// @(#)root/geom:$Name: $:$Id: TGeoEltu.cxx,v 1.18 2004/06/25 11:59:55 brun Exp $
// Author: Mihaela Gheata 05/06/02
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//_____________________________________________________________________________
// TGeoEltu - elliptical tube class. It takes 3 parameters :
// semi-axis of the ellipse along x, semi-asix of the ellipse along y
// and half-length dz.
//
//_____________________________________________________________________________
//
/*
*/
//
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TGeoEltu.h"
ClassImp(TGeoEltu)
//_____________________________________________________________________________
TGeoEltu::TGeoEltu()
{
// Dummy constructor
SetShapeBit(TGeoShape::kGeoEltu);
}
//_____________________________________________________________________________
TGeoEltu::TGeoEltu(Double_t a, Double_t b, Double_t dz)
:TGeoTube(a, b, dz)
{
// Default constructor specifying X and Y semiaxis length
SetShapeBit(TGeoShape::kGeoEltu);
SetEltuDimensions(a, b, dz);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoEltu::TGeoEltu(const char *name, Double_t a, Double_t b, Double_t dz)
:TGeoTube(name, a, b, dz)
{
// Default constructor specifying X and Y semiaxis length
SetShapeBit(TGeoShape::kGeoEltu);
SetEltuDimensions(a, b, dz);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoEltu::TGeoEltu(Double_t *param)
{
// Default constructor specifying minimum and maximum radius
// param[0] = A
// param[1] = B
// param[2] = dz
SetShapeBit(TGeoShape::kGeoEltu);
SetDimensions(param);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoEltu::~TGeoEltu()
{
// destructor
}
//_____________________________________________________________________________
void TGeoEltu::ComputeBBox()
{
// compute bounding box of the tube
fDX = fRmin;
fDY = fRmax;
fDZ = fDz;
}
//_____________________________________________________________________________
void TGeoEltu::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT.
Double_t a = fRmin;
Double_t b = fRmax;
Double_t eps = TMath::Sqrt(point[0]*point[0]/(a*a)+point[1]*point[1]/(b*b))-1.;
if (eps<1E-4 && TMath::Abs(fDz-TMath::Abs(point[2]))<1E-5) {
norm[0] = norm[1] = 0;
norm[2] = TMath::Sign(1.,dir[2]);
return;
}
norm[2] = 0.;
Double_t r = TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t st = point[1]/r;
Double_t ct = point[0]/r;
Double_t rr = TMath::Sqrt(b*b*ct*ct+a*a*st*st);
norm[0] = b*ct/rr;
norm[1] = a*st/rr;
if (norm[0]*dir[0]+norm[1]*dir[1]<0) {
norm[0] = -norm[0];
norm[1] = -norm[1];
}
}
//_____________________________________________________________________________
Bool_t TGeoEltu::Contains(Double_t *point) const
{
// test if point is inside the elliptical tube
if (TMath::Abs(point[2]) > fDz) return kFALSE;
Double_t r2 = (point[0]*point[0])/(fRmin*fRmin)+(point[1]*point[1])/(fRmax*fRmax);
if (r2>1.) return kFALSE;
return kTRUE;
}
//_____________________________________________________________________________
Int_t TGeoEltu::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute closest distance from point px,py to each vertex
Int_t n = gGeoManager->GetNsegments();
const Int_t numPoints=4*n;
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//_____________________________________________________________________________
Double_t TGeoEltu::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the tube
Double_t a2=fRmin*fRmin;
Double_t b2=fRmax*fRmax;
Double_t safz1=fDz-point[2];
Double_t safz2=fDz+point[2];
if (iact<3 && safe) {
Double_t x0=TMath::Abs(point[0]);
Double_t y0=TMath::Abs(point[1]);
Double_t x1=x0;
Double_t y1=TMath::Sqrt((fRmin-x0)*(fRmin+x0))*fRmax/fRmin;
Double_t y2=y0;
Double_t x2=TMath::Sqrt((fRmax-y0)*(fRmax+y0))*fRmin/fRmax;
Double_t d1=(x1-x0)*(x1-x0)+(y1-y0)*(y1-y0);
Double_t d2=(x2-x0)*(x2-x0)+(y2-y0)*(y2-y0);
Double_t x3,y3;
Double_t safr=TGeoShape::Big();
Double_t safz = TMath::Min(safz1,safz2);
for (Int_t i=0; i<8; i++) {
if (fRmax<fRmin) {
x3=0.5*(x1+x2);
y3=TMath::Sqrt((fRmin-x3)*(fRmin+x3))*fRmax/fRmin;;
} else {
y3=0.5*(y1+y2);
x3=TMath::Sqrt((fRmax-y3)*(fRmax+y3))*fRmin/fRmax;
}
if (d1<d2) {
x2=x3;
y2=y3;
d2=(x2-x0)*(x2-x0)+(y2-y0)*(y2-y0);
} else {
x1=x3;
y1=y3;
d1=(x1-x0)*(x1-x0)+(y1-y0)*(y1-y0);
}
}
safr=TMath::Sqrt(d1)-1.0E-3;
*safe = TMath::Min(safz, safr);
if (iact==0) return TGeoShape::Big();
if ((iact==1) && (*safe>step)) return TGeoShape::Big();
}
// compute distance to surface
// Do Z
Double_t snxt = TGeoShape::Big();
if (dir[2]>0) {
snxt=safz1/dir[2];
} else {
if (dir[2]<0) snxt=-safz2/dir[2];
}
// do eliptical surface
Double_t sz = snxt;
Double_t xz=point[0]+dir[0]*sz;
Double_t yz=point[1]+dir[1]*sz;
if ((xz*xz/a2+yz*yz/b2)<=1) return snxt;
Double_t u=dir[0]*dir[0]*b2+dir[1]*dir[1]*a2;
Double_t v=point[0]*dir[0]*b2+point[1]*dir[1]*a2;
Double_t w=point[0]*point[0]*b2+point[1]*point[1]*a2-a2*b2;
Double_t d=v*v-u*w;
if (d<0) return snxt;
if (u==0) return snxt;
Double_t sd=TMath::Sqrt(d);
Double_t tau1=(-v+sd)/u;
Double_t tau2=(-v+sd)/u;
if (tau1<0) {
if (tau2<0) return snxt;
} else {
snxt=tau1;
if ((tau2>0) && (tau2<tau1)) return tau2;
}
return snxt;
}
//_____________________________________________________________________________
Double_t TGeoEltu::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from outside point to surface of the tube and safe distance
Double_t snxt=TGeoShape::Big();
Double_t safz=TMath::Abs(point[2])-fDz;
Double_t a2=fRmin*fRmin;
Double_t b2=fRmax*fRmax;
if (iact<3 && safe) {
Double_t x0=TMath::Abs(point[0]);
Double_t y0=TMath::Abs(point[1]);
*safe=0.;
if ((x0*x0/a2+y0*y0/b2)>=1) {
Double_t phi1=0;
Double_t phi2=0.5*TMath::Pi();
Double_t phi3;
Double_t x3,y3,d;
for (Int_t i=0; i<10; i++) {
phi3=(phi1+phi2)*0.5;
x3=fRmin*TMath::Cos(phi3);
y3=fRmax*TMath::Sin(phi3);
d=y3*a2*(x0-x3)-x3*b2*(y0-y3);
if (d<0) phi1=phi3;
else phi2=phi3;
}
*safe=TMath::Sqrt((x0-x3)*(x0-x3)+(y0-y3)*(y0-y3));
}
if (safz>0) {
*safe=TMath::Sqrt((*safe)*(*safe)+safz*safz);
}
if (iact==0) return TGeoShape::Big();
if ((iact==1) && (step<*safe)) return TGeoShape::Big();
}
// compute vector distance
if ((safz>0) && (point[2]*dir[2]>=0)) return TGeoShape::Big();
Double_t zi;
if (dir[2]!=0) {
Double_t u=dir[0]*dir[0]*b2+dir[1]*dir[1]*a2;
Double_t v=point[0]*dir[0]*b2+point[1]*dir[1]*a2;
Double_t w=point[0]*point[0]*b2+point[1]*point[1]*a2-a2*b2;
Double_t d=v*v-u*w;
if (d<0) return TGeoShape::Big();
Double_t dsq=TMath::Sqrt(d);
Double_t tau[2];
tau[0]=(-v+dsq)/u;
tau[1]=(-v-dsq)/u;
for (Int_t j=0; j<2; j++) {
if (tau[j]>=0) {
zi=point[2]+tau[j]*dir[2];
if ((TMath::Abs(zi)-fDz)<0)
snxt=TMath::Min(snxt,tau[j]);
}
}
}
// do z
zi=TGeoShape::Big();
if (safz>0) {
if (point[2]>0) zi=fDz;
if (point[2]<0) zi=-fDz;
Double_t tauz=(zi-point[2])/dir[2];
Double_t xz=point[0]+dir[0]*tauz;
Double_t yz=point[1]+dir[1]*tauz;
if ((xz*xz/a2+yz*yz/b2)<=1) snxt=tauz;
}
return snxt;
}
//_____________________________________________________________________________
TGeoVolume *TGeoEltu::Divide(TGeoVolume * /*voldiv*/, const char * /*divname*/, Int_t /*iaxis*/, Int_t /*ndiv*/,
Double_t /*start*/, Double_t /*step*/)
{
Error("Divide", "Elliptical tubes divisions not implemenetd");
return 0;
}
//_____________________________________________________________________________
void TGeoEltu::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2
param[0] = 0.; // Rmin
param[1] = TMath::Max(fRmin, fRmax); // Rmax
param[1] *= param[1];
param[2] = 0.; // Phi1
param[3] = 360.; // Phi2
}
//_____________________________________________________________________________
TGeoShape *TGeoEltu::GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix * /*mat*/) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestShapeBit(kGeoRunTimeShape)) return 0;
if (!mother->TestShapeBit(kGeoEltu)) {
Error("GetMakeRuntimeShape", "invalid mother");
return 0;
}
Double_t a, b, dz;
a = fRmin;
b = fRmax;
dz = fDz;
if (fDz<0) dz=((TGeoEltu*)mother)->GetDz();
if (fRmin<0)
a = ((TGeoEltu*)mother)->GetA();
if (fRmax<0)
a = ((TGeoEltu*)mother)->GetB();
return (new TGeoEltu(a, b, dz));
}
//_____________________________________________________________________________
void TGeoEltu::InspectShape() const
{
// print shape parameters
printf("*** Shape %s: TGeoEltu ***\n", GetName());
printf(" A = %11.5f\n", fRmin);
printf(" B = %11.5f\n", fRmax);
printf(" dz = %11.5f\n", fDz);
printf(" Bounding box:\n");
TGeoBBox::InspectShape();
}
//_____________________________________________________________________________
Double_t TGeoEltu::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t x0 = TMath::Abs(point[0]);
Double_t y0 = TMath::Abs(point[1]);
Double_t x1, y1, dx, dy;
Double_t safr, safz;
safr = safz = TGeoShape::Big();
if (in) {
x1 = fRmin*TMath::Sqrt(1.-(y0*y0)/(fRmax*fRmax));
y1 = fRmax*TMath::Sqrt(1.-(x0*x0)/(fRmin*fRmin));
dx = x1-x0;
dy = y1-y0;
if (dx==0) return 0;
safr = dx*dy/TMath::Sqrt(dx*dx+dy*dy);
safz = fDz - TMath::Abs(point[2]);
return TMath::Min(safr,safz);
}
if (x0==0) {
safr = y0 - fRmax;
} else {
if (y0==0) {
safr = x0 - fRmin;
} else {
Double_t f = fRmin*fRmax/TMath::Sqrt(x0*x0*fRmax*fRmax+y0*y0*fRmin*fRmin);
x1 = f*x0;
y1 = f*y0;
dx = x0-x1;
dy = y0-y1;
Double_t ast = fRmin*y1/fRmax;
Double_t bct = fRmax*x1/fRmin;
Double_t d = TMath::Sqrt(bct*bct+ast*ast);
safr = (dx*bct+dy*ast)/d;
}
}
safz = TMath::Abs(point[2])-fDz;
return TMath::Max(safr, safz);
}
//_____________________________________________________________________________
void TGeoEltu::SetEltuDimensions(Double_t a, Double_t b, Double_t dz)
{
if ((a<=0) || (b<0) || (dz<0)) {
SetShapeBit(kGeoRunTimeShape);
}
fRmin=a;
fRmax=b;
fDz=dz;
}
//_____________________________________________________________________________
void TGeoEltu::SetDimensions(Double_t *param)
{
Double_t a = param[0];
Double_t b = param[1];
Double_t dz = param[2];
SetEltuDimensions(a, b, dz);
}
//_____________________________________________________________________________
void TGeoEltu::SetPoints(Double_t *buff) const
{
// create tube mesh points
Double_t dz;
Int_t j, n;
n = gGeoManager->GetNsegments();
Double_t dphi = 360./n;
Double_t phi = 0;
Double_t cph,sph;
dz = fDz;
Int_t indx = 0;
Double_t r2,r;
Double_t a2=fRmin*fRmin;
Double_t b2=fRmax*fRmax;
if (buff) {
for (j = 0; j < n; j++) {
buff[indx+6*n] = buff[indx] = 0;
indx++;
buff[indx+6*n] = buff[indx] = 0;
indx++;
buff[indx+6*n] = dz;
buff[indx] =-dz;
indx++;
}
for (j = 0; j < n; j++) {
phi = j*dphi*TMath::DegToRad();
sph=TMath::Sin(phi);
cph=TMath::Cos(phi);
r2=(a2*b2)/(b2+(a2-b2)*sph*sph);
r=TMath::Sqrt(r2);
buff[indx+6*n] = buff[indx] = r*cph;
indx++;
buff[indx+6*n] = buff[indx] = r*sph;
indx++;
buff[indx+6*n]= dz;
buff[indx] =-dz;
indx++;
}
}
}
//_____________________________________________________________________________
Int_t TGeoEltu::GetNmeshVertices() const
{
return TGeoTube::GetNmeshVertices();
}
//_____________________________________________________________________________
void TGeoEltu::SetPoints(Float_t *buff) const
{
// create tube mesh points
Double_t dz;
Int_t j, n;
n = gGeoManager->GetNsegments();
Double_t dphi = 360./n;
Double_t phi = 0;
Double_t cph,sph;
dz = fDz;
Int_t indx = 0;
Double_t r2,r;
Double_t a2=fRmin*fRmin;
Double_t b2=fRmax*fRmax;
if (buff) {
for (j = 0; j < n; j++) {
buff[indx+6*n] = buff[indx] = 0;
indx++;
buff[indx+6*n] = buff[indx] = 0;
indx++;
buff[indx+6*n] = dz;
buff[indx] =-dz;
indx++;
}
for (j = 0; j < n; j++) {
phi = j*dphi*TMath::DegToRad();
sph=TMath::Sin(phi);
cph=TMath::Cos(phi);
r2=(a2*b2)/(b2+(a2-b2)*sph*sph);
r=TMath::Sqrt(r2);
buff[indx+6*n] = buff[indx] = r*cph;
indx++;
buff[indx+6*n] = buff[indx] = r*sph;
indx++;
buff[indx+6*n]= dz;
buff[indx] =-dz;
indx++;
}
}
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.