// @(#)root/matrix:$Name: $:$Id: TMatrixDEigen.cxx,v 1.7 2004/04/08 17:58:32 rdm Exp $
// Authors: Fons Rademakers, Eddy Offermann Dec 2003
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//////////////////////////////////////////////////////////////////////////
// //
// TMatrixDEigen //
// //
// Eigenvalues and eigenvectors of a real matrix. //
// //
// If A is not symmetric, then the eigenvalue matrix D is block //
// diagonal with the real eigenvalues in 1-by-1 blocks and any complex //
// eigenvalues, a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if //
// the complex eigenvalues look like //
// //
// u + iv . . . . . //
// . u - iv . . . . //
// . . a + ib . . . //
// . . . a - ib . . //
// . . . . x . //
// . . . . . y //
// //
// then D looks like //
// //
// u v . . . . //
// -v u . . . . //
// . . a b . . //
// . . -b a . . //
// . . . . x . //
// . . . . . y //
// //
// This keeps V a real matrix in both symmetric and non-symmetric //
// cases, and A*V = V*D. //
// //
//////////////////////////////////////////////////////////////////////////
#include "TMatrixDEigen.h"
ClassImp(TMatrixDEigen)
//______________________________________________________________________________
TMatrixDEigen::TMatrixDEigen(const TMatrixD &a)
{
Assert(a.IsValid());
const Int_t nRows = a.GetNrows();
const Int_t nCols = a.GetNcols();
if (nRows != nCols)
{
Error("TMatrixDEigen(TMatrixD &)","matrix should be square");
return;
}
fEigenVectors.ResizeTo(nRows,nRows);
fEigenValuesRe.ResizeTo(nRows);
fEigenValuesIm.ResizeTo(nRows);
TVectorD ortho;
Double_t work[kWorkMax];
if (nRows > kWorkMax) ortho.ResizeTo(nRows);
else ortho.Use(nRows,work);
TMatrixD H = a;
// Reduce to Hessenberg form.
MakeHessenBerg(fEigenVectors,ortho,H);
// Reduce Hessenberg to real Schur form.
MakeSchurr(fEigenVectors,fEigenValuesRe,fEigenValuesIm,H);
}
//______________________________________________________________________________
TMatrixDEigen::TMatrixDEigen(const TMatrixDEigen &another)
{
*this = another;
}
//______________________________________________________________________________
void TMatrixDEigen::MakeHessenBerg(TMatrixD &v,TVectorD &ortho,TMatrixD &H)
{
// Nonsymmetric reduction to Hessenberg form.
// This is derived from the Algol procedures orthes and ortran, by Martin and Wilkinson,
// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutines in EISPACK.
Double_t *pV = v.GetMatrixArray();
Double_t *pO = ortho.GetMatrixArray();
Double_t *pH = H.GetMatrixArray();
const Int_t n = v.GetNrows();
const Int_t low = 0;
const Int_t high = n-1;
Int_t i,j,m;
for (m = low+1; m <= high-1; m++) {
const Int_t off_m = m*n;
// Scale column.
Double_t scale = 0.0;
for (i = m; i <= high; i++) {
const Int_t off_i = i*n;
scale = scale + TMath::Abs(pH[off_i+m-1]);
}
if (scale != 0.0) {
// Compute Householder transformation.
Double_t h = 0.0;
for (i = high; i >= m; i--) {
const Int_t off_i = i*n;
pO[i] = pH[off_i+m-1]/scale;
h += pO[i]*pO[i];
}
Double_t g = TMath::Sqrt(h);
if (pO[m] > 0)
g = -g;
h = h-pO[m]*g;
pO[m] = pO[m]-g;
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
for (j = m; j < n; j++) {
Double_t f = 0.0;
for (i = high; i >= m; i--) {
const Int_t off_i = i*n;
f += pO[i]*pH[off_i+j];
}
f = f/h;
for (i = m; i <= high; i++) {
const Int_t off_i = i*n;
pH[off_i+j] -= f*pO[i];
}
}
for (i = 0; i <= high; i++) {
const Int_t off_i = i*n;
Double_t f = 0.0;
for (j = high; j >= m; j--) {
const Int_t off_i = i*n;
f += pO[j]*pH[off_i+j];
}
f = f/h;
for (j = m; j <= high; j++)
pH[off_i+j] -= f*pO[j];
}
pO[m] = scale*pO[m];
pH[off_m+m-1] = scale*g;
}
}
// Accumulate transformations (Algol's ortran).
for (i = 0; i < n; i++) {
const Int_t off_i = i*n;
for (j = 0; j < n; j++)
pV[off_i+j] = (i == j ? 1.0 : 0.0);
}
for (m = high-1; m >= low+1; m--) {
const Int_t off_m = m*n;
if (pH[off_m+m-1] != 0.0) {
for (i = m+1; i <= high; i++) {
const Int_t off_i = i*n;
pO[i] = pH[off_i+m-1];
}
for (j = m; j <= high; j++) {
Double_t g = 0.0;
for (i = m; i <= high; i++) {
const Int_t off_i = i*n;
g += pO[i]*pV[off_i+j];
}
// Double division avoids possible underflow
g = (g/pO[m])/pH[off_m+m-1];
for (i = m; i <= high; i++) {
const Int_t off_i = i*n;
pV[off_i+j] += g*pO[i];
}
}
}
}
}
//______________________________________________________________________________
static Double_t cdivr, cdivi;
static void cdiv(Double_t xr,Double_t xi,Double_t yr,Double_t yi) {
// Complex scalar division.
Double_t r,d;
if (TMath::Abs(yr) > TMath::Abs(yi)) {
r = yi/yr;
d = yr+r*yi;
cdivr = (xr+r*xi)/d;
cdivi = (xi-r*xr)/d;
} else {
r = yr/yi;
d = yi+r*yr;
cdivr = (r*xr+xi)/d;
cdivi = (r*xi-xr)/d;
}
}
//______________________________________________________________________________
void TMatrixDEigen::MakeSchurr(TMatrixD &v,TVectorD &d,TVectorD &e,TMatrixD &H)
{
// Nonsymmetric reduction from Hessenberg to real Schur form.
// This is derived from the Algol procedure hqr2, by Martin and Wilkinson,
// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
// Initialize
const Int_t nn = v.GetNrows();
Int_t n = nn-1;
const Int_t low = 0;
const Int_t high = nn-1;
const Double_t eps = TMath::Power(2.0,-52.0);
Double_t exshift = 0.0;
Double_t p=0,q=0,r=0,s=0,z=0,t,w,x,y;
Double_t *pV = v.GetMatrixArray();
Double_t *pD = d.GetMatrixArray();
Double_t *pE = e.GetMatrixArray();
Double_t *pH = H.GetMatrixArray();
// Store roots isolated by balanc and compute matrix norm
Double_t norm = 0.0;
Int_t i,j,k;
for (i = 0; i < nn; i++) {
const Int_t off_i = i*nn;
if ((i < low) || (i > high)) {
pD[i] = pH[off_i+i];
pE[i] = 0.0;
}
for (j = TMath::Max(i-1,0); j < nn; j++)
norm += TMath::Abs(pH[off_i+j]);
}
// Outer loop over eigenvalue index
Int_t iter = 0;
while (n >= low) {
const Int_t off_n = n*nn;
const Int_t off_n1 = (n-1)*nn;
// Look for single small sub-diagonal element
Int_t l = n;
while (l > low) {
const Int_t off_l1 = (l-1)*nn;
const Int_t off_l = l*nn;
s = TMath::Abs(pH[off_l1+l-1])+TMath::Abs(pH[off_l+l]);
if (s == 0.0)
s = norm;
if (TMath::Abs(pH[off_l+l-1]) < eps*s)
break;
l--;
}
// Check for convergence
// One root found
if (l == n) {
pH[off_n+n] = pH[off_n+n]+exshift;
pD[n] = pH[off_n+n];
pE[n] = 0.0;
n--;
iter = 0;
// Two roots found
} else if (l == n-1) {
w = pH[off_n+n-1]*pH[off_n1+n];
p = (pH[off_n1+n-1]-pH[off_n+n])/2.0;
q = p*p+w;
z = TMath::Sqrt(TMath::Abs(q));
pH[off_n+n] = pH[off_n+n]+exshift;
pH[off_n1+n-1] = pH[off_n1+n-1]+exshift;
x = pH[off_n+n];
// Double_t pair
if (q >= 0) {
if (p >= 0)
z = p+z;
else
z = p-z;
pD[n-1] = x+z;
pD[n] = pD[n-1];
if (z != 0.0)
pD[n] = x-w/z;
pE[n-1] = 0.0;
pE[n] = 0.0;
x = pH[off_n+n-1];
s = TMath::Abs(x)+TMath::Abs(z);
p = x/s;
q = z/s;
r = TMath::Sqrt((p*p)+(q*q));
p = p/r;
q = q/r;
// Row modification
for (j = n-1; j < nn; j++) {
z = pH[off_n1+j];
pH[off_n1+j] = q*z+p*pH[off_n+j];
pH[off_n+j] = q*pH[off_n+j]-p*z;
}
// Column modification
for (i = 0; i <= n; i++) {
const Int_t off_i = i*nn;
z = pH[off_i+n-1];
pH[off_i+n-1] = q*z+p*pH[off_i+n];
pH[off_i+n] = q*pH[off_i+n]-p*z;
}
// Accumulate transformations
for (i = low; i <= high; i++) {
const Int_t off_i = i*nn;
z = pV[off_i+n-1];
pV[off_i+n-1] = q*z+p*pV[off_i+n];
pV[off_i+n] = q*pV[off_i+n]-p*z;
}
// Complex pair
} else {
pD[n-1] = x+p;
pD[n] = x+p;
pE[n-1] = z;
pE[n] = -z;
}
n = n-2;
iter = 0;
// No convergence yet
} else {
// Form shift
x = pH[off_n+n];
y = 0.0;
w = 0.0;
if (l < n) {
y = pH[off_n1+n-1];
w = pH[off_n+n-1]*pH[off_n1+n];
}
// Wilkinson's original ad hoc shift
if (iter == 10) {
exshift += x;
for (i = low; i <= n; i++) {
const Int_t off_i = i*nn;
pH[off_i+i] -= x;
}
s = TMath::Abs(pH[off_n+n-1])+TMath::Abs(pH[off_n1+n-2]);
x = y = 0.75*s;
w = -0.4375*s*s;
}
// MATLAB's new ad hoc shift
if (iter == 30) {
s = (y-x)/2.0;
s = s*s+w;
if (s > 0) {
s = TMath::Sqrt(s);
if (y<x)
s = -s;
s = x-w/((y-x)/2.0+s);
for (i = low; i <= n; i++) {
const Int_t off_i = i*nn;
pH[off_i+i] -= s;
}
exshift += s;
x = y = w = 0.964;
}
}
iter++; // (Could check iteration count here.)
// Look for two consecutive small sub-diagonal elements
Int_t m = n-2;
while (m >= l) {
const Int_t off_m = m*nn;
const Int_t off_m_1 = (m-1)*nn;
const Int_t off_m1 = (m+1)*nn;
const Int_t off_m2 = (m+2)*nn;
z = pH[off_m+m];
r = x-z;
s = y-z;
p = (r*s-w)/pH[off_m1+m]+pH[off_m+m+1];
q = pH[off_m1+m+1]-z-r-s;
r = pH[off_m2+m+1];
s = TMath::Abs(p)+TMath::Abs(q)+TMath::Abs(r);
p = p /s;
q = q/s;
r = r/s;
if (m == l)
break;
if (TMath::Abs(pH[off_m+m-1])*(TMath::Abs(q)+TMath::Abs(r)) <
eps*(TMath::Abs(p)*(TMath::Abs(pH[off_m_1+m-1])+TMath::Abs(z)+
TMath::Abs(pH[off_m1+m+1]))))
break;
m--;
}
for (i = m+2; i <= n; i++) {
const Int_t off_i = i*nn;
pH[off_i+i-2] = 0.0;
if (i > m+2)
pH[off_i+i-3] = 0.0;
}
// Double QR step involving rows l:n and columns m:n
for (k = m; k <= n-1; k++) {
const Int_t off_k = k*nn;
const Int_t off_k1 = (k+1)*nn;
const Int_t off_k2 = (k+2)*nn;
const Int_t notlast = (k != n-1);
if (k != m) {
p = pH[off_k+k-1];
q = pH[off_k1+k-1];
r = (notlast ? pH[off_k2+k-1] : 0.0);
x = TMath::Abs(p)+TMath::Abs(q)+TMath::Abs(r);
if (x != 0.0) {
p = p/x;
q = q/x;
r = r/x;
}
}
if (x == 0.0)
break;
s = TMath::Sqrt(p*p+q*q+r*r);
if (p < 0) {
s = -s;
}
if (s != 0) {
if (k != m)
pH[off_k+k-1] = -s*x;
else if (l != m)
pH[off_k+k-1] = -pH[off_k+k-1];
p = p+s;
x = p/s;
y = q/s;
z = r/s;
q = q/p;
r = r/p;
// Row modification
for (j = k; j < nn; j++) {
p = pH[off_k+j]+q*pH[off_k1+j];
if (notlast) {
p = p+r*pH[off_k2+j];
pH[off_k2+j] = pH[off_k2+j]-p*z;
}
pH[off_k+j] = pH[off_k+j]-p*x;
pH[off_k1+j] = pH[off_k1+j]-p*y;
}
// Column modification
for (i = 0; i <= TMath::Min(n,k+3); i++) {
const Int_t off_i = i*nn;
p = x*pH[off_i+k]+y*pH[off_i+k+1];
if (notlast) {
p = p+z*pH[off_i+k+2];
pH[off_i+k+2] = pH[off_i+k+2]-p*r;
}
pH[off_i+k] = pH[off_i+k]-p;
pH[off_i+k+1] = pH[off_i+k+1]-p*q;
}
// Accumulate transformations
for (i = low; i <= high; i++) {
const Int_t off_i = i*nn;
p = x*pV[off_i+k]+y*pV[off_i+k+1];
if (notlast) {
p = p+z*pV[off_i+k+2];
pV[off_i+k+2] = pV[off_i+k+2]-p*r;
}
pV[off_i+k] = pV[off_i+k]-p;
pV[off_i+k+1] = pV[off_i+k+1]-p*q;
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n >= low)
// Backsubstitute to find vectors of upper triangular form
if (norm == 0.0)
return;
for (n = nn-1; n >= 0; n--) {
p = pD[n];
q = pE[n];
// Double_t vector
const Int_t off_n = n*nn;
if (q == 0) {
Int_t l = n;
pH[off_n+n] = 1.0;
for (i = n-1; i >= 0; i--) {
const Int_t off_i = i*nn;
const Int_t off_i1 = (i+1)*nn;
w = pH[off_i+i]-p;
r = 0.0;
for (j = l; j <= n; j++) {
const Int_t off_j = j*nn;
r = r+pH[off_i+j]*pH[off_j+n];
}
if (pE[i] < 0.0) {
z = w;
s = r;
} else {
l = i;
if (pE[i] == 0.0) {
if (w != 0.0)
pH[off_i+n] = -r/w;
else
pH[off_i+n] = -r/(eps*norm);
// Solve real equations
} else {
x = pH[off_i+i+1];
y = pH[off_i1+i];
q = (pD[i]-p)*(pD[i]-p)+pE[i]*pE[i];
t = (x*s-z*r)/q;
pH[off_i+n] = t;
if (TMath::Abs(x) > TMath::Abs(z))
pH[i+1+n] = (-r-w*t)/x;
else
pH[i+1+n] = (-s-y*t)/z;
}
// Overflow control
t = TMath::Abs(pH[off_i+n]);
if ((eps*t)*t > 1) {
for (j = i; j <= n; j++) {
const Int_t off_j = j*nn;
pH[off_j+n] = pH[off_j+n]/t;
}
}
}
}
// Complex vector
} else if (q < 0) {
Int_t l = n-1;
const Int_t off_n1 = (n-1)*nn;
// Last vector component imaginary so matrix is triangular
if (TMath::Abs(pH[off_n+n-1]) > TMath::Abs(pH[off_n1+n])) {
pH[off_n1+n-1] = q/pH[off_n+n-1];
pH[off_n1+n] = -(pH[off_n+n]-p)/pH[off_n+n-1];
} else {
cdiv(0.0,-pH[off_n1+n],pH[off_n1+n-1]-p,q);
pH[off_n1+n-1] = cdivr;
pH[off_n1+n] = cdivi;
}
pH[off_n+n-1] = 0.0;
pH[off_n+n] = 1.0;
for (i = n-2; i >= 0; i--) {
const Int_t off_i = i*nn;
const Int_t off_i1 = (i+1)*nn;
Double_t ra = 0.0;
Double_t sa = 0.0;
for (j = l; j <= n; j++) {
const Int_t off_j = j*nn;
ra += pH[off_i+j]*pH[off_j+n-1];
sa += pH[off_i+j]*pH[off_j+n];
}
w = pH[off_i+i]-p;
if (pE[i] < 0.0) {
z = w;
r = ra;
s = sa;
} else {
l = i;
if (pE[i] == 0) {
cdiv(-ra,-sa,w,q);
pH[off_i+n-1] = cdivr;
pH[off_i+n] = cdivi;
} else {
// Solve complex equations
x = pH[off_i+i+1];
y = pH[off_i1+i];
Double_t vr = (pD[i]-p)*(pD[i]-p)+pE[i]*pE[i]-q*q;
Double_t vi = (pD[i]-p)*2.0*q;
if ((vr == 0.0) && (vi == 0.0)) {
vr = eps*norm*(TMath::Abs(w)+TMath::Abs(q)+
TMath::Abs(x)+TMath::Abs(y)+TMath::Abs(z));
}
cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
pH[off_i+n-1] = cdivr;
pH[off_i+n] = cdivi;
if (TMath::Abs(x) > (TMath::Abs(z)+TMath::Abs(q))) {
pH[off_i1+n-1] = (-ra-w*pH[off_i+n-1]+q*pH[off_i+n])/x;
pH[off_i1+n] = (-sa-w*pH[off_i+n]-q*pH[off_i+n-1])/x;
} else {
cdiv(-r-y*pH[off_i+n-1],-s-y*pH[off_i+n],z,q);
pH[off_i1+n-1] = cdivr;
pH[off_i1+n] = cdivi;
}
}
// Overflow control
t = TMath::Max(TMath::Abs(pH[off_i+n-1]),TMath::Abs(pH[off_i+n]));
if ((eps*t)*t > 1) {
for (j = i; j <= n; j++) {
const Int_t off_j = j*nn;
pH[off_j+n-1] = pH[off_j+n-1]/t;
pH[off_j+n] = pH[off_j+n]/t;
}
}
}
}
}
}
// Vectors of isolated roots
for (i = 0; i < nn; i++) {
if (i < low || i > high) {
const Int_t off_i = i*nn;
for (Int_t j = i; j < nn; j++)
pV[off_i+j] = pH[off_i+j];
}
}
// Back transformation to get eigenvectors of original matrix
for (j = nn-1; j >= low; j--) {
for (i = low; i <= high; i++) {
const Int_t off_i = i*nn;
z = 0.0;
for (k = low; k <= TMath::Min(j,high); k++) {
const Int_t off_k = k*nn;
z = z+pV[off_i+k]*pH[off_k+j];
}
pV[off_i+j] = z;
}
}
}
//______________________________________________________________________________
TMatrixDEigen &TMatrixDEigen::operator=(const TMatrixDEigen &source)
{
if (this != &source) {
fEigenVectors.ResizeTo(source.fEigenVectors);
fEigenValuesRe.ResizeTo(source.fEigenValuesRe);
fEigenValuesIm.ResizeTo(source.fEigenValuesIm);
}
return *this;
}
//______________________________________________________________________________
const TMatrixD TMatrixDEigen::GetEigenValues() const
{
// Computes the block diagonal eigenvalue matrix.
// If the original matrix A is not symmetric, then the eigenvalue
// matrix D is block diagonal with the real eigenvalues in 1-by-1
// blocks and any complex eigenvalues,
// a + i*b, in 2-by-2 blocks, [a, b; -b, a].
// That is, if the complex eigenvalues look like
//
// u + iv . . . . .
// . u - iv . . . .
// . . a + ib . . .
// . . . a - ib . .
// . . . . x .
// . . . . . y
//
// then D looks like
//
// u v . . . .
// -v u . . . .
// . . a b . .
// . . -b a . .
// . . . . x .
// . . . . . y
//
// This keeps V a real matrix in both symmetric and non-symmetric
// cases, and A*V = V*D.
//
const Int_t n = fEigenVectors.GetNrows();
TMatrixD D(n,n);
Double_t *pD = D.GetMatrixArray();
const Double_t * const pd = fEigenValuesRe.GetMatrixArray();
const Double_t * const pe = fEigenValuesIm.GetMatrixArray();
for (Int_t i = 0; i < n; i++) {
const Int_t off_i = i*n;
for (Int_t j = 0; j < n; j++)
pD[off_i+j] = 0.0;
pD[off_i+i] = pd[i];
if (pe[i] > 0) {
pD[off_i+i+1] = pe[i];
} else if (pe[i] < 0) {
pD[off_i+i-1] = pe[i];
}
}
return D;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.