::Sqrt(RadiusHypeSq(point[2],kTRUE))):0.;
Double_t rout = TMath::Sqrt(RadiusHypeSq(point[2],kFALSE));
saf[0] = TMath::Abs(fDz-TMath::Abs(point[2]));
saf[1] = (HasInner())?TMath::Abs(rin-r):TGeoShape::Big();
saf[2] = TMath::Abs(rout-r);
Int_t i = TMath::LocMin(3,saf);
if (i==0 || r<1.E-10) {
norm[0] = norm[1] = 0.;
norm[2] = TMath::Sign(1.,dir[2]);
return;
}
Double_t t = (i==1)?fTinsq:fToutsq;;
t *= -point[2]/r;
Double_t ct = TMath::Sqrt(1./(1.+t*t));
Double_t st = t * ct;
Double_t phi = TMath::ATan2(point[1], point[0]);
Double_t cphi = TMath::Cos(phi);
Double_t sphi = TMath::Sin(phi);
norm[0] = ct*cphi;
norm[1] = ct*sphi;
norm[2] = st;
if (norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2]<0) {
norm[0] = -norm[0];
norm[1] = -norm[1];
norm[2] = -norm[2];
}
}
//_____________________________________________________________________________
Bool_t TGeoHype::Contains(Double_t *point) const
{
// test if point is inside this tube
if (TMath::Abs(point[2]) > fDz) return kFALSE;
Double_t r2 = point[0]*point[0]+point[1]*point[1];
Double_t routsq = RadiusHypeSq(point[2], kFALSE);
if (r2>routsq) return kFALSE;
if (!HasInner()) return kTRUE;
Double_t rinsq = RadiusHypeSq(point[2], kTRUE);
if (r2<rinsq) return kFALSE;
return kTRUE;
}
//_____________________________________________________________________________
Int_t TGeoHype::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute closest distance from point px,py to each corner
Int_t numPoints = GetNmeshVertices();
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//_____________________________________________________________________________
Double_t TGeoHype::DistFromInside(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// Compute distance from inside point to surface of the hyperboloid.
if (iact<3 && safe) {
*safe = Safety(point, kTRUE);
if (iact==0) return TGeoShape::Big();
if ((iact==1) && (*safe>step)) return TGeoShape::Big();
}
// compute distance to surface
// Do Z
Double_t sz = TGeoShape::Big();
if (dir[2]>0) {
sz = (fDz-point[2])/dir[2];
if (sz<=0.) return 0.;
} else {
if (dir[2]<0) {
sz = -(fDz+point[2])/dir[2];
if (sz<=0.) return 0.;
}
}
// Do R
Double_t srin = TGeoShape::Big();
Double_t srout = TGeoShape::Big();
Double_t sr;
// inner and outer surfaces
Double_t s[2];
Int_t npos;
npos = DistToHype(point, dir, s, kTRUE);
if (npos) srin = s[0];
npos = DistToHype(point, dir, s, kFALSE);
if (npos) srout = s[0];
sr = TMath::Min(srin, srout);
return TMath::Min(sz,sr);
}
//_____________________________________________________________________________
Double_t TGeoHype::DistFromOutside(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from outside point to surface of the hyperboloid.
if (iact<3 && safe) {
*safe = Safety(point, kFALSE);
if (iact==0) return TGeoShape::Big();
if ((iact==1) && (step<=*safe)) return TGeoShape::Big();
}
// find distance to shape
// Do Z
Double_t xi, yi, zi;
Double_t sz = TGeoShape::Big();
if (TMath::Abs(point[2])>=fDz) {
// We might find Z plane crossing
if ((point[2]*dir[2]) < 0) {
// Compute distance to Z (always positive)
sz = (TMath::Abs(point[2])-fDz)/TMath::Abs(dir[2]);
// Extrapolate
xi = point[0]+sz*dir[0];
yi = point[1]+sz*dir[1];
Double_t r2 = xi*xi + yi*yi;
Double_t rmin2 = RadiusHypeSq(fDz, kTRUE);
if (r2 >= rmin2) {
Double_t rmax2 = RadiusHypeSq(fDz, kFALSE);
if (r2 <= rmax2) return sz;
}
}
}
// We do not cross Z planes.
Double_t sin = TGeoShape::Big();
Double_t sout = TGeoShape::Big();
Double_t s[2];
Int_t npos;
npos = DistToHype(point, dir, s, kTRUE);
if (npos) {
zi = point[2] + s[0]*dir[2];
if (TMath::Abs(zi) <= fDz) sin = s[0];
else if (npos==2) {
zi = point[2] + s[1]*dir[2];
if (TMath::Abs(zi) <= fDz) sin = s[1];
}
}
npos = DistToHype(point, dir, s, kFALSE);
if (npos) {
zi = point[2] + s[0]*dir[2];
if (TMath::Abs(zi) <= fDz) sout = s[0];
else if (npos==2) {
zi = point[2] + s[1]*dir[2];
if (TMath::Abs(zi) <= fDz) sout = s[1];
}
}
return TMath::Min(sin, sout);
}
//_____________________________________________________________________________
Int_t TGeoHype::DistToHype(Double_t *point, Double_t *dir, Double_t *s, Bool_t inner) const
{
// Compute distance from an arbitrary point to inner/outer surface of hyperboloid.
// Returns number of positive solutions. S[2] contains the solutions.
Double_t r0, t0, snext;
if (inner) {
if (!HasInner()) return 0;
r0 = fRmin;
t0 = fTinsq;
} else {
r0 = fRmax;
t0 = fToutsq;
}
Double_t a = dir[0]*dir[0] + dir[1]*dir[1] - t0*dir[2]*dir[2];
Double_t b = t0*point[2]*dir[2] - point[0]*dir[0] - point[1]*dir[1];
Double_t c = point[0]*point[0] + point[1]*point[1] - t0*point[2]*point[2] - r0*r0;
if (a == 0.) {
if (b == 0.) return 0;
snext = 0.5*c/b;
if (snext < 0.) return 0;
s[0] = snext;
return 1;
}
Double_t delta = b*b - a*c;
Double_t ainv = 1./a;
Int_t npos = 0;
if (delta < 0.) return 0;
delta = TMath::Sqrt(delta);
Double_t sone = TMath::Sign(1.,ainv);
snext = (b - sone*delta)*ainv;
if (snext >= 0.) s[npos++] = snext;
snext = (b + sone*delta)*ainv;
if (snext >= 0.) s[npos++] = snext;
return npos;
}
//_____________________________________________________________________________
TGeoVolume *TGeoHype::Divide(TGeoVolume * /*voldiv*/, const char *divname, Int_t /*iaxis*/, Int_t /*ndiv*/,
Double_t /*start*/, Double_t /*step*/)
{
// Cannot divide hyperboloids.
Error("Divide", "Hyperboloids cannot be divided. Division volume %s not created", divname);
return 0;
}
//_____________________________________________________________________________
Double_t TGeoHype::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
xlo = 0;
xhi = 0;
Double_t dx = 0;
switch (iaxis) {
case 1: // R
xlo = fRmin;
xhi = TMath::Sqrt(RadiusHypeSq(fDz, kFALSE));
dx = xhi-xlo;
return dx;
case 2: // Phi
xlo = 0;
xhi = 360;
dx = 360;
return dx;
case 3: // Z
xlo = -fDz;
xhi = fDz;
dx = xhi-xlo;
return dx;
}
return dx;
}
//_____________________________________________________________________________
void TGeoHype::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2, dZ
param[0] = fRmin; // Rmin
param[0] *= param[0];
param[1] = TMath::Sqrt(RadiusHypeSq(fDz, kFALSE)); // Rmax
param[1] *= param[1];
param[2] = 0.; // Phi1
param[3] = 360.; // Phi1
}
//_____________________________________________________________________________
TGeoShape *TGeoHype::GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix * /*mat*/) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestShapeBit(kGeoRunTimeShape)) return 0;
Double_t rmin, rmax, dz;
Double_t zmin,zmax;
rmin = fRmin;
rmax = fRmax;
dz = fDz;
if (fDz<0) {
mother->GetAxisRange(3,zmin,zmax);
if (zmax<0) return 0;
dz=zmax;
} else {
Error("GetMakeRuntimeShape", "Shape %s does not have negative Z range", GetName());
return 0;
}
TGeoShape *hype = new TGeoHype(GetName(), dz, fRmax, fStOut, fRmin, fStIn);
return hype;
}
//_____________________________________________________________________________
void TGeoHype::InspectShape() const
{
// print shape parameters
printf("*** Shape %s: TGeoHype ***\n", GetName());
printf(" Rin = %11.5f\n", fRmin);
printf(" sin = %11.5f\n", fStIn);
printf(" Rout = %11.5f\n", fRmax);
printf(" sout = %11.5f\n", fStOut);
printf(" dz = %11.5f\n", fDz);
printf(" Bounding box:\n");
TGeoBBox::InspectShape();
}
//_____________________________________________________________________________
TBuffer3D *TGeoHype::MakeBuffer3D() const
{
// Creates a TBuffer3D describing *this* shape.
// Coordinates are in local reference frame.
Int_t n = gGeoManager->GetNsegments();
Bool_t hasRmin = HasInner();
Int_t NbPnts = (hasRmin)?(2*n*n):(n*n+2);
Int_t NbSegs = (hasRmin)?(4*n*n):(n*(2*n+1));
Int_t NbPols = (hasRmin)?(2*n*n):(n*(n+1));
TBuffer3D* buff = new TBuffer3D(3*NbPnts, 3*NbSegs, 6*NbPols);
buff->fType = TBuffer3D::kANY; // should be kHYPE
buff->fNbPnts = NbPnts;
buff->fNbSegs = NbSegs;
buff->fNbPols = NbPols;
SetPoints(buff->fPnts);
SetSegsAndPols(buff);
return buff;
}
//_____________________________________________________________________________
void TGeoHype::Paint(Option_t *option)
{
// Paint this shape according to option
// Allocate the necessary spage in gPad->fBuffer3D to store this shape
Int_t n = gGeoManager->GetNsegments();
Bool_t hasRmin = HasInner();
Int_t NbPnts = (hasRmin)?(2*n*n):(n*n+2);
Int_t NbSegs = (hasRmin)?(4*n*n):(n*(2*n+1));
Int_t NbPols = (hasRmin)?(2*n*n):(n*(n+1));
TBuffer3D *buff = gPad->AllocateBuffer3D(3*NbPnts, 3*NbSegs, 6*NbPols);
buff->fType = TBuffer3D::kANY; // should be kHYPE
TGeoVolume *vol = gGeoManager->GetPaintVolume();
buff->fId = vol;
// Fill gPad->fBuffer3D. Points coordinates are in Master space
buff->fNbPnts = NbPnts;
buff->fNbSegs = NbSegs;
buff->fNbPols = NbPols;
// In case of option "size" it is not necessary to fill the buffer
if (strstr(option,"size")) {
buff->Paint(option);
return;
}
// Fill points
// Case hasRmin:
// irin = 0 , n (per circle) * n (circles) starting with z = -fDz
// icin(j) = irin + j*n (j=0,n-1) = index of first pt. on circle j
// irout = n*n , n (per circle) * n (circles) starting with z = -fDz
// icout(j) = irout + j*n (j=0,n-1) = index of first pt. on circle j
// Case !hasRmin:
// irin = 0, 2 points (lower and upper centers)
// irout = 2
SetPoints(buff->fPnts);
TransformPoints(buff);
// Basic colors: 0, 1, ... 7
buff->fColor = vol->GetLineColor();
SetSegsAndPols(buff);
// Paint gPad->fBuffer3D
buff->Paint(option);
}
//_____________________________________________________________________________
void TGeoHype::SetSegsAndPols(TBuffer3D *buff) const
{
// Fill TBuffer3D structure for segments and polygons.
Int_t c = (((buff->fColor) %8) -1) * 4;
if (c < 0) c = 0;
Int_t i, j, n;
n = gGeoManager->GetNsegments();
Bool_t hasRmin = HasInner();
Int_t irin = 0;
Int_t irout = (hasRmin)?(n*n):2;
// Fill segments
// Case hasRmin:
// Inner circles: [isin = 0], n (per circle) * n ( circles)
// iseg = isin+n*i+j , i = 0, n-1 , j = 0, n-1
// seg(i=1,n; j=1,n) = [irin+n*i+j] and [irin+n*i+(j+1)%n]
// Inner generators: [isgenin = isin+n*n], n (per circle) *(n-1) (slices)
// iseg = isgenin + i*n + j, i=0,n-2, j=0,n-1
// seg(i,j) = [irin+n*i+j] and [irin+n*(i+1)+j]
// Outer circles: [isout = isgenin+n*(n-1)], n (per circle) * n ( circles)
// iseg = isout + i*n + j , iz = 0, n-1 , j = 0, n-1
// seg(i=1,n; j=1,n) = [irout+n*i+j] and [irout+n*i+(j+1)%n]
// Outer generators: [isgenout = isout+n*n], n (per circle) *(n-1) (slices)
// iseg = isgenout + i*n + j, i=0,n-2, j=0,n-1
// seg(i,j) = [irout+n*i+j] and [irout+n*(i+1)+j]
// Lower cap : [islow = isgenout + n*(n-1)], n radial segments
// iseg = islow + j, j=0,n-1
// seg(j) = [irin + j] and [irout+j]
// Upper cap: [ishi = islow + n], nradial segments
// iseg = ishi + j, j=0,n-1
// seg[j] = [irin + n*(n-1) + j] and [irout+n*(n-1) + j]
//
// Case !hasRmin:
// Outer circles: [isout=0], same outer circles (n*n)
// Outer generators: isgenout = isout + n*n
// Lower cap: [islow = isgenout+n*(n-1)], n seg.
// iseg = islow + j, j=0,n-1
// seg[j] = [irin] and [irout+j]
// Upper cap: [ishi = islow +n]
// iseg = ishi + j, j=0,n-1
// seg[j] = [irin+1] and [irout+n*(n-1) + j]
Int_t isin = 0;
Int_t isgenin = (hasRmin)?(isin+n*n):0;
Int_t isout = (hasRmin)?(isgenin+n*(n-1)):0;
Int_t isgenout = isout+n*n;
Int_t islo = isgenout+n*(n-1);
Int_t ishi = islo + n;
Int_t npt = 0;
// Fill inner circle segments (n*n)
if (hasRmin) {
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
npt = 3*(isin+n*i+j);
buff->fSegs[npt] = c;
buff->fSegs[npt+1] = irin+n*i+j;
buff->fSegs[npt+2] = irin+n*i+((j+1)%n);
}
}
// Fill inner generators (n*(n-1))
for (i=0; i<n-1; i++) {
for (j=0; j<n; j++) {
npt = 3*(isgenin+n*i+j);
buff->fSegs[npt] = c;
buff->fSegs[npt+1] = irin+n*i+j;
buff->fSegs[npt+2] = irin+n*(i+1)+j;
}
}
}
// Fill outer circle segments (n*n)
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
npt = 3*(isout + n*i+j);
buff->fSegs[npt] = c;
buff->fSegs[npt+1] = irout+n*i+j;
buff->fSegs[npt+2] = irout+n*i+((j+1)%n);
}
}
// Fill outer generators (n*(n-1))
for (i=0; i<n-1; i++) {
for (j=0; j<n; j++) {
npt = 3*(isgenout+n*i+j);
buff->fSegs[npt] = c;
buff->fSegs[npt+1] = irout+n*i+j;
buff->fSegs[npt+2] = irout+n*(i+1)+j;
}
}
// Fill lower cap (n)
for (j=0; j<n; j++) {
npt = 3*(islo+j);
buff->fSegs[npt] = c;
buff->fSegs[npt+1] = irin;
if (hasRmin) buff->fSegs[npt+1] += j;
buff->fSegs[npt+2] = irout + j;
}
// Fill upper cap (n)
for (j=0; j<n; j++) {
npt = 3*(ishi+j);
buff->fSegs[npt] = c;
buff->fSegs[npt+1] = irin+1;
if (hasRmin) buff->fSegs[npt+1] += n*(n-1)+j-1;
buff->fSegs[npt+2] = irout + n*(n-1)+j;
}
// Fill polygons
// Inner polygons: [ipin = 0] (n-1) slices * n (edges)
// ipoly = ipin + n*i + j; i=0,n-2 j=0,n-1
// poly[i,j] = [isin+n*i+j] [isgenin+i*n+(j+1)%n] [isin+n*(i+1)+j] [isgenin+i*n+j]
// Outer polygons: [ipout = ipin+n*(n-1)] also (n-1)*n
// ipoly = ipout + n*i + j; i=0,n-2 j=0,n-1
// poly[i,j] = [isout+n*i+j] [isgenout+i*n+j] [isout+n*(i+1)+j] [isgenout+i*n+(j+1)%n]
// Lower cap: [iplow = ipout+n*(n-1): n polygons
// ipoly = iplow + j; j=0,n-1
// poly[i=0,j] = [isin+j] [islow+j] [isout+j] [islow+(j+1)%n]
// Upper cap: [ipup = iplow+n] : n polygons
// ipoly = ipup + j; j=0,n-1
// poly[i=n-1, j] = [isin+n*(n-1)+j] [ishi+(j+1)%n] [isout+n*(n-1)+j] [ishi+j]
//
// Case !hasRmin:
// ipin = 0 no inner polygons
// ipout = 0 same outer polygons
// Lower cap: iplow = ipout+n*(n-1): n polygons with 3 segments
// poly[i=0,j] = [isout+j] [islow+(j+1)%n] [islow+j]
// Upper cap: ipup = iplow+n;
// poly[i=n-1,j] = [isout+n*(n-1)+j] [ishi+j] [ishi+(j+1)%n]
Int_t ipin = 0;
Int_t ipout = (hasRmin)?(ipin+n*(n-1)):0;
Int_t iplo = ipout+n*(n-1);
Int_t ipup = iplo+n;
// Inner polygons n*(n-1)
if (hasRmin) {
for (i=0; i<n-1; i++) {
for (j=0; j<n; j++) {
npt = 6*(ipin+n*i+j);
buff->fPols[npt] = c;
buff->fPols[npt+1] = 4;
buff->fPols[npt+2] = isin+n*i+j;
buff->fPols[npt+3] = isgenin+i*n+((j+1)%n);
buff->fPols[npt+4] = isin+n*(i+1)+j;
buff->fPols[npt+5] = isgenin+i*n+j;
}
}
}
// Outer polygons n*(n-1)
for (i=0; i<n-1; i++) {
for (j=0; j<n; j++) {
npt = 6*(ipout+n*i+j);
buff->fPols[npt] = c;
buff->fPols[npt+1] = 4;
buff->fPols[npt+2] = isout+n*i+j;
buff->fPols[npt+3] = isgenout+i*n+j;
buff->fPols[npt+4] = isout+n*(i+1)+j;
buff->fPols[npt+5] = isgenout+i*n+((j+1)%n);
}
}
// End caps
if (hasRmin) {
for (j=0; j<n; j++) {
npt = 6*(iplo+j);
buff->fPols[npt] = c+1;
buff->fPols[npt+1] = 4;
buff->fPols[npt+2] = isin+j;
buff->fPols[npt+3] = islo+j;
buff->fPols[npt+4] = isout+j;
buff->fPols[npt+5] = islo+((j+1)%n);
}
for (j=0; j<n; j++) {
npt = 6*(ipup+j);
buff->fPols[npt] = c+2;
buff->fPols[npt+1] = 4;
buff->fPols[npt+2] = isin+n*(n-1)+j;
buff->fPols[npt+3] = ishi+((j+1)%n);
buff->fPols[npt+4] = isout+n*(n-1)+j;
buff->fPols[npt+5] = ishi+j;
}
} else {
for (j=0; j<n; j++) {
npt = 6*iplo+5*j;
buff->fPols[npt] = c+1;
buff->fPols[npt+1] = 3;
buff->fPols[npt+2] = isout+j;
buff->fPols[npt+3] = islo+((j+1)%n);
buff->fPols[npt+4] = islo+j;
}
for (j=0; j<n; j++) {
npt = 6*iplo+5*(n+j);
buff->fPols[npt] = c+2;
buff->fPols[npt+1] = 3;
buff->fPols[npt+2] = isout+n*(n-1)+j;
buff->fPols[npt+3] = ishi+j;
buff->fPols[npt+4] = ishi+((j+1)%n);
}
}
}
//_____________________________________________________________________________
Double_t TGeoHype::RadiusHypeSq(Double_t z, Bool_t inner) const
{
// Compute r^2 = x^2 + y^2 at a given z coordinate, for either inner or outer hyperbolas.
Double_t r0, tsq;
if (inner) {
r0 = fRmin;
tsq = fTinsq;
} else {
r0 = fRmax;
tsq = fToutsq;
}
return (r0*r0+tsq*z*z);
}
//_____________________________________________________________________________
Double_t TGeoHype::ZHypeSq(Double_t r, Bool_t inner) const
{
// Compute z^2 at a given r^2, for either inner or outer hyperbolas.
Double_t r0, tsq;
if (inner) {
r0 = fRmin;
tsq = fTinsq;
} else {
r0 = fRmax;
tsq = fToutsq;
}
if (tsq==0) return TGeoShape::Big();
return ((r*r-r0*r0)/tsq);
}
//_____________________________________________________________________________
Double_t TGeoHype::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t safe, safrmin, safrmax;
if (in) {
safe = fDz-TMath::Abs(point[2]);
safrmin = SafetyToHype(point, kTRUE, in);
if (safrmin < safe) safe = safrmin;
safrmax = SafetyToHype(point, kFALSE,in);
if (safrmax < safe) safe = safrmax;
} else {
safe = -fDz+TMath::Abs(point[2]);
safrmin = SafetyToHype(point, kTRUE, in);
if (safrmin > safe) safe = safrmin;
safrmax = SafetyToHype(point, kFALSE,in);
if (safrmax > safe) safe = safrmax;
}
return safe;
}
//_____________________________________________________________________________
Double_t TGeoHype::SafetyToHype(Double_t *point, Bool_t inner, Bool_t in) const
{
// Compute an underestimate of the closest distance from a point to inner or
// outer infinite hyperbolas.
Double_t r, rsq, rhsq, rh, dr, tsq, saf;
if (inner && !HasInner()) return (in)?TGeoShape::Big():-TGeoShape::Big();
rsq = point[0]*point[0]+point[1]*point[1];
r = TMath::Sqrt(rsq);
rhsq = RadiusHypeSq(point[2], inner);
rh = TMath::Sqrt(rhsq);
dr = r - rh;
if (inner) {
if (!in && dr>0) return -TGeoShape::Big();
if (fStIn == 0) return TMath::Abs(dr);
if (fRmin==0) return TMath::Abs(dr/TMath::Sqrt(1.+ fTinsq));
tsq = fTinsq;
} else {
if (!in && dr<0) return -TGeoShape::Big();
if (fStOut == 0) return TMath::Abs(dr);
tsq = fToutsq;
}
if (dr==0) return 0.;
// 1. dr<0 => approximate safety with distance to tangent to hyperbola in z = |point[2]|
Double_t m;
if (dr<0) {
m = rh/(tsq*TMath::Abs(point[2]));
saf = -m*dr/TMath::Sqrt(1.+m*m);
return saf;
}
// 2. dr>0 => approximate safety with distance from point to segment P1(r(z0),z0) and P2(r0, z(r0))
m = (TMath::Sqrt(ZHypeSq(r,inner)) - TMath::Abs(point[2]))/dr;
saf = m*dr/TMath::Sqrt(1.+m*m);
return saf;
}
//_____________________________________________________________________________
void TGeoHype::SetHypeDimensions(Double_t rin, Double_t stin, Double_t rout, Double_t stout, Double_t dz)
{
fRmin = rin;
fRmax = rout;
fDz = dz;
fStIn = stin;
fStOut = stout;
fTin = TMath::Tan(fStIn*TMath::DegToRad());
fTinsq = fTin*fTin;
fTout = TMath::Tan(fStOut*TMath::DegToRad());
fToutsq = fTout*fTout;
if ((fRmin==0) && (fStIn==0)) SetShapeBit(kGeoRSeg, kTRUE);
else SetShapeBit(kGeoRSeg, kFALSE);
}
//_____________________________________________________________________________
void TGeoHype::SetDimensions(Double_t *param)
{
// param[0] = dz
// param[1] = rin
// param[2] = stin
// param[3] = rout
// param[4] = stout
Double_t dz = param[0];
Double_t rin = param[1];
Double_t stin = param[2];
Double_t rout = param[3];
Double_t stout = param[4];
SetHypeDimensions(rin, stin, rout, stout, dz);
}
//_____________________________________________________________________________
void TGeoHype::SetPoints(Double_t *buff) const
{
// create tube mesh points
Double_t z,dz,r;
Int_t i,j, n;
if (!buff) return;
n = gGeoManager->GetNsegments();
Double_t dphi = 360./n;
Double_t phi = 0;
dz = 2.*fDz/(n-1);
Int_t indx = 0;
if (HasInner()) {
// Inner surface points
for (i=0; i<n; i++) {
z = -fDz+i*dz;
r = TMath::Sqrt(RadiusHypeSq(z, kTRUE));
for (j=0; j<n; j++) {
phi = j*dphi*TMath::DegToRad();
buff[indx++] = r * TMath::Cos(phi);
buff[indx++] = r * TMath::Sin(phi);
buff[indx++] = z;
}
}
} else {
buff[indx++] = 0.;
buff[indx++] = 0.;
buff[indx++] = -fDz;
buff[indx++] = 0.;
buff[indx++] = 0.;
buff[indx++] = fDz;
}
// Outer surface points
for (i=0; i<n; i++) {
z = -fDz + i*dz;
r = TMath::Sqrt(RadiusHypeSq(z, kFALSE));
for (j=0; j<n; j++) {
phi = j*dphi*TMath::DegToRad();
buff[indx++] = r * TMath::Cos(phi);
buff[indx++] = r * TMath::Sin(phi);
buff[indx++] = z;
}
}
}
//_____________________________________________________________________________
void TGeoHype::SetPoints(Float_t *buff) const
{
// create tube mesh points
Double_t z,dz,r;
Int_t i,j, n;
if (!buff) return;
n = gGeoManager->GetNsegments();
Double_t dphi = 360./n;
Double_t phi = 0;
dz = 2.*fDz/(n-1);
Int_t indx = 0;
if (HasInner()) {
// Inner surface points
for (i=0; i<n; i++) {
z = -fDz+i*dz;
r = TMath::Sqrt(RadiusHypeSq(z, kTRUE));
for (j=0; j<n; j++) {
phi = j*dphi*TMath::DegToRad();
buff[indx++] = r * TMath::Cos(phi);
buff[indx++] = r * TMath::Sin(phi);
buff[indx++] = z;
}
}
} else {
buff[indx++] = 0.;
buff[indx++] = 0.;
buff[indx++] = -fDz;
buff[indx++] = 0.;
buff[indx++] = 0.;
buff[indx++] = fDz;
}
// Outer surface points
for (i=0; i<n; i++) {
z = -fDz + i*dz;
r = TMath::Sqrt(RadiusHypeSq(z, kFALSE));
for (j=0; j<n; j++) {
phi = j*dphi*TMath::DegToRad();
buff[indx++] = r * TMath::Cos(phi);
buff[indx++] = r * TMath::Sin(phi);
buff[indx++] = z;
}
}
}
//_____________________________________________________________________________
Int_t TGeoHype::GetNmeshVertices() const
{
// Return number of vertices of the mesh representation
Int_t n = gGeoManager->GetNsegments();
Int_t numPoints = (HasRmin())?(2*n*n):(n*n+2);
return numPoints;
}
//_____________________________________________________________________________
void TGeoHype::Sizeof3D() const
{
///// fill size of this 3-D object
/// TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
/// if (!painter) return;
/// Int_t n = gGeoManager->GetNsegments();
/// Int_t numPoints = n*4;
/// Int_t numSegs = n*8;
/// Int_t numPolys = n*4;
/// painter->AddSize3D(numPoints, numSegs, numPolys);
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.